A New Double Alkali Metal Borate LiRbB8O13 with Large Bandgap and Birefringence

Kun CHAI Shuai-Shuai HU Shu-Juan HAN Tudi ABUDUKADI Zhi-Hua YANG Shi-Lie PAN

Citation:  Kun CHAI, Shuai-Shuai HU, Shu-Juan HAN, Tudi ABUDUKADI, Zhi-Hua YANG, Shi-Lie PAN. A New Double Alkali Metal Borate LiRbB8O13 with Large Bandgap and Birefringence[J]. Chinese Journal of Structural Chemistry, 2020, 39(9): 1578-1584. doi: 10.14102/j.cnki.0254-5861.2011-2965 shu

A New Double Alkali Metal Borate LiRbB8O13 with Large Bandgap and Birefringence

English

  • With the development of society, the optoelectronic functional crystals play a crucial role in the industrial, medical and scientific fields, especially the ultraviolet (UV) even deep-UV (DUV) optoelectronic functional crystals due to their applications in the short wavelength laser areas[1-3]. In recent years, a large number of new UV/DUV optical crystals have been reported, including carbonates[4], silicates[5], sulfates[6], borates[7-10], phosphates[11-13], and so on.

    Among them, borates are excellent candidates among these systems due to their abundant structures. The B atoms can coordinate with O atoms to form simple [BO3]3– and [BO4]5– groups, and these two kinds of groups further connect together to form many different polymerization clusters ([B2O4]2–, [B3O5], [B4O11]10–, [B7O14]7– etc.), which could reduce certain terminal oxygens in the structure to make the UV cut-off wavelength blue-shift, so it is available to obtain DUV optical materials in borate[14]. Besides, the BO3 groups have a large π-conjugated orbital electron structure, which is beneficial for obtaining new crystals with outstanding optical performance[15]. Based on the previous researches, many new borate crystals with excellent optical properties have been reported, such as β-BaB2O4 (β-BBO)[16], KBe2BO3F2 (KBBF)[17] and LiB3O5 (LBO)[18] which can be used as DUV nonlinear optical (NLO) crystals, and α-BaB2O4 (α-BBO)[19], Na3Ba2(B3O6)2F[20] and Ca(BO2)2[21] can serve as DUV birefringent crystals.

    Although many efforts proved that the type and arrangement of anionic groups have main contribution to the optical properties of crystals, the metal cation is of great significance for the optical properties[22]. And some design strategies have been brought up to obtain new borates. First, the cations with lone-pair electrons (Pb2+, Sn2+, etc.) or d0 electrons (Nb5+, V5+, Mo6+, etc.) can enhance the optical properties for crystals effectively, but easily narrow the light transmission range. For example, Pb2B5O9I possesses the largest SHG response in borate crystals, but the light transmission range will be limited in the ultraviolet (UV) region[23]. Second, the alkali and alkali-earth metals have no d-d or f-f electron transition, which is also beneficial for UV cut-off wavelength blue-shift, as well as the introduction of cations with large atomic radii (Rb or Cs) may lead to special crystal structures. So, the alkali metals benefit for the DUV optical functional crystal[24].

    Guided by the above ideas, we focused on the Li-Rb-B-O system to explore new UV optoelectronic functional crystals, and our efforts produced a new crystal, LiRbB8O13, which owns large bandgap and birefringence. Herein, the single crystal structure, synthesis, IR spectrum and UV-Vis-NIR diffuse reflectance spectrum of LiRbB8O13 are presented. Moreover, theoretical calculations are performed to understand its electronic structure and optical properties.

    The LiRbB8O13 crystal was grown in the sealed system. First, the mixture of LiF (0.052 g), RbF (0.052 g) and B2O3 (0.174 g) was loaded into a tidy quartz tube which was then flame-sealed under 10−3 Pa. After that, this sealed tube was heated from room temperature to 550 ℃ in 600 min, and kept at this temperature for 600 min. Subsequently, it was cooled to 400 ℃ at a rate of 1 ℃/h, then further cooled to 300 ℃ at a rate of 4 ℃/h, finally lowered to room temperature fast. During the cooling process, the target crystals were obtained. Colorless crystal was separated from the quartz tube for single-crystal X-ray diffraction (XRD) measurements.

