十二极电场对线形离子阱分析性能的影响

徐福兴 靳留雨 钱炳君 王伟民 丁传凡

引用本文: 徐福兴, 靳留雨, 钱炳君, 王伟民, 丁传凡. 十二极电场对线形离子阱分析性能的影响[J]. 分析化学, 2021, 49(8): 1282-1288. doi: 10.19756/j.issn.0253-3820.201580 shu
Citation:  XU Fu-Xing,  JIN Liu-Yu,  QIAN Bing-Jun,  WANG Wei-Min,  DING Chuan-Fan. Effect of Dodecapole Electric Field on Performance of Linear Ion Trap Mass Analyzer[J]. Chinese Journal of Analytical Chemistry, 2021, 49(8): 1282-1288. doi: 10.19756/j.issn.0253-3820.201580 shu

十二极电场对线形离子阱分析性能的影响

    通讯作者: 徐福兴,E-mail:xufuxing@nbu.edu.cn; 丁传凡,E-mail:dingchuanfan@nbu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21803013,21773035)资助

摘要: 结构简化的线形离子阱因使用非双曲面电极,容易产生一些四极场之外的高阶场成分,不同高阶场成分对离子阱的性能有不同程度的影响。本研究通过理论模拟和实验研究了具有不同十二极电场分量的半圆形棒状电极线形离子阱的性能。通过改变圆形电极半径和电场半径之间的比率,将不同幅度的十二极场(A6)分量添加到四极场(A2)中。在理论模拟计算和实验研究中,随着A6的成分从A6/A2=1.91%降低到0.03%,当m/z=175 Da时,质量分辨率逐渐提高到最大(1250,半峰全宽=0.14),但是,当A6/A2为负值时,质量分辨率严重下降。实验结果与理论计算趋势基本吻合。碰撞诱导的解离效率受高阶场A6分量的影响,当A6/A2=0.03%时,碰撞诱导解离效率最高。

English


    1. [1]

      TODD A R, BAMES L F, YOUNG K, ZLOTNICK A, JARROLD M F. Anal. Chem., 2020, 92(16): 11357-11364.TODD A R, BAMES L F, YOUNG K, ZLOTNICK A, JARROLD M F. Anal. Chem., 2020, 92(16): 11357-11364.

    2. [2]

      ZHU Y, HAMLOW L A, HE C C, ROY H A, CUMNNINGHAM N A, MUNSHI M, BERDEN G, OOMENS J, RODGERS M T. Int. J. Mass Spectrom., 2018, 429(SI): 18-27.ZHU Y, HAMLOW L A, HE C C, ROY H A, CUMNNINGHAM N A, MUNSHI M, BERDEN G, OOMENS J, RODGERS M T. Int. J. Mass Spectrom., 2018, 429(SI): 18-27.

    3. [3]

      ERICKSON B K, JEDRYCHOWSKI M P, MCALISTER G C, EVERLEY R A, KUNZ R, GYGI S P. Anal. Chem., 2015, 87(2): 1241-1249.ERICKSON B K, JEDRYCHOWSKI M P, MCALISTER G C, EVERLEY R A, KUNZ R, GYGI S P. Anal. Chem., 2015, 87(2): 1241-1249.

    4. [4]

      OLEJNIK M, RADKO L, JEDZINIAK P. Rapid Commun. Mass Spectrom., 2018, 32(8): 629-634.OLEJNIK M, RADKO L, JEDZINIAK P. Rapid Commun. Mass Spectrom., 2018, 32(8): 629-634.

    5. [5]

      DOUGLAS D J, FRANK A J, MAO D. Mass Spectrom. Rev., 2005, 24(1): 1-29.DOUGLAS D J, FRANK A J, MAO D. Mass Spectrom. Rev., 2005, 24(1): 1-29.

    6. [6]

      YAO Ru-Jiao, DING Zheng-Zhi, JING Jia-Rong, QI Xiao-Jun, ZHU Yong-Yong, PANG Jun-De, JIANG Gong-Yu, XIAO Yu. Chin. J. Anal. Chem., 2020, 48(4): 463-472. 姚如娇, 丁正知, 景加荣, 齐晓军, 朱勇勇, 庞骏德, 蒋公羽, 肖育. 分析化学, 2020, 48(4): 463-472.

    7. [7]

      WANG Y Z, HUANG Z J, JIANG Y, XIONG X C, DENG Y L, FANG X, XU W. J. Mass Spectrom., 2013, 48(8): 937-944.WANG Y Z, HUANG Z J, JIANG Y, XIONG X C, DENG Y L, FANG X, XU W. J. Mass Spectrom., 2013, 48(8): 937-944.

