多元光学计算与下一代光谱仪

段潮舒 蔡文生 邵学广

引用本文: 段潮舒, 蔡文生, 邵学广. 多元光学计算与下一代光谱仪[J]. 分析化学, 2021, 49(4): 593-601. doi: 10.19756/j.issn.0253-3820.201436 shu
Citation:  DUAN Chao-Shu,  CAI Wen-Sheng,  SHAO Xue-Guang. Multivariate Optical Computing and Next-generation Spectrometer[J]. Chinese Journal of Analytical Chemistry, 2021, 49(4): 593-601. doi: 10.19756/j.issn.0253-3820.201436 shu

多元光学计算与下一代光谱仪

    通讯作者: 邵学广,E-mail:xshao@nankai.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.21775076)和南开大学中央高校基本科研基金项目(No.63191743)资助。

摘要: 多元光学计算(Multivariate optical computing,MOC)是一种在光学测量过程中利用光学滤波器实现光学计算的方法,基于MOC的分析仪器通过单点检测器即可获得定性和定量分析结果,不需要复杂的仪器设计和繁琐的数据处理过程。MOC的关键是滤波器,需根据分析目标设计合适的滤波器,检测信号可直接反映分析结果。近年来,科研人员不断对滤波器的设计进行优化和改进,光学运算性能不断提高。基于MOC的光谱仪是化学计量学和仪器设计的完美结合,被称为"下一代光谱仪"。本文阐述了MOC方法的发展历史、MOC光谱仪的原理和近年来的主要研究进展,总结了滤波器的设计方法、滤波器的光学器件和MOC光谱仪的应用,探讨了基于MOC的光谱仪在滤波器的设计及光学实现、系统集成等方面面临的挑战。

English


    1. [1]

      CHIOU P Y, OHTA A T, WU M C. Nature, 2005, 436(7049):370-372.

    2. [2]

      TREADO P J, MORRIS M D. Anal. Chem., 1989, 61(11):723A-734A.

    3. [3]

      BIALKOWSKI S E. Anal. Chem., 1986, 58:2561-2563.

    4. [4]

      FONG A, HIEFTJE G M. Appl. Spectrosc., 1995, 49(4):493-498.

    5. [5]

      DAI B, URBAS A, DOUGLAS C C, LODDER R A. Pharm. Res., 2007, 24(8):1441-1449.

    6. [6]

      MEDENDORP J, LODDER R A. J. Chemom., 2005, 19(10):533-542.

    7. [7]

      NELSON M P, AUST J F, DOBROWOLSKI J A, VERLY P G, MYRICK M L. Anal. Chem., 1998, 70(1):73-82.

    8. [8]

      SOYEMI O, EASTWOOD D, ZHANG L, LI H, KARUNAMUNI J, GEMPERLINE P, SYNOWICKI R A, MYRICK M L. Anal. Chem., 2001, 73(6):1069-1079.

    9. [9]

      SWANSTROM J A, BRUCKMAN L S, PEARL M R, SIMCOCK M N, DONALDSON K A, RICHARDSON T L, SHAW T J, MYRICK M L. Appl. Spectrosc., 2013, 67(6):620-629.

    10. [10]

      SWANSTROM J A, BRUCKMAN L S, PEARL M R, SIMCOCK M N, DONALDSON K A, RICHARDSON T L, SHAW T J, MYRICK M L. Appl. Spectrosc., 2013, 67(6):630-639.

    11. [11]

      SWANSTROM J A, BRUCKMAN L S, PEARL M R, SIMCOCK M N, DONALDSON K A, RICHARDSON T L, SHAW T J, MYRICK M L. Appl. Spectrosc., 2013, 67(6):640-647.

    12. [12]

      BROOKE H, BARANOWSKI M R, MCCUTCHEON J N, MORGAN S L, MYRICK M L. Anal. Chem., 2010, 82(20):8412-8420.

    13. [13]

      BROOKE H, BARANOWSKI M R, MCCUTCHEON J N, MORGAN S L, MYRICK M L. Anal. Chem., 2010, 82(20):8421-8426.

    14. [14]

      BROOKE H, BARANOWSKI M R, MCCUTCHEON J N, MORGAN S L, MYRICK M L. Anal. Chem., 2010, 82(20):8427-8431.

    15. [15]

      MEDENDORP J, LODDER R A. AAPS PharmSciTech, 2006, 7(1):E175-E183.

    16. [16]

      MEDENDORP J P, FACKLER J A, DOUGLAS C C, LODDER R A. J. Pharm. Innov., 2007, 2:125-134.

    17. [17]

      HAMILTON S J, LODDER R A. Proc. Soc. Photo-Optical Instrum. Eng., 2002, 4626:136-147.

    18. [18]

      PRAKASH A M C, STELLMAN C M, BOOKSH K S. Chemom. Intell. Lab. Syst., 1999, 46:265-274.

    19. [19]

      FONG A, HIEFTJE G M. Appl. Spectrosc., 1995, 49(9):1261-1267.

    20. [20]

      FISCHER M R, HIEFTJE G M. Appl. Spectrosc., 1996, 50(10):1246-1252.

    21. [21]

      CASSIS L A, DAI B, URBAS A, LODDER R A. Proc. SPIE-Int. Soc. Opt. Eng., 2004, 5329:239-253.

    22. [22]

      CASSIS L A, URBAS A, LODDER R A. Anal. Bioanal. Chem., 2005, 382(4):868-872.

    23. [23]

      DAI B, JONES C M, PEARL M, PELLETIER M, MYRICK M L. Sensors, 2018, 18(6):2006.