    The polycrystalline sample of LiRbB8O13 was synthesized by solid-state reaction. The mixture of LiNO3, Rb2CO3 and H3BO3 with the molar ratio of 1:0.5:8 was ground evenly. Subsequently, the mixture was heated to 580 ℃ slowly and held for 14 days at this temperature, in which the mixture was ground for several times. Finally, it was cooled to room temperature naturally. In this process, the target sample was obtained.

    The single-crystal XRD data of LiRbB8O13 were collected by using a Bruker SMART APEX II 4K CCD diffractometer equipped with Mo radiation (λ = 0.71073 Å) at room temperature, and the data were integrated with a SAINT program[25]. The direct methods and full-matrix least-squares program SHELXL were used to solve and refine the crystal structure, respectively[26]. The structure was checked for missing symmetry elements with PLATON[27]. The final R = 0.0547, wR = 0.1224. The selected bond lengths and bond angles are listed in Table 1.

    Table 1

    Table 1.  Selected Bond Lengths and Bond Angles for LiRbB8O13
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist.
    Li(1)–O(8) 1.882(12) B(1)–O(3) 1.371(8) B(5)–O(4) 1.378(8)
    Li(1)–O(10)#5 1.890(11) B(1)–O(6) 1.405(7) B(5)–O(6) 1.379(8)
    Li(1)–O(7)#6 1.913(11) B(2)–O(2) 1.356(8) B(6)–O(8) 1.361(7)
    Li(1)–O(11)#6 1.999(12) B(2)–O(10) 1.359(8) B(6)–O(13) 1.362(8)
    Rb(1)–O(4)#1 2.836(4) B(2)–O(3) 1.391(7) B(6)–O(12) 1.381(8)
    Rb(1)–O(1)#2 2.978(4) B(3)–O(5) 1.450(7) B(7)–O(7) 1.443(7)
    Rb(1)–O(9)#3 2.986(4) B(3)–O(9)#10 1.468(7) B(7)–O(2)#11 1.446(7)
    Rb(1)–O(9)#2 2.993(4) B(3)–O(1) 1.477(7) B(7)–O(11)#12 1.448(7)
    Rb(1)–O(12)#1 3.013(4) B(3)–O(10)#10 1.479(8) B(7)–O(8)#12 1.479(7)
    Rb(1)–O(1)#3 3.041(4) B(4)–O(5) 1.336(8) B(8)–O(7) 1.346(8)
    Rb(1)–O(3) 3.130(4) B(4)–O(4) 1.378(8) B(8)–O(11) 1.394(8)
    Rb(1)–O(6)#1 3.326(4) B(4)–O(13) 1.381(7) B(8)–O(12) 1.400(8)
    B(1)–O(9) 1.326(8) B(5)–O(1) 1.342(8)
    Angle (°) Angle (°) Angle (°)
    O(4)#1–Rb(1)–O(5)#4 96.89(11) O(9)–B(1)–O(6) 120.9(5) O(1)–B(5)–O(6) 122.6(5)
    O(1)#2–Rb(1)–O(5)#4 92.63(10) O(3)–B(1)–O(6) 117.0(5) O(4)–B(5)–O(6) 116.3(6)
    O(9)#3–Rb(1)–O(5)#4 119.22(11) O(2)–B(2)–O(10) 122.1(5) O(8)–B(6)–O(13) 117.3(5)
    O(9)#2–Rb(1)–O(5)#4 43.23(10) O(2)–B(2)–O(3) 117.5(5) O(8)–B(6)–O(12) 120.3(5)
    O(12)#1–Rb(1)–O(5)#4 58.31(11) O(10)–B(2)–O(3) 120.3(5) O(13)–B(6)–O(12) 122.4(5)
    O(1)#3–Rb(1)–O(5)#4 146.57(10) O(5)–B(3)–O(9)#10 110.1(5) O(7)–B(7)–O(2)#11 109.9(5)
    O(3)–Rb(1)–O(5)#4 59.83(10) O(5)–B(3)–O(1) 111.1(5) O(7)–B(7)–O(11)#12 109.5(5)
    O(6)#1–Rb(1)–O(5)#4 134.80(9) O(9)#10–B(3)–O(1) 108.3(5) O(2)#11–B(7)–O(11)#12 109.6(5)
    O(8)–Li(1)–O(10)#5 105.5(5) O(5)–B(3)–O(10)#10 108.8(5) O(7)–B(7)–O(8)#12 106.6(5)
    O(8)–Li(1)–O(7)#6 108.2(5) O(9)#10–B(3)–O(10)#10 109.7(5) O(2)#11–B(7)–O(8)#12 112.3(5)
    O(10)#5–Li(1)–O(7)#6 125.5(6) O(1)–B(3)–O(10)#10 108.9(5) O(11)#12–B(7)–O(8)#12 108.7(5)
    O(8)–Li(1)–O(11)#6 134.9(6) O(5)–B(4)–O(4) 122.9(5) O(7)–B(8)–O(11) 113.8(5)
    O(10)#5–Li(1)–O(11)#6 110.2(5) O(5)–B(4)–O(13) 117.4(5) O(7)–B(8)–O(12) 124.2(6)
    O(7)#6–Li(1)–O(11)#6 71.8(4) O(4)–B(4)–O(13) 119.7(5) O(11)–B(8)–O(12) 122.0(5)
    O(9)–B(1)–O(3) 122.1(5) O(1)–B(5)–O(4) 121.1(6)
    Symmetry transformations used to generate the equivalent atoms: #1: –x + 1, y + 1/2, –z + 1/2; #2: x, –y + 3/2, z – 1/2; #3: –x + 1, –y + 2, –z + 1; #4: –x + 1, –y + 1, –z + 1; #5: x + 1, y – 1, z; #6: x, –y + 1/2, z + 1/2; #7: x + 1, –y + 3/2, z + 1/2; #8: x, –y + 3/2, z + 1/2; #9: x – 1, y + 1, z; #10: –x + 1, y – 1/2, –z + 3/2; #11: –x + 1, y – 1/2, –z + 1/2; #12: –x + 2, y + 1/2, –z + 1/2; #13: x, –y + 1/2, z – 1/2; #14: –x + 2, y – 1/2, –z + 1/2; #15: –x + 1, y + 1/2, –z + 3/2; #16: x, –y + 5/2, z + 1/2

