基于核酸适配体夹心结构介导酶切引发环介导等温信号放大的超灵敏凝血酶比色传感方法研究

傅昕 邹婷 张何 张培柔 蒋序春

引用本文: 傅昕, 邹婷, 张何, 张培柔, 蒋序春. 基于核酸适配体夹心结构介导酶切引发环介导等温信号放大的超灵敏凝血酶比色传感方法研究[J]. 分析化学, 2022, 50(7): 1022-1031. doi: 10.19756/j.issn.0253-3820.210793 shu
Citation:  FU Xin,  ZOU Ting,  ZHANG He,  ZHANG Pei-Rou,  JIANG Xu-Chun. Ultrasensitive Colorimetric Sensor for Detection of Thrombin Based on Loop Mediated Isothermal Signal Amplification Triggered by Aptamer Sandwich-Mediated Enzymatic Digestion[J]. Chinese Journal of Analytical Chemistry, 2022, 50(7): 1022-1031. doi: 10.19756/j.issn.0253-3820.210793 shu

基于核酸适配体夹心结构介导酶切引发环介导等温信号放大的超灵敏凝血酶比色传感方法研究

    通讯作者: 张何,E-mail:mzhang_he@126.com
  • 基金项目:

    国家自然科学基金项目(No.21005067)和湖南省自然科学基金项目(No.2019JJ40055)资助。

摘要: 设计了一种双核酸适配体夹心识别凝血酶并通过酶切开启环介导等温扩增实现信号放大的高灵敏凝血酶比色传感方法。在凝血酶存在下,利用双核酸适配体构建三明治夹心结构识别并捕获凝血酶,通过Nb.BsrDI切刻内切酶的酶切作用引发环介导等温扩增实现信号放大,使G-四链体-血红素DNA酶催化ABTS-H2O2体系显示特征绿色。在最优实验条件下,本方法检测凝血酶的线性范围为0.01~1.0 ag/mL,检出限为0.008 ag/mL,回归方程为ΔA420 nm=0.187Cthrombin+0.171(R2=0.991),具有超高的灵敏度和良好的线性度。在血清样品中存在大量干扰蛋白时,传感器对凝血酶仍然具有较高的选择性。将本方法应用于人血清样品中凝血酶含量检测,加标回收率为96.1%~103.2%。本方法将核酸适配体夹心识别技术、环介导等温扩增技术和G-四链体-血红素DNA酶酶促信号放大技术相结合,实现了凝血酶的超灵敏检测;同时,本方法具有操作简便、稳定性好且成本低的优点,可望应用于临床人血清中凝血酶的高灵敏检测。

English


    1. [1]

      PEACOCK R B, MCGRANN T, TONELLI M, KOMIVES E A. Sci. Rep., 2021, 11(1):9354.PEACOCK R B, MCGRANN T, TONELLI M, KOMIVES E A. Sci. Rep., 2021, 11(1):9354.

    2. [2]

      WEN Yan-Qing, LONG Qian, ZHANG You-Yu, LI Hai-Tao. J. Anal. Sci., 2017, 33(2):177-182.文艳清,龙倩,张友玉,李海涛.分析科学学报, 2017, 33(2):177-182.

    3. [3]

      SAPSFORD K E, BERTI L, MEDINTZ I L. Angew. Chem., Int. Ed., 2006, 45(28):4562-4589.SAPSFORD K E, BERTI L, MEDINTZ I L. Angew. Chem., Int. Ed., 2006, 45(28):4562-4589.

    4. [4]

      HERNANDEZ-RODRIGUEZ N A, CAMBREY A D, CHAMBERS R C, GRAY A J, MCANULTY R J, LAURENT G J, HARRISON N K, SOUTHCOTT A M, DUBOIS R M, BLACK C M. Lancet, 1995, 346(8982):1071-1073.HERNANDEZ-RODRIGUEZ N A, CAMBREY A D, CHAMBERS R C, GRAY A J, MCANULTY R J, LAURENT G J, HARRISON N K, SOUTHCOTT A M, DUBOIS R M, BLACK C M. Lancet, 1995, 346(8982):1071-1073.

    5. [5]

      KITAMOTO Y, IMAMURA T, FUKUI H, TOMITA K. Kidney Int., 1998, 54:1767-1768.KITAMOTO Y, IMAMURA T, FUKUI H, TOMITA K. Kidney Int., 1998, 54:1767-1768.

    6. [6]

      NIU S, QU L, ZHANG Q, LIN J. Anal. Biochem., 2012, 421(2):362-367.NIU S, QU L, ZHANG Q, LIN J. Anal. Biochem., 2012, 421(2):362-367.

    7. [7]

      MANN K G. J. Thromb. Haemost., 2006, 4(1):58-59.MANN K G. J. Thromb. Haemost., 2006, 4(1):58-59.

    8. [8]

      RAND M D, LOCK J B, VAN'T VEER C, GAFFNEY D P, MANN K G. Blood, 1996, 88(9):3432-3445.RAND M D, LOCK J B, VAN'T VEER C, GAFFNEY D P, MANN K G. Blood, 1996, 88(9):3432-3445.