    24. [24]

      JONES C M, PRICE J, DAI B, LI J, PERKINS D L, MYRICK M L. Anal. Chem., 2019, 91(24):15617-15624.

    25. [25]

      JONES C M, DAI B, PRICE J, LI J, PEARL M, SOLTMANN B, MYRICK M L. Sensors, 2019, 19(3):701.

    26. [26]

      MYRICK M L, SOYEMI O, LI H, ZHANG L, EASTWOOD D. Fresenius J. Anal. Chem., 2001, 369(4):351-355.

    27. [27]

      HAIBACH F G, MYRICK M L. Appl. Opt., 2004, 43(10):2130-2140.

    28. [28]

      MYRICK M L, SOYEMI O, KARUNAMUNI J, EASTWOOD D, LI H, ZHANG L, GREER A E, GEMPERLINE P. Vib. Spectrosc., 2002, 28(1):73-81.

    29. [29]

      PROFETA L T M, MYRICK M L. Spectrochim. Acta, Part A, 2007, 67(2):483-502.

    30. [30]

      SOYEMI O O, HAIBACH F G, GEMPERLINE P J, MYRICK M L. Appl. Spectrosc., 2002, 56(4):477-487.

    31. [31]

      TARUMI T, WU Y P, SMALL G W. Anal. Chem., 2009, 81(6):2199-2207.

    32. [32]

      LIU Y, CAI W S, SHAO X G. Chemom. Intell. Lab. Syst., 2015, 149:22-27.

    33. [33]

      LI X Y, XU Z H, CAI W S, SHAO X G. Anal. Chim. Acta, 2015, 880:26-31.

    34. [34]

      SINJAB F, LIAO Z, NOTINGHER L. Appl. Spectrosc., 2019, 73(7):727-746.

    35. [35]

      DAVIS B M, HEMPHILL A J, MALTAS D C, ZIPPER M A, WANG P, BEN-AMOTZ D. Anal. Chem., 2011, 83(13):5086-5092.

    36. [36]

      MALTAS D C, KWOK K, WANG P, TAYLOR L S, BEN-AMOTZ D. J. Pharm. Biomed. Anal., 2013, 80:63-68.

    37. [37]

      MALTAS D C, MCCANN R, WANG P, PINAL R, ROMANACH R, BEN-AMOTZ D. J. Pharm. Innov., 2014, 9:1-4.

    38. [38]

      WILCOX D S, BUZZARD G T, LUCIER B J, WANG P, BEN-AMOTZ D. Anal. Chim. Acta., 2012, 755:17-27.

    39. [39]

      THOMPSON J V, BIXLER J N, HOKR B H, NOOJIN G D, SCULLY M O, YAKOVLEV V V. Opt. Lett., 2017, 42(11):2169-2172.

    40. [40]

      WILCOX D S, BUZZARD G T, LUCIER B J, REHRAUER O G, WANG P, BEN-AMOTZ D. Analyst, 2013, 138:4982-4990.

    41. [41]

      REHRAUER O G, DINH V C, MANKANI B R, BUZZARD G T, LUCIER B J, BEN-AMOTZ D. Appl. Spectrosc., 2018, 72(1):69-78.

    42. [42]

      DUDLEY D, DUNCAN W M, SLAUGHTER J. Proc. SPIE, 2003, 4985:14-25.

    43. [43]

      GAO J B, WANG J, YANG B, WANG J L, WANG W N, XIE J H, HU Y. Proc. SPIE, 2004, 5640:174-177.

    44. [44]

      SIE Y D, CHANG C Y, LIN C Y, CHANG N S, CAMPAGNOLA P J, CHEN S J. J. Biomed. Opt., 2018, 23(11):116502.

    45. [45]

      BERTO P, SCOTTE C, GALLAND F, RIGNEAULT H, DE AGUIAR H B. Opt. Lett., 2017, 42(9):1696-1699.

    46. [46]

      MA C, LIN H, ZHANG G D, DU R X. Opt. Commun., 2018, 426:348-358.

    47. [47]

      CEBECI D, MANKANI B R, BEN-AMOTZ D. J. Imaging, 2019, 5(1):1-15.

    48. [48]

      SMITH Z J, STROMBOM S, WACHSMANN-HOGIU S. Opt. Express, 2011, 19(18):16950-16962.

    49. [49]

      TAO C, LI C S, LI Y C, WANG H X, ZHANG Y R, ZHOU Z H, MA X F, MAO Z Y, TIAN D. J. Anal. At. Spectrom., 2018, 33:2098-2106.

    50. [50]

      TAO Chen, LI Chun-Sheng, WANG Hong-Xia, ZHANG Ya-Ru, ZHAO Cheng-Wei, ZHOU Zhi-Heng, MA Zhen-Yu, TIAN Di. Chin. J. Anal. Chem., 2018, 46(12):1878-1885. 陶琛, 李春生, 王宏霞, 张雅茹, 赵成威, 周志恒, 马振予, 田地. 分析化学, 2018, 46(12):1878-1885.

    51. [51]

      PRIORE R J, HAIBACH F G, SCHIZA M V, GREER A E, PERKINS D L, MYRICK M L. Appl. Spectrosc., 2004, 58(7):870-873.

    52. [52]

      SCOTTE C, DE AGUIAR H B, MARGUET D, GREEN E M, BOUZY P, VERGNOLE S, WINLOVE C P, STONE N, RIGNEAULT H. Anal. Chem., 2018, 90(12):7197-7203.

  • 加载中
计量
  • PDF下载量:  18
  • 文章访问数:  1320
  • HTML全文浏览量:  338
文章相关
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-10-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章