纳米酶及其在生物医学检测领域的研究进展

尉枫 韩晓军

引用本文: 尉枫, 韩晓军. 纳米酶及其在生物医学检测领域的研究进展[J]. 分析化学, 2021, 49(4): 581-592. doi: 10.19756/j.issn.0253-3820.201491 shu
Citation:  WEI Feng,  HAN Xiao-Jun. Nanozymes and Their Application Progress in Biomedical Detection[J]. Chinese Journal of Analytical Chemistry, 2021, 49(4): 581-592. doi: 10.19756/j.issn.0253-3820.201491 shu

纳米酶及其在生物医学检测领域的研究进展

    通讯作者: 韩晓军,E-mail:hanxiaojun@hit.edu.cn
  • 基金项目:

    国家重点研发计划项目(No.2016YFC0401104)、哈尔滨市杰出青年基金项目(No.2017RAYXJ024)和城市水资源与水环境国家重点实验室项目(No.2020DX03)资助。

摘要: 天然酶是高度特异性的生物催化剂,可通过选择性催化特定反应而达到识别和检测的目的。然而,天然酶制备成本高、易失活,限制了其实际应用。纳米酶是一类具有类酶活性的纳米材料,可通过无机材料自身的催化活性实现模拟酶的仿生催化功能,具有价格低廉、性能稳定、应用范围广泛等优点。基于纳米酶的生物医学检测具有灵敏度高、特异性强、检出限低等特点,展现出良好的发展前景。本文总结了目前主流的纳米酶材料,介绍了其在生物医学检测领域的研究进展,并展望了纳米酶在生物医学检测领域的发展方向。

English


    1. [1]

      ZHOU Y, LIU B, YANG R, LIU J. Bioconjugate Chem., 2017, 28(12):2903-2909.

    2. [2]

      MENG Y, LI W, PAN X, GADD G M. Environ. Sci-Nano, 2020, 7(5):1305-1318.

    3. [3]

      ZHANG R, FAN K, YAN X. Sci. China Life Sci., 2020, 63(8):1183-1200.

    4. [4]

      LIANG M, YAN X. Acc. Chem. Res., 2019, 52(8):2190-2200.

    5. [5]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    6. [6]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    7. [7]

      CUI X, CHENG W, DONG M, HAN X. New J. Chem., 2019, 43(6):2752-2757.

    8. [8]

      BI Y, LI J, DONG C, MU W, HAN X. ChemPhotoChem, 2020, 4(5):366-372.

    9. [9]

      WANG H, WAN K, SHI X. Adv. Mater., 2019, 31(45):1805368.

    10. [10]

      ZHAO X, SU Y, QI X, HAN X. ACS Sustainable Chem. Eng., 2017, 5(7):6148-6158.

    11. [11]

      HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.

    12. [12]

      WANG Q, WEI H, ZHANG Z, WANG E, DONG S. TrAC-Trends Anal. Chem., 2018, 105:218-224.

    13. [13]

      HOU L, JIANG G, SUN Y, ZHANG X, HUANG J, LIU S, LIN T, YE F, ZHAO S. Catalysts, 2019, 9(12):1057.

    14. [14]

      ATTAR F, SHAHPAR M G, RASTI B, SHARIFI M, SABOURY A A, REZAYAT S M, FALAHATI M. J. Mol. Liq., 2019, 278:130-144.

    15. [15]

      ZHAO S, YU X, QIAN Y, CHEN W, SHEN J. Theranostics, 2020, 10(14):6278-6309.

    16. [16]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S. Nat. Nanotechnol., 2007, 2(9):577-583.

    17. [17]

      ZHAO Y, WANG Y, MATHUR A, WANG Y, MAHESHWARI V, SU H, LIU J. Nanoscale, 2019, 11(38):17841-17850.

    18. [18]

      CHEN Q, ZHANG X, LI S, TAN J, XU C, HUANG Y. Chem. Eng. J., 2020, 395:125130.

    19. [19]

      WANG J, WANG J, ZHOU P, TAO H, WANG X, WU Y. Microchim. Acta, 2020, 187(2):99.

    20. [20]

      ANDRÉ R, NATÁLIO F, HUMANES M, LEPPIN J, HEINZE K, WEVER R, SCHRÖDER H C, MÜLLER W E G, TREMEL W. Adv. Funct. Mater., 2011, 21(3):501-509.

    21. [21]

      KARIM M N, SINGH M, WEERATHUNGE P, BIAN P, ZHENG R, DEKIWADIA C, AHMED T, WALIA S, DELLA GASPERA E, SINGH S, RAMANATHAN R, BANSAL V. ACS Appl. Nano Mater., 2018, 1(4):1694-1704.

