三维多孔碳/共价有机框架材料自支撑电极用于多巴胺电化学传感分析

王林玉 洪莎莎 黎艳艳 宋永海 汪莉

引用本文: 王林玉, 洪莎莎, 黎艳艳, 宋永海, 汪莉. 三维多孔碳/共价有机框架材料自支撑电极用于多巴胺电化学传感分析[J]. 分析化学, 2021, 49(6): 1053-1060. doi: 10.19756/j.issn.0253-3820.210418 shu
Citation:  WANG Lin-Yu,  HONG Sha-Sha,  LI Yan-Yan,  SONG Yong-Hai,  WANG Li. Dopamine Electrochemical Sensor Based on Three-Dimensional Macroporous Carbon/Covalent Organic Framework Integrated Electrode[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 1053-1060. doi: 10.19756/j.issn.0253-3820.210418 shu

三维多孔碳/共价有机框架材料自支撑电极用于多巴胺电化学传感分析

    通讯作者: 汪莉,E-mail:lwang@jxnu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21765009,21964010,21465014,21665012)资助。

摘要: 通过简单的水热法使二苯甲酸二肼和1,3,5-三(对甲酰基苯基)苯发生氨醛缩合反应,合成了一种新的共价有机框架材料(COFTFPB-TDF)。将COFTFPB-TDF生长到三维多孔碳(3D-KSC)上,得到3D-KSC/COFTFPB-TDF自支撑电极,采用扫描电子显微镜进行结构表征,结果表明,3D-KSC/COFTFPB-TDF具有片层结构,同时含有很多孔洞,可以固载其它的材料。采用循环伏安法研究了3D-KSC/COFTFPB-TDF自支撑电极对多巴胺的检测性能。结果表明,此传感器对多巴胺表现出良好的传感性能,具有低的检出限(0.045 μmol/L)、宽的线性范围(0.13 μmol/L~0.06 mmol/L)和高灵敏度(369 μA/(mmol/L)/cm2),这主要归因于COFTFPB-TDF较大的比表面积和较多的孔洞结构。因此,此材料具有良好的应用前景。

English


    1. [1]

      ROY A W, MYKEL A R. Annu. Rev. Psychol., 2020, 71: 79-106.

    2. [2]

      IARKOV A, BARRETO G E, GRIZZELL J A, ECHEVERRIA V. Front. Aging Neurosci., 2020, 12: 4.

    3. [3]

      CONIO B, MARTINO M, MAGIONCALDA P, ESCELSIOR A, INGLESE M, AMORE M, NORTHOFF G. Mol. Psychiatry, 2020, 25: 82-93.

    4. [4]

      GONZAGA M F M, CASTRO L F, NAVES L A, MENDONCA J L, LIMA B O, KESSLER I, CASULARI L A. Front. Endocrinol., 2018, 9: 625.

    5. [5]

      EDDIN F B K, FEN Y W. Sensors, 2020, 20(4): 1039.

    6. [6]

      VENTON B J, CAO Q. Analyst, 2020, 145: 1158-1168.

    7. [7]

      OZCAN A, ILKBAS S, ATILIR O A A. Talanta, 2017, 165: 489-495.

    8. [8]

      FAYEMI O E, ADEKUNLE A S, SWAMY B E K, EBENSO E E. J. Electroanal. Chem., 2018, 818: 236-249.

    9. [9]

      ZOU J, WU S L, LIU Y, SUN Y J, CAO Y, HSU J P, WEE A T S, JIANG J Z. Carbon, 2018, 130: 652-663.

    10. [10]

      FANG J, XIE Z G, WALLACEG, WANG X G. Appl. Surf. Sci., 2017, 412: 131-137.

    11. [11]

      SHUKLA S K, LAVON A, SHMULEVICH O, BEN-YOAV H. Talanta, 2018, 181: 57-64.

    12. [12]

      SULTAN S C, SEZER E, TEPELI Y, ANIK U. RSC Adv., 2014, 4: 31489-31492.

    13. [13]

      YU L, CUI X, LI H J, LU J, KANG Q, SHEN D Z. Analyst, 2019, 144: 4073-4080.

    14. [14]

      CHAUHAN N, CHAWLA S, PUNDIR C S, JAIN U. Biosens. Bioelectron., 2017, 89: 377-383.

    15. [15]

      PENG Z W, JIANG Z W, HUANG X, LI Y F. RSC Adv., 2016, 6: 13742-13748.

    16. [16]

      CAO Y, WANG L N, SHEN C, WANG C Y, HU X Y, WANG G X. Sens. Actuators, B, 2019, 283: 487-494.