    8. [8]

      VAZQUEZ T, TAYLOR C, KNOWLTON M, WILLIAMS S, EVANS-NGUYEN T. J. Am. Soc. Mass Spectrom., 2020, 31(8): 1722-1729.VAZQUEZ T, TAYLOR C, KNOWLTON M, WILLIAMS S, EVANS-NGUYEN T. J. Am. Soc. Mass Spectrom., 2020, 31(8): 1722-1729.

    9. [9]

      XU W, CHAPPELL W J, COOKS R G, OUYANG Z. J. Mass Spectrom., 2009, 44(3): 353-360.XU W, CHAPPELL W J, COOKS R G, OUYANG Z. J. Mass Spectrom., 2009, 44(3): 353-360.

    10. [10]

      SYKA J E P, MARCH R E, TODD J F J. Practical Aspects of Ion Trap Mass Spectrometry, Vol.1, CRC Press, New York, USA, 1995: 169.SYKA J E P, MARCH R E, TODD J F J. Practical Aspects of Ion Trap Mass Spectrometry, Vol.1, CRC Press, New York, USA, 1995: 169.

    11. [11]

      WU G X, COOKS R G, OUYANG Z. Int. J. Mass Spectrom., 2005, 241(2-3): 119-132.WU G X, COOKS R G, OUYANG Z. Int. J. Mass Spectrom., 2005, 241(2-3): 119-132.

    12. [12]

      ZHANG Z P, QUIST H, PENG Y, HANSEN B J, WANG J T, HAWKINS A R, AUSTIN D E. Int. J. Mass Spectrom., 2011, 299(2-3): 151-157.ZHANG Z P, QUIST H, PENG Y, HANSEN B J, WANG J T, HAWKINS A R, AUSTIN D E. Int. J. Mass Spectrom., 2011, 299(2-3): 151-157.

    13. [13]

      KONENKOV N, LONDRY F, DING C F, DOUGLAS D J. J. Am. Soc. Mass Spectrom., 2006, 17(8): 1063-1073.KONENKOV N, LONDRY F, DING C F, DOUGLAS D J. J. Am. Soc. Mass Spectrom., 2006, 17(8): 1063-1073.

    14. [14]

      OUYANG Z, WU G X, SONG Y S, LI H Y, PLASS W R, COOKS R G. Anal. Chem., 2004, 76(16): 4595-4605.OUYANG Z, WU G X, SONG Y S, LI H Y, PLASS W R, COOKS R G. Anal. Chem., 2004, 76(16): 4595-4605.

    15. [15]

      JIANG D, JIANG G Y, LI X X, XU F X, WANG L, DING L, DING C F. Anal. Chem., 2013, 85(12): 6041-6046.JIANG D, JIANG G Y, LI X X, XU F X, WANG L, DING L, DING C F. Anal. Chem., 2013, 85(12): 6041-6046.

    16. [16]

      LI X X, JIANG G Y, LUO C, XU F X, WANG Y Y, DING L, DING C F. Anal. Chem., 2009, 81(12): 4840-4846.LI X X, JIANG G Y, LUO C, XU F X, WANG Y Y, DING L, DING C F. Anal. Chem., 2009, 81(12): 4840-4846.

    17. [17]

      WANG L, XU F X, DAI X H, FANG X, DING C F. J. Am. Soc. Mass Spectrom., 2014, 25(4): 548-555.WANG L, XU F X, DAI X H, FANG X, DING C F. J. Am. Soc. Mass Spectrom., 2014, 25(4): 548-555.

    18. [18]

      XIAO Y, DING Z Z, XU C S, DAI X H, FANG X, DING C F. Anal. Chem., 2014, 86(12): 5733-5739.XIAO Y, DING Z Z, XU C S, DAI X H, FANG X, DING C F. Anal. Chem., 2014, 86(12): 5733-5739.

    19. [19]

      XU Fu-Xing, CHEN Xin, CHEN Zhi-Yang, ZHOU Ming-Fei, DING Chuan-Fan. Chin. J. Anal. Chem., 2019, 47(5): 702-708. 徐福兴, 陈新, 陈志扬, 周鸣飞, 丁传凡. 分析化学, 2019, 47(5): 702-708.

    20. [20]

      DOUGLAS D J, KONENKOV N V. Rapid Commun. Mass Spectrom., 2014, 28(21): 2252-2258.DOUGLAS D J, KONENKOV N V. Rapid Commun. Mass Spectrom., 2014, 28(21): 2252-2258.

    21. [21]

      DANG Q K, XU F X, HUANG X H, FANG X, WANG R Z, DING C F. J. Mass Spectrom., 2015, 50(12): 1400-1408.DANG Q K, XU F X, HUANG X H, FANG X, WANG R Z, DING C F. J. Mass Spectrom., 2015, 50(12): 1400-1408.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  1014
  • HTML全文浏览量:  70
文章相关
  • 收稿日期:  2020-09-29
  • 修回日期:  2021-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章