    22. [22]

      PEREZ-BENITO J F. J. Phys. Chem. A, 2004, 108(22):4853-4858.

    23. [23]

      CELARDO I, PEDERSEN J Z, TRAVERSA E, GHIBELLI L. Nanoscale, 2011, 3(4):1411-1420.

    24. [24]

      HERGET K, HUBACH P, PUSCH S, DEGLMANN P, GÜTZ H, GORELIK T E, GURAL'SKIY I Y A, PFITZNER F, LINK T, SCHENK S, PANTHÖFER M, KSENOFONTOV V, KOLB U, OPATZ T, ANDRÉ R, TREMEL W. Adv. Mater., 2017, 29(4):1603823.

    25. [25]

      SHARIFI M, FARYABI K, TALAEI A J, SHEKHA M S, ALE-EBRAHIM M, SALIHI A, NANAKALI N M Q, AZIZ F M, RASTI B, HASAN A, FALAHATI M. J. Mol. Liq., 2020, 297:112004.

    26. [26]

      UNNIKRISHNAN B, LIEN C W, CHU H W, HUANG C C. J. Hazard. Mater., 2021, 401:123397.

    27. [27]

      LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.

    28. [28]

      XI Z, CHENG X, GAO Z, WANG M, CAI T, MUZZIO M, DAVIDSON E, CHEN O, JUNG Y, SUN S, XU Y, XIA X. Nano Lett., 2020, 20(1):272-277.

    29. [29]

      LIU B, LIU J. Nano Res., 2017, 10(4):1125-1148.

    30. [30]

      WANG S, CHEN W, LIU A L, HONG L, DENG H H, LIN X H. ChemPhysChem, 2012, 13(5):1199-1204.

    31. [31]

      SHEN X, LIU W, GAO X, LU Z, WU X, GAO X. J. Am. Chem. Soc., 2015, 137(50):15882-15891.

    32. [32]

      HAN L, LI C, ZHANG T, LANG Q, LIU A. ACS Appl. Mater. Interfaces, 2015, 7(26):14463-14470.

    33. [33]

      SINGH S, TRIPATHI P, KUMAR N, NARA S. Biosens. Bioelectron., 2017, 92:280-286.

    34. [34]

      HE W, WU X, LIU J, HU X, ZHANG K, HOU S, ZHOU W, XIE S. Chem. Mater., 2010, 22(9):2988-2994.

    35. [35]

      CUI X, CHENG W, XU W, MU W, HAN X. Nano, 2019, 14(11):1930006.

    36. [36]

      LI R, ZHEN M, GUAN M, CHEN D, ZHANG G, GE J, GONG P, WANG C, SHU C. Biosens. Bioelectron., 2013, 47:502-507.

    37. [37]

      ZHU X, LIU P, GE Y, WU R, XUE T, SHENG Y, AI S, TANG K, WEN Y. J. Electroanal. Chem., 2020, 862:113940.

    38. [38]

      ZENG Y, MIAO F, ZHAO Z, ZHU Y, LIU T, CHEN R, LIU S, LV Z, LIANG F. Appl. Sci., 2017, 7(9):924.

    39. [39]

      LI J, YI K, LEI Y, QING Z, ZOU Z, ZHANG Y, SUN H, YANG R. Chem. Commun., 2020, 56(46):6285-6288.

    40. [40]

      SUN H, ZHOU Y, REN J, QU X. Angew. Chem. Int. Ed., 2018, 57(30):9224-9237.

    41. [41]

      SHI Z, YANG W, GU Y, LIAO T, SUN Z. Adv. Sci., 2020, 7(15):2001069.

    42. [42]

      SONG Y, QU K, ZHAO C, REN J, QU X. Adv. Mater., 2010, 22(19):2206-2210.

    43. [43]

      SUN H, ZHAO A, GAO N, LI K, REN J, QU X. Angew. Chem. Int. Ed., 2015, 54(24):7176-7180.

    44. [44]

      ZHAO R, ZHAO X, GAO X. Chem.-Eur. J., 2015, 21(3):960-964.

    45. [45]

      MA W, XUE Y, GUO S, JIANG Y, WU F, YU P, MAO L. Chem. Commun., 2020, 56(38):5115-5118.

    46. [46]

      ALI S S, HARDT J I, QUICK K L, KIMHAN J S, ERLANGER B F, HUANG T, EPSTEIN C J, DUGAN L L. Free Radicals Biol. Med., 2004, 37(8):1191-1202.

    47. [47]

      MIKHEEV I V, SOZARUKOVA M M, PROSKURNINA E V, KAREEV I E, PROSKURNIN M A. Proskurnin M. Molecules, 2020, 25(11):2506.