    The powder X-ray diffraction (PXRD) analysis of the polycrystalline sample was carried out by a Bruker D2 PHASER diffractometer with Cu radiation at room temperature. The scan step width and fixed counting time are 0.02° and 1 s/step, respectively. The diffraction patterns were performed in the angular range of 2θ = 5~75°. The measurement result for the title compound is shown in Fig. 1, which indicates that the experimental result agrees well with the theoretical one except for several impurity peaks.

    Figure 1

    Figure 1.  Calculated and experimental powder X-ray diffraction pattern for LiRbB8O13

    We mixed the powder sample with dried KBr and ground evenly. And the IR spectrum was collected by Shimadzu IRAffinity-1 Fourier transform IR spectrometer with a resolution of 2 cm−1 in the range of 400~4000 cm−1 at room temperature.

    The UV-Vis-NIR diffuse reflectance spectrum was obtained at room temperature by using polytetrafluoroethylene as a standard to collect the data of the title compound on the Shimadzu SolidSpec-3700DUV spectrophotometer, and the wavelength range was from 190 to 2500 nm.

    The electronic structure and optical properties were calculated for LiRbB8O13 by the CASTEP software[28], a plane-wave pseudopotential DFT package, with the normconserving pseudopotentials[29]. The exchange-correlation functional was Perdew-Burke-Emzerhof (PBE) functional within the generalized gradient approximation (GGA)[30]. The plane-wave energy cutoff was set at 850.0 eV. Selfconsistent field (SCF) calculations were performed with a convergence criterion of 1 × 10−6 eV/atom on the total energy. The k-point separation for each material was set as 0.07 Å-1 in the Brillouin zone. The valence electrons of the elements in LiRbB8O13 were calculated as follows: Li 2s1, Rb 4s24p65s1, B 2s22p1 and O 2s22p4, respectively. The empty bands were set as 3 times the valence bands in the calculation to ensure the convergence of optical properties. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization technique was employed in geometry optimization during the calculation and the residual forces on the atoms, the displacements and the energy change of atoms are less than 0.01 eV/Å, 5 × 10–4 Å and 5.0 × 10–6 eV, respectively. The default values of the CASTEP code were retained for other parameters and convergent criteria.