    9. [9]

      OBUBUAFO A, BALAMURUGAN S, SHADPOUR H, SPIVAK D, MCCARLEY R L, SOPER S A. Electrophoresis, 2008, 29(16):3436-3445.OBUBUAFO A, BALAMURUGAN S, SHADPOUR H, SPIVAK D, MCCARLEY R L, SOPER S A. Electrophoresis, 2008, 29(16):3436-3445.

    10. [10]

      CHOI J H, CHEN K H, STRANO M S. J. Am. Chem. Soc., 2006, 128(49):15584-15585.CHOI J H, CHEN K H, STRANO M S. J. Am. Chem. Soc., 2006, 128(49):15584-15585.

    11. [11]

      BAI Zhao-Peng, YANG Shao-Ming, TENG Yu, ZHANG Jian. Chin. J. Anal. Chem., 2020, 48(1):137-144.柏朝朋,杨绍明,滕渝,张剑.分析化学, 2020, 48(1):137-144.

    12. [12]

      XU H, CUI H, YIN Z, WEI G, LIAO F, SHU Q, MA G, CHENG L, HONG N, XIONG J, FAN H. Bioelectrochemistry, 2020, 134:107522.XU H, CUI H, YIN Z, WEI G, LIAO F, SHU Q, MA G, CHENG L, HONG N, XIONG J, FAN H. Bioelectrochemistry, 2020, 134:107522.

    13. [13]

      CHENG L, XU C, CUI H, LIAO F, HONG N, MA G, XIONG J, FAN H. Anal. Chim. Acta, 2020, 1111:1-7.CHENG L, XU C, CUI H, LIAO F, HONG N, MA G, XIONG J, FAN H. Anal. Chim. Acta, 2020, 1111:1-7.

    14. [14]

      GUO W J, YANG X Y, WU Z, ZHANG Z L. J. Mater. Chem. B, 2020, 8(16):3574-3581.GUO W J, YANG X Y, WU Z, ZHANG Z L. J. Mater. Chem. B, 2020, 8(16):3574-3581.

    15. [15]

      ZHAO Q, LU X, YUAN C G, LI X F, LE X C. Anal. Chem., 2009, 81(17):7484-7489.ZHAO Q, LU X, YUAN C G, LI X F, LE X C. Anal. Chem., 2009, 81(17):7484-7489.

    16. [16]

      ZHANG Song-Bai, ZHENG Li-Ying, HU Xia, SHEN Guang-Yu, LIU Xue-Wen, SHEN Guo-Li, YU Ru-Qin. Chin. J. Anal. Chem., 2015, 43(11):1688-1694.张松柏,郑丽英,胡霞,沈广宇,刘学文,沈国励,俞汝勤.分析化学, 2015, 43(11):1688-1694.

    17. [17]

      SUN Y, ZHU X, LIU H, DAI Y, HAN R, GAO D, LUO C, WANG X, WEI Q. ACS Appl. Mater. Interfaces, 2020, 12(5):5569-5577.SUN Y, ZHU X, LIU H, DAI Y, HAN R, GAO D, LUO C, WANG X, WEI Q. ACS Appl. Mater. Interfaces, 2020, 12(5):5569-5577.

    18. [18]

      YU N, WU J. Biosens. Bioelectron., 2019, 146:111726.YU N, WU J. Biosens. Bioelectron., 2019, 146:111726.

    19. [19]

      LI X, WU Y, NIU J, JIANG D, XIAO D, ZHOU C. J. Mater. Chem. A, 2019, 7(34):5161-5169.LI X, WU Y, NIU J, JIANG D, XIAO D, ZHOU C. J. Mater. Chem. A, 2019, 7(34):5161-5169.

    20. [20]

      LIU Y Z, JIANG X K, CAO W F, SUN J Y, GAO F. Sensors-Basel, 2018, 18(12):4289.LIU Y Z, JIANG X K, CAO W F, SUN J Y, GAO F. Sensors-Basel, 2018, 18(12):4289.

    21. [21]

      ZHAO Q, GAO J. Biosens. Bioelectron., 2015, 63:21-25.ZHAO Q, GAO J. Biosens. Bioelectron., 2015, 63:21-25.

    22. [22]

      BEZUNEH T T, FEREJA T H, ADDISU K S, LI H J, JIN Y D. Microchem. J., 2021, 160:105649.BEZUNEH T T, FEREJA T H, ADDISU K S, LI H J, JIN Y D. Microchem. J., 2021, 160:105649.

    23. [23]

      LIN X, CHEN Q, LIU W, LI H, LIN J M. Biosens. Bioelectron., 2014, 56:71-76.LIN X, CHEN Q, LIU W, LI H, LIN J M. Biosens. Bioelectron., 2014, 56:71-76.

    24. [24]

      YIGIT M V, MAZUMDAR D, LU Y. Bioconjugate Chem., 2008, 19(2):412-417.YIGIT M V, MAZUMDAR D, LU Y. Bioconjugate Chem., 2008, 19(2):412-417.