    48. [48]

      WANG X, QIN L, LIN M, XING H, WEI H. Anal. Chem., 2019, 91(16):10648-10656.

    49. [49]

      ZHU J, NIE W, WANG Q, LI J, LI H, WEN W, BAO T, XIONG H, ZHANG X, WANG S. Carbon, 2018, 129:29-37.

    50. [50]

      ZHANG X, LI G, CHEN G, WU D, ZHOU X, WU Y. Coordin. Chem. Rev., 2020, 418:213376.

    51. [51]

      ZHANG W, HU S, YIN J J, HE W, LU W, MA M, GU N, ZHANG Y. J. Am. Chem. Soc., 2016, 138(18):5860-5865.

    52. [52]

      LI S, LIU X, CHAI H, HUANG Y. TrAC-Trends Anal. Chem., 2018, 105:391-403.

    53. [53]

      ZHANG X, LI G, WU D, LI X, HU N, CHEN J, CHEN G, WU Y. Biosens. Bioelectron., 2019, 137:178-198.

    54. [54]

      LI S, HOU Y, CHEN Q, ZHANG X, CAO H, HUANG Y. ACS Appl. Mater. Interfaces, 2020, 12(2):2581-2590.

    55. [55]

      MA S, YONG D, ZHANG Y, WANG X, HAN X. Chem.-Eur. J., 2014, 20(47):15580-15586.

    56. [56]

      WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.

    57. [57]

      QIU H, PU F, RAN X, LIU C, REN J, QU X. Anal. Chem., 2018, 90(20):11775-11779.

    58. [58]

      WANG X, WEI H. J. Nanopart. Res., 2020, 22(1):22.

    59. [59]

      SONG W, ZHAO B, WANG C, OZAKI Y, LU X. J. Mater. Chem. B, 2019, 7(6):850-875.

    60. [60]

      JIANG D, NI D, ROSENKRANS Z T, HUANG P, YAN X, CAI W. Chem. Soc. Rev., 2019, 48(14):3683-3704.

    61. [61]

      HAN X, CHENG W, ZHANG Z, DONG S, WANG E. BBA-Bioenergetics, 2002, 1556(2):273-277.

    62. [62]

      CHENG W, HAN X, WANG E, DONG S. Electroanalysis, 2004, 16(1-2):127-131.

    63. [63]

      TIAN R, SUN J, QI Y, ZHANG B, GUO S, ZHAO M. Nanomaterials, 2017, 7(11):347.

    64. [64]

      WANG P, CAO L, CHEN Y, WU Y, DI J. ACS Appl. Nano Mater., 2019, 2(4):2204-2211.

    65. [65]

      LIU B, SUN Z, HUANG P J J, LIU J. J. Am. Chem. Soc., 2015, 137(3):1290-1295.

    66. [66]

      ZHANG L, CHEN Y, CHENG N, XU Y, HUANG K, LUO Y, WANG P, DUAN D, XU W. Anal. Chem., 2017, 89(19):10194-10200.

    67. [67]

      KARIM M N, ANDERSON S R, SINGH S, RAMANATHAN R, BANSAL V. Biosens. Bioelectron., 2018, 110:8-15.

    68. [68]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    69. [69]

      ADENIYI O, SICWETSHA S, MASHAZI P. ACS Appl. Mater. Interfaces, 2020, 12(2):1973-1987.

    70. [70]

      WANG J, HU Y, ZHOU Q, HU L, FU W, WANG Y. ACS Appl. Mater. Interfaces, 2019, 11(47):44466-44473.

    71. [71]

      WANG X, TANG C L, LIU J J, ZHANG H Z, WANG J. Chin. J. Anal. Chem., 2018, 46(5):e1825-e1831.

    72. [72]

      GANGANBOINA A B, DOONG R A. Sens. Actuators, B, 2018, 273:1179-1186.

    73. [73]

      LIU Y, JIN H T, ZOU W T, GUO R. J. Mater. Chem. B, 2020, 8(39):9075-9083.

    74. [74]

      ZHANG Y, LI C, SU Y, MU W, HAN X. Inorg. Chem. Commun., 2020, 111:10767.

    75. [75]

      SU Y, MA S, JIANG K, HAN X. Chinese J. Chem., 2015, 33(4):446-450.

    76. [76]

      WU Liang-Liang, QIAN Zhi-Juan, XIE Zheng-Jun, ZHANG Ying-Ying, PENG Chi-Fang. Chin. J. Anal. Chem., 2017, 45(4):471-476. 吴亮亮, 钱志娟, 谢正军, 张莹莹, 彭池方. 分析化学, 2017, 45(4):471-476.