    LiRbB8O13 is isomorphic with α-LiKB8O13[31], and crystallizes in space group P21/c (No. 14) of monoclinic crystal system. The asymmetric unit of LiRbB8O13 includes one unique Li atom, one unique Rb atom, eight unique B atoms and thirteen unique O atoms. The B(3) and B(7) atoms coordinate with four oxygens to form the [BO4]5- groups, and the other six kinds of B atoms are bound to three oxygens to form the [BO3]3– groups. The [BO3]3– and [BO4]5– groups are further connected to form the two groups by sharing oxygens, [B5O10]5– and [B3O7]5–, which are linked together by sharing one oxygen to build the fundamental building block (FBB) of the title compound, [B8O16]8- unit (Fig. 2a). And the FBBs are connected to construct the 3D [B8O13] framework by common oxygen atoms (Fig. 2b), which has 18-, 10- and 6-membered rings, respectively. From Fig. 2c it can be seen that the Rb atoms are inside the 18-membered rings and on the edge of the 6 rings, while Li atoms lie inside the 10-membered rings and on the edge of the 18-membered rings.

    Figure 2

    Figure 2.  (a) [B8O16]8- unit; (b) Framework of 3[B8O13] viewed in the ac plane; (c) Crystal structure of LiRbB8O13; (d) Crystal structure within the red border rotate certain angle

    In the structure, the B–O bond lengths of BO3 triangles are from 1.326(8) to 1.405(7) Å and from 1.443(7) to 1.479(8) Å in the BO4 tetrahedra (Table 1). All the bond lengths are consistent with those observed in other borates[32-34]. The coordination environments of the Li and Rb atoms are shown in Fig. 2c and 2d, respectively. It can be seen that the Li and Rb atoms are bound to four and eight O atoms to form the LiO4 and RbO8 polyhedra, respectively. The Li–O bond lengths fall in the range of 1.882(12)~1.999(12) Å and the Rb–O bond lengths vary from 2.836(4) to 3.326(4) Å (Table 1)[35].

    In order to understand the 3D framework of LiRbB8O13, we provide the topological picture, in which the [B8O16]8– units (FBBs) act as 6-connected nodes (Fig. 3). The Schläfli symbol, as analyzed by the TOPOS 4.0 program, is {49·66}[36]. From the topological structure, it is easy to find that the structure has two independent interpenetrating 3D frameworks.

    Figure 3

    Figure 3.  Topological illustration of LiRbB8O13

    The infrared (IR) spectrum for LiRbB8O13 is given in Fig. S1 in the Supporting Information, which shows the obvious stretching and bending vibration peaks for B–O bonds. According to the previous literatures[37, 38], the observed absorption peaks in the ranges of 1255~1213 and 1093~1041 cm–1 belong to the asymmetric vibrations of [BO3]3– and [BO4]5– groups, respectively. The symmetric stretching peaks of [BO3]3– and [BO4]5– groups can be observed at 941 and 783 cm–1, respectively. The peaks below 683 cm–1 are attributed to bending vibrations of B–O bonds. The IR spectrum further confirms the existence of B–O groups in the structure of the title compound, which agrees with the result from single-crystal X-ray diffraction.

    The UV-vis-IR diffuse reflectance spectrum of LiRbB8O13 is shown in Fig. 4, in which the wavelength ranges from 200 to 2500 nm. It is clear that the transmittance is about 70% at 200 nm, so the cut-off edge of LiRbB8O13 is below 200 nm, but a weak absorption peak can be observed at 242 nm, which may be due to the minor impurity.

    Figure 4

    Figure 4.  UV-Vis-NIR diffuse reflectance spectrum of LiRbB8O13

    To deeply study the relation of structure-property, the first-principle calculations were carried out by using the CASTEP package. The calculated electronic band structure, birefringence and total and partial densities of states are shown in Fig. 5, which indicates that LiRbB8O13 is an indirect band gap compound with a value of 5.81 eV. Owing to the discontinuity of exchange-correlation energy in GGA, the calculated band gap is usually smaller than that in experiment. The birefringence of LiRbB8O13 can be known from Fig. 5b, about 0.08 at 1064 nm, which indicates the potential application of LiRbB8O13 as a DUV birefringent material. To further study the contribution of LiO4, RbO8, BO3 and BO4 groups for birefringence in the title compound, we calculated the bonding electron density difference (Δρ) of these units (Fig. 6) along the optical principal axes by the REDA (response electron distribution anisotropy) method[39]. Fig. 6 shows that the large birefringence is mainly attributed to the BO3 group, LiO4 and RbO8 groups give a little contribution, and the BO4 group provides a negative contribution. The total and partial densities of states (Fig. 5c) show that the valence band (VB) and the conduction band (CB) are composed of O-2p, B-2p, Rb-4p and Li-1s states. Among them, the top of VB is majorly occupied by B-2p and O-2p orbitals, and the bottom by Li-1s and B-2p orbitals, respectively. Therefore, the B–O and Li–O bonds determine the VB maximum and CB minimum, which determines the band gap of the title compound.