    17. [17]

      QIU Z W, YANG T, GAO R, JIE G F, HOU W G. J. Electroanal. Chem., 2019, 835: 123-129.

    18. [18]

      LI Y, XIE M W, ZHANG X P, LIU Q, LIN D M, XU C G, XIE F Y, SUN X P. Sens. Actuators, B, 2019, 278: 126-132.

    19. [19]

      LI Y, C C, YANG Y P, DUN X J, GAO J M, JIN X J. J. Alloys Compd., 2019, 798: 764-772.

    20. [20]

      AHIRWAR D, BANO M, KHAN I, GOUND S S, SHEIKH M U D, MONDAL R, KHAN F. J. Solid State Chem., 2019, 273: 233-242.

    21. [21]

      ZHANG L, LIANG H B, MA X N, YE C, ZHAO Y. Microchem. J., 2019, 146: 479-485.

    22. [22]

      ARAVIND A, MATHEW B. SN Appl. Sci., 2019, 1: 23.

    23. [23]

      MARTINS T S, BOTT-NETO J L, RAYMUNDO-PEREIRA P A, TICIANELLI E A, MACHADO S A S. Sens. Actuators, B, 2018, 276: 378-387.

    24. [24]

      XU H Y, XIA C K, WANG S Y, HAN F, AKBARI M K, HAI Z Y, ZHUIYKOV S. Sens. Actuators, B, 2018, 267: 93-103.

    25. [25]

      WANG L Y, XIE Y, YANG Y X, LIANG H H, WANG L, SONG Y H. ACS Appl. Nano Mater., 2020, 3(2): 1412-1419.

    26. [26]

      WU Y Y, DENG P H, TIAN Y L, MAGESA F, LIU J, LI G L, HE Q G. J. Food Compos. Anal., 2019, 84: 103280.

    27. [27]

      RAHMAN M M, MARWANI H M, ALGETHAMI F K, ASIRI A M. New J. Chem., 2017, 41: 6262-6271.

    28. [28]

      VAROL T O, PERK B, AVCI O, AKPOLAT O, HAKLI O, XUE C M, LI Q, ANIK U. Measurement, 2019, 147: 106867.

    29. [29]

      SUN Y F, HE J B, WATERHOUSE G I N, XU L H, ZHANG H Y, QIAO X G, XU Z X. Sens. Actuators, B, 2019, 300: 126993.

    30. [30]

      ZHANG T, GAO C W, HUANG W, CHEN Y L, WANG Y, WANG J M. Talanta, 2018, 188: 578-583.

    31. [31]

      WANG L, ZHANG Q Y, CHEN S L, XU F G, CHEN S H, JIA J B, TAN H L, HOU H Q, SONG Y H. Anal. Chem., 2014, 86: 1414-1421.

    32. [32]

      CAI L L, HOU B J, SHANG Y Y, XU L, ZHOU B, JIANG X N, JIANG X Q. Chem. Phys. Lett., 2019, 736: 136797.

    33. [33]

      SUN X J, ZHANG L, ZHANG X H, LIU X X, JIAN J, KONG D C, ZENG D C, YUAN H M, FENG S H. Biosens. Bioelectron., 2020, 153: 112045.

    34. [34]

      HOU Y B, SHENG K, LU Y, MA C, LIU W, MEN X J, XU L, YIN S Y, DONG B, BAI X, SONG H W. Microchim. Acta, 2018, 185: 397.

    35. [35]

      LI J, XIA J F, ZHANG F F, WANG Z H, LIU Q Y. J. Chin. Chem. Soc., 2018, 65(6): 743-749.

    36. [36]

      BAS S Z, CUMMINS C, SELKIRK A, BORAH D, OZMEN M, MORRIS M A. ACS Appl. Nano Mater., 2019, 2(11): 7311-7318.

    37. [37]

      BAHRAMI E, AMINI R, VARDAK S. J. Alloys Compd., 2021, 855: 157292.

    38. [38]

      KRISHNAMOORTHY K, SUDHA V, KUMAR S M S, THANGAMUTHU R. J. Alloys Compd., 2018, 748: 338-347.

    39. [39]

      CAO M C, ZHENG L T, GU Y F, WANG Y T, ZHANG H, XU X H. Microchem. J., 2020, 159: 105465.

    40. [40]

      PANOV M S, GRISHANKINA A E, STUPIN D D, LIHACHEV A I, MIRONOV V N, STRASHKOV D M, KHAIRULLINA E M, TUMKIN I I, RYAZANTSEV M N. Materials, 2020, 13(23): 5385.

  • 加载中
计量
  • PDF下载量:  24
  • 文章访问数:  1318
  • HTML全文浏览量:  199
文章相关
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-04-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章