    77. [77]

      DU Zai-Hui, LI Xiang-Yang, TIAN Jing-Jing, ZHANG Yang-Zi, TIAN Hong-Tao, XU Wen-Tao. Chin. J. Anal. Chem., 2018, 46(7):995-1004. 杜再慧, 李相阳, 田晶晶, 张洋子, 田洪涛, 许文涛. 分析化学, 2018, 46(7):995-1004.

    78. [78]

      HASAN A, NANAKALI N M Q, SALIHI A, RASTI B, SHARIFI M, ATTAR F, DERAKHSHANKHAH H, MUSTAFA I A, ABDULQADIR S Z, FALAHATI M. Talanta, 2020, 215:120939.

    79. [79]

      LOGAN N, MCVEY C, ELLIOTT C, CAO C. Nano Res., 2020, 13(4):989-998.

    80. [80]

      HE S B, CHEN F Q, XIU L F, PENG H P, DENG H H, LIU A L, CHEN W, HONG G L. Anal. Bioanal. Chem., 2020, 412(2):499-506.

    81. [81]

      LIEN C W, UNNIKRISHNAN B, HARROUN S G, WANG C M, CHANG J Y, CHANG H T, HUANG C C. Biosens. Bioelectron., 2018, 102:510-517.

    82. [82]

      CHEN W, ZHANG X, LI J, CHEN L, WANG N, YU S, LI G, XIONG L, JU H. Anal. Chem., 2020, 92(3):2714-2721.

    83. [83]

      WU Y, WU J, JIAO L, XU W, WANG H, WEI X, GU W, REN G, ZHANG N, ZHANG Q, HUANG L, GU L, ZHU C. Anal. Chem., 2020, 92(4):3373-3379.

    84. [84]

      WANG X, JIANG X, WEI H. J. Mater. Chem. B, 2020, 8(31):6905-6911.

    85. [85]

      NIU X, CHENG N, RUAN X, DU D, LIN Y. J. Electrochem. Soc., 2019, 167(3):037508.

    86. [86]

      WANG L, MA S, WANG X, LIU D, LIU S, HAN X. J. Mater. Chem. B, 2013, 1(38):5021-5027.

    87. [87]

      HENDRICKSON O D, SMIRNOVA N I, ZHERDEV A V, SVESHNIKOV P G, DZANTIEV B B. Microchim. Acta, 2016, 183(1):211-217.

    88. [88]

      LONG L, CAI R, LIU J, WU X. Front. Chem., 2020, 8:463.

    89. [89]

      DUAN D, FAN K, ZHANG D, TAN S, LIANG M, LIU Y, ZHANG J, ZHANG P, LIU W, QIU X, KOBINGER G P, FU GAO G, YAN X. Biosens. Bioelectron., 2015, 74:134-141.

    90. [90]

      LIU D, PAN X, MU W, LI C, HAN X. Biosens. Bioelectron., 2015, 74:134-141.

    91. [91]

      GAO Y, ZHOU Y, CHANDRAWATI R. ACS Appl. Nano Mater., 2020, 3(1):1-21.

    92. [92]

      XIE J, TANG M Q, CHEN J, ZHU Y H, LEI C B, HE H W, XU X H. Talanta, 2020, 217:121070.

    93. [93]

      FARKA Z, ČUNDERLOVÁ V, HORÁČKOVÁ V, PASTUCHA M, MIKUŠOVÁ Z, HLAVÁČEK A, SKLÁDAL P. Anal. Chem., 2018, 90(3):2348-2354.

    94. [94]

      JIANG B, FANG L, WU K, YAN X, FAN K. Theranostics, 2020, 10(2):687-706.

    95. [95]

      MAHMUDUNNABI R G, FARHANA F Z, KASHANINEJAD N, FIROZ S H, SHIM Y B, SHIDDIKY M J A. Analyst, 2020, 145(13):4398-4420.

    96. [96]

      LIU D, WANG L, MA S, JIANG Z, YANG B, HAN X, LIU S. Nanoscale, 2015, 7(8):3627-3633.

    97. [97]

      ZHANG S, CHEN Y, HUANG Y, DAI H, LIN Y. Biosens. Bioelectron., 2020, 159:112201.

    98. [98]

      CHENG H, ZHANG L, HE J, GUO W, ZHOU Z, ZHANG X, NIE S, WEI H. Anal. Chem., 2016, 88(10):5489-5497.

    99. [99]

      DING Y, REN G, WANG G, LU M, LIU J, LI K, LIN Y. Anal. Chem., 2020, 92(6):4583-4591.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1259
  • HTML全文浏览量:  237
文章相关
  • 收稿日期:  2020-08-14
  • 修回日期:  2020-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章