    Figure 5

    Figure 5.  (a) Band structure of LiRbB8O13; (b) Birefringence calculation of LiRbB8O13; (c) Density of states (DOS) of LiRbB8O13

    Figure 6

    Figure 6.  Bonding electron density difference (Δρ) of different units calculated by the REDA method

    In summary, a new complex alkali metal borate, LiRbB8O13, has been obtained successfully. The structure of LiRbB8O13 is isostructural with α-LiKB8O13, exhibiting two independent interpenetrating 3D frameworks. The experiment and the first principle calculations indicate that it has a short cutoff edge (below 200 nm) and large birefringence (0.08 at 1064 nm), indicating that it could be regarded as the DUV birefringent crystal. According to the REDA method, the birefringence is mainly contributed by the BO3 group. Also, the research of other complex alkali metal borates is in progress.


    1. [1]

      Mutailipu, M.; Zhang, M.; Wu, H. P.; Yang, Z. H.; Shen, Y. H.; Sun, J. L.; Pan, S. L. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nat. Commun. 2018, 9, 3089. doi: 10.1038/s41467-018-05575-w

    2. [2]

      Chen, J.; Xiong, L.; Chen, L.; Wu, L. M. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure. J. Am. Chem. Soc. 2018, 140, 14082‒14086. doi: 10.1021/jacs.8b10209

    3. [3]

      Wu, H. P.; Yu, H. W.; Yang, Z. H.; Hou, X. L.; Pan, S. L.; Su, X.; Poeppelmeier, K. R.; Rondinelli, J. M. Designing a deep ultraviolet nonlinear optical material with large second harmonic generation response. J. Am. Chem. Soc. 2013, 135, 4215‒4219. doi: 10.1021/ja400500m

    4. [4]

      Cao, L. L.; Song, Y. X.; Peng, G.; Luo, M.; Yang, Y.; Lin, C. S.; Zhao, D.; Xu, F.; Lin, Z. S.; Ye, N. Refractive index modulates second-harmonic responses in RE8O(CO3)3(OH)15X (RE = Y, Lu; X = Cl, Br): rare-earth halide carbonates as ultraviolet nonlinear optical materials. Chem. Mater. 2019, 31, 2130‒2137. doi: 10.1021/acs.chemmater.9b00068

    5. [5]

      Jiang, S. T.; Zhou, J. J.; Wu, H. P.; Yu, H. W.; Hu, Z. G.; Wang, J. Y.; Wu, Y. C. PbSrSiO4: a new ultraviolet nonlinear optical material with a strong second harmonic generation response and moderate birefringence. Chem. Commun. 2020, 56, 7104‒7107. doi: 10.1039/D0CC02123G

    6. [6]

      Li, Y. Q.; Liang, F.; Zhao, S. G.; Li, L. N.; Wu, Z. Y.; Ding, Q. R.; Liu, S.; Lin, Z. S.; Hong, M. C.; Luo, J. H. Two non-π-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 2019, 141, 3833‒3837. doi: 10.1021/jacs.9b00138

    7. [7]

      Wu, H. P.; Pan, S. L.; Poeppelmeier, K. R.; Li, H. Y.; Jia, D. Z.; Chen, Z. H.; Fan, X. Y.; Yang, Y. K3B6O10Cl: a new structure analogous to perovskite with a large SHG response and deep UV absorption edge. J. Am. Chem. Soc. 2011, 133, 7786‒7790. doi: 10.1021/ja111083x

    8. [8]

      Shen, Y. G.; Zhao, S. G.; Luo, J. H. K2SbB3O8: a novel boroantimonate with isolated [B3O8]7– groups. J. Struct. Chem. 2016, 35, 1269‒1276.

    9. [9]

      Zhang, B. B.; Shi, G. Q.; Yang, Z. H.; Zhang, F. F.; Pan, S. L. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 2017, 56, 3916‒3919. doi: 10.1002/anie.201700540

    10. [10]

      Chen, X. A.; Zhang, Y. H.; Chang, X. A.; Xiao, W. Q. Synthesis and characterization of a new pentaborate, KNa2CdB5O10. J. Struct. Chem. 2018, 37, 719‒729.

    11. [11]

      Tang, X. Y.; Mi, J. X.; Zhuang, R. C.; Wang, S. H.; Wu, S. F.; Pan, Y. M.; Huang, Y. X. Rational design and synthesis of a deep-ultraviolet nonlinear optical fluorinated orthophosphate: BaZn(PO4)F. Inorg. Chem. 2019, 58, 4508‒4514. doi: 10.1021/acs.inorgchem.9b00073

    12. [12]

      Wu, B. L.; Hu, C. L.; Mao, F. F.; Tang, R. L.; Mao, J. G. Highly polarizable Hg2+ induced a strong SHG signal and large birefringence in LiHgPO4. J. Am. Chem. Soc. 2019, 141, 10188‒10192. doi: 10.1021/jacs.9b05125

    13. [13]

      Li, Y. F.; Liang, F.; Song, H. M.; Liu, W.; Lin, Z. S.; Zhang, G. C.; Wu, Y. C. LiGaP2O7: a potential UV nonlinear-optical crystal. Inorg. Chem. 2019, 58, 6597‒6600. doi: 10.1021/acs.inorgchem.9b00970

    14. [14]

      Mutailipu, M.; Zhang, M.; Zhang, B. B.; Wang, L. Y.; Yang, Z. H.; Xin, Z.; Pan, S. L. SrB5O7F3 functionalized with [B5O9F3]6- chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 2018, 57, 6095‒6099. doi: 10.1002/anie.201802058

    15. [15]

      Gong, P. F.; Liu, X. M.; Kang, L.; Lin, Z. S. Inorganic planar π-conjugated groups in nonlinear optical crystals: review and outlook. Inorg. Chem. Front. 2020, 7, 839‒852. doi: 10.1039/C9QI01589B

    16. [16]

      Chen, C. T.; Wu, B. C.; Jiang, A. D.; You, G. M. A new-type ultraviolet SHG crystal-β-BaB2O4. Sci. Sin. B 1985, 28, 235‒245.

    17. [17]

      Chen, C. T.; Xu, Z. Y.; Deng, D. Q.; Zhang, J.; Wong, G. K. L.; Wu, B. C.; Ye, N.; Tang, D. Y. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl. Phys. Lett. 1996, 68, 2930‒2932. doi: 10.1063/1.116358

    18. [18]

      Chen, C. T.; Wu, Y. C.; Jiang, A. D.; Wu, B. C.; You, G. M.; Li, R. K.; Lin, S. J. New nonlinear optical crystal: LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616‒621. doi: 10.1364/JOSAB.6.000616

    19. [19]

      Zhou, G. Q.; Xu, J.; Chen, X. D.; Zhong, H. Y.; Wang, S. T.; Xu, K.; Deng, P. Z.; Gan, F. X. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J. Cryst. Growth 1998, 191, 517‒519. doi: 10.1016/S0022-0248(98)00162-6

    20. [20]

      Zhang, H.; Zhang, M.; Pan, S. L.; Yang, Z. H.; Wang, Z.; Bian, Q.; Hou, X. L.; Yu, H. W.; Zhang, F. F.; Wu, K.; Yang, F.; Peng, Q. J.; Xu, Z. Y.; Chang, K. B.; Poeppelmeier, K. R. Na3Ba2(B3O6)2F: next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 2015, 15, 523–529. doi: 10.1021/cg5016912

    21. [21]

      Chen, X. L.; Zhang, B. B.; Zhang, F. F.; Wang, Y.; Zhang, M.; Yang, Z. H.; Poeppelmeier, K. R.; Pan, S. L. Designing an excellent deep-ultraviolet birefringent material for light polarization. J. Am. Soc. Chem. 2018, 140, 16311−16319. doi: 10.1021/jacs.8b10009

    22. [22]

      Li, R. K.; Chen, P. Cation coordination control of anionic group alignment to maximize SHG effects in the BaMBO3F (M = Zn, Mg) series. Inorg. Chem. 2010, 49, 1561‒1565. doi: 10.1021/ic901698b

    23. [23]

      Huang, Y. Z.; Wu, L. M.; Wu, X. T.; Li, L. H.; Chen, L.; Zhang, Y. F. Pb2B5O9I: an iodide borate with strong second harmonic generation. J. Am. Chem. Soc. 2010, 132, 12788‒12789. doi: 10.1021/ja106066k

    24. [24]

      Abudoureheman, M.; Han, S. J.; Wang, Y.; Liu, Q.; Yang, Z. H.; Pan, S. L. Three mixed-alkaline borates: Na2M2B20O32 (M = Rb, Cs) with two interpenetrating three-dimensional B-O networks and Li4Cs4B40O64 with fundamental building block B40O77. Inorg. Chem. 2017, 56, 13456–13463. doi: 10.1021/acs.inorgchem.7b02168

    25. [25]

      SAINT, Version 7.60A, Bruker Analytical X-ray Instruments, Inc., Madison, WI 2008.

    26. [26]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. doi: 10.1107/S0108767307043930

    27. [27]

      Spek, A. L. Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 2003, 36, 7–13. doi: 10.1107/S0021889802022112

    28. [28]

      Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.

    29. [29]

      Lin, J. S.; Qteish, A.; Payne, M. C.; Heine, V. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 1993, 47, 4174–4180. doi: 10.1103/PhysRevB.47.4174

    30. [30]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. doi: 10.1103/PhysRevLett.77.3865

    31. [31]

      An, D. H.; Kong, Q. R.; Zhang, M.; Yang, Y.; Li, D. N.; Yang, Z. H.; Pan, S. L.; Chen, H. M.; Su, Z.; Sun, Y.; Mutailipu, M. Versatile coordination mode of LiNaB8O13 and α- and β-LiKB8O13 via the flexible assembly of four-connected B5O10 and B3O7 groups. Inorg. Chem. 2016, 55, 552–554. doi: 10.1021/acs.inorgchem.5b02500

    32. [32]

      Zhao, S. G.; Kang, L.; Shen, Y. G.; Wang, X. D.; Asghar, M. A.; Lin, Z. S.; Xu, Y. Y.; Zeng, S. Y.; Hong, M. C.; Luo, J. H. Designing a beryllium-free deep-ultraviolet nonlinear optical material without structural instability problem. J. Am. Chem. Soc. 2016, 138, 2961‒2964. doi: 10.1021/jacs.6b00436

    33. [33]

      Zhao, S. G.; Gong, P. F.; Luo, S. Y.; Liu, S. J.; Li, L. N.; Asghar, M. A.; Khan, T.; Hong, M. C.; Lin, Z. S.; Luo, J. H. Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal. J. Am. Chem. Soc. 2015, 137, 2207–2210. doi: 10.1021/ja5128314

    34. [34]

      Wang, Y.; Zhang, B. B.; Yang, Z. H.; Pan, S. L. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 2018, 57, 2150–2154. doi: 10.1002/anie.201712168

    35. [35]

      Friedrichs, O. D.; Foster, M. D.; O'Keeffe, M.; Proserpio, D. M.; Treacy, M. M. J.; Yaghi, O. M. What do we know about three-periodic nets? J. Solid State Chem. 2005, 178, 2533–2554. doi: 10.1016/j.jssc.2005.06.037

    36. [36]

      Yang, Y.; Pan, S. L.; Hou, X. L.; Dong, X. Y.; Su, X.; Yang, Z. H.; Zhang, M.; Zhao, W. W.; Chen, Z. H. Li5Rb2B7O14: a new congruently melting compound with two kinds of B–O one-dimensional chains and short UV absorption edge. CrystEngComm. 2012, 14, 6720–6725. doi: 10.1039/c2ce06742k

    37. [37]

      Shi, G. Q.; Wang, Y.; Zhang, F. F.; Zhang, B. B.; Yang, Z. H.; Hou, X. L.; Pan, S. L.; Poeppelmeier, K. R. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 2017, 139, 10645–10648. doi: 10.1021/jacs.7b05943

    38. [38]