    25. [25]

      KIM K S, LEE H S, YANG J A, JO M H, HAHN S K. Nanotechnology, 2009, 20(23):235501.KIM K S, LEE H S, YANG J A, JO M H, HAHN S K. Nanotechnology, 2009, 20(23):235501.

    26. [26]

      WALKER G T, FRAISER M S, SCHRAM J L, LITTLE M C, NADEAU J G, MALINOWSKI D P. Nucleic Acids Res., 1992, 20(7):1691-1696.WALKER G T, FRAISER M S, SCHRAM J L, LITTLE M C, NADEAU J G, MALINOWSKI D P. Nucleic Acids Res., 1992, 20(7):1691-1696.

    27. [27]

      LIZARDI P M, HUANG X H, ZHU Z R, BRAY-WARD P, THOMAS D C, WARD D C. Nat. Genet., 1998, 19(3):225-232.LIZARDI P M, HUANG X H, ZHU Z R, BRAY-WARD P, THOMAS D C, WARD D C. Nat. Genet., 1998, 19(3):225-232.

    28. [28]

      NIMITPHAK T, KIATPATHOMCHAI W, FLEGEL T W. Nucleic Acids Res., 2000, 28(12):e63.NIMITPHAK T, KIATPATHOMCHAI W, FLEGEL T W. Nucleic Acids Res., 2000, 28(12):e63.

    29. [29]

      VINCENT M, XU Y, KONG H. EMBO Rep., 2004, 5(8):795-800.VINCENT M, XU Y, KONG H. EMBO Rep., 2004, 5(8):795-800.

    30. [30]

      LIN Q, XU P, LI J, YIN C, FENG J. Microb. Pathog., 2017, 109:183-188.LIN Q, XU P, LI J, YIN C, FENG J. Microb. Pathog., 2017, 109:183-188.

    31. [31]

      XUE T, MA Z, LIU F, DU W, AN C. BMC Pulm. Med., 2020, 20(1):70.XUE T, MA Z, LIU F, DU W, AN C. BMC Pulm. Med., 2020, 20(1):70.

    32. [32]

      ULEP T H, DAY A S, SOSNOWSKI K, SHUMAKER A, YOON J Y. Sci. Rep., 2019, 9:9629.ULEP T H, DAY A S, SOSNOWSKI K, SHUMAKER A, YOON J Y. Sci. Rep., 2019, 9:9629.

    33. [33]

      DU Fang-Ling, WANG Ting-Ting, LIU Yang, WAN La-Gen. Exp. Lab. Med., 2018, 36(4):509-512, 565.杜芳玲,王婷婷,刘洋,万腊根.实验与检验医学, 2018, 36(4):509-512, 565.

    34. [34]

      ZHOU W, GONG X, XIANG Y, YUAN R, CHAI Y. Biosens. Bioelectron., 2014, 55:220-224.ZHOU W, GONG X, XIANG Y, YUAN R, CHAI Y. Biosens. Bioelectron., 2014, 55:220-224.

    35. [35]

      ZHANG He, WANG Qing, YANG Mei, FU Xin. Chin. J. Anal. Chem., 2019, 47(6):899-906.张何,王青,杨梅,傅昕.分析化学, 2019, 47(6):899-906.

    36. [36]

      LI Z, ZHAO J, WANG Z, DAI Z. Anal. Chim. Acta, 2018, 1008:90-95.LI Z, ZHAO J, WANG Z, DAI Z. Anal. Chim. Acta, 2018, 1008:90-95.

    37. [37]

      XU S Y, ZHU Z, ZHANG P, CHAN S H, SAMUELSON J C, XIAO J, INGALLS D, WILSON G G. Nucleic Acids Res., 2007, 35(14):4608-4618.XU S Y, ZHU Z, ZHANG P, CHAN S H, SAMUELSON J C, XIAO J, INGALLS D, WILSON G G. Nucleic Acids Res., 2007, 35(14):4608-4618.

    38. [38]

      ZHANG H, HU X J, FU X. Biosens. Bioelectron., 2014, 57:22-29.ZHANG H, HU X J, FU X. Biosens. Bioelectron., 2014, 57:22-29.

    39. [39]

      LU Lu, KANG Hong-Yan, CAO Zhi-Juan, LIU Cai-Yun, LU Jian-Zhong. Sci. Sin.:Chim., 2011, 41(10):1622-1628.路璐,康宏艳,曹志娟,刘彩云,卢建忠.中国科学:化学, 2011, 41(10):1622-1628.

    40. [40]

      ZHANG H, LEI Z X, FU X, DENG X C, WANG Q, GU D Y. Sens. Actuators, B, 2017, 246:896-903.ZHANG H, LEI Z X, FU X, DENG X C, WANG Q, GU D Y. Sens. Actuators, B, 2017, 246:896-903.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  831
  • HTML全文浏览量:  192
文章相关
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-12-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章