      Wang, X. F.; Wang, Y.; Zhang, B. B.; Zhang, F. F.; Yang, Z. H.; Pan, S. L. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew. Chem. Int. Ed. 2017, 56, 14119–14123. doi: 10.1002/anie.201708231

    39. [39]

      Lei, B. H.; Yang, Z. H.; Pan, S. L. Enhancing optical anisotropy of crystals by optimizing bonding electron distribution in anionic groups. Chem. Commun. 2017, 53, 2818–2821. doi: 10.1039/C6CC09986F

  • Figure 1  Calculated and experimental powder X-ray diffraction pattern for LiRbB8O13

    Figure 2  (a) [B8O16]8- unit; (b) Framework of 3[B8O13] viewed in the ac plane; (c) Crystal structure of LiRbB8O13; (d) Crystal structure within the red border rotate certain angle

    Figure 3  Topological illustration of LiRbB8O13

    Figure 4  UV-Vis-NIR diffuse reflectance spectrum of LiRbB8O13

    Figure 5  (a) Band structure of LiRbB8O13; (b) Birefringence calculation of LiRbB8O13; (c) Density of states (DOS) of LiRbB8O13

    Figure 6  Bonding electron density difference (Δρ) of different units calculated by the REDA method

    Table 1.  Selected Bond Lengths and Bond Angles for LiRbB8O13

    Bond Dist. Bond Dist. Bond Dist.
    Li(1)–O(8) 1.882(12) B(1)–O(3) 1.371(8) B(5)–O(4) 1.378(8)
    Li(1)–O(10)#5 1.890(11) B(1)–O(6) 1.405(7) B(5)–O(6) 1.379(8)
    Li(1)–O(7)#6 1.913(11) B(2)–O(2) 1.356(8) B(6)–O(8) 1.361(7)
    Li(1)–O(11)#6 1.999(12) B(2)–O(10) 1.359(8) B(6)–O(13) 1.362(8)
    Rb(1)–O(4)#1 2.836(4) B(2)–O(3) 1.391(7) B(6)–O(12) 1.381(8)
    Rb(1)–O(1)#2 2.978(4) B(3)–O(5) 1.450(7) B(7)–O(7) 1.443(7)
    Rb(1)–O(9)#3 2.986(4) B(3)–O(9)#10 1.468(7) B(7)–O(2)#11 1.446(7)
    Rb(1)–O(9)#2 2.993(4) B(3)–O(1) 1.477(7) B(7)–O(11)#12 1.448(7)
    Rb(1)–O(12)#1 3.013(4) B(3)–O(10)#10 1.479(8) B(7)–O(8)#12 1.479(7)
    Rb(1)–O(1)#3 3.041(4) B(4)–O(5) 1.336(8) B(8)–O(7) 1.346(8)
    Rb(1)–O(3) 3.130(4) B(4)–O(4) 1.378(8) B(8)–O(11) 1.394(8)
    Rb(1)–O(6)#1 3.326(4) B(4)–O(13) 1.381(7) B(8)–O(12) 1.400(8)
    B(1)–O(9) 1.326(8) B(5)–O(1) 1.342(8)
    Angle (°) Angle (°) Angle (°)
    O(4)#1–Rb(1)–O(5)#4 96.89(11) O(9)–B(1)–O(6) 120.9(5) O(1)–B(5)–O(6) 122.6(5)
    O(1)#2–Rb(1)–O(5)#4 92.63(10) O(3)–B(1)–O(6) 117.0(5) O(4)–B(5)–O(6) 116.3(6)
    O(9)#3–Rb(1)–O(5)#4 119.22(11) O(2)–B(2)–O(10) 122.1(5) O(8)–B(6)–O(13) 117.3(5)
    O(9)#2–Rb(1)–O(5)#4 43.23(10) O(2)–B(2)–O(3) 117.5(5) O(8)–B(6)–O(12) 120.3(5)
    O(12)#1–Rb(1)–O(5)#4 58.31(11) O(10)–B(2)–O(3) 120.3(5) O(13)–B(6)–O(12) 122.4(5)
    O(1)#3–Rb(1)–O(5)#4 146.57(10) O(5)–B(3)–O(9)#10 110.1(5) O(7)–B(7)–O(2)#11 109.9(5)
    O(3)–Rb(1)–O(5)#4 59.83(10) O(5)–B(3)–O(1) 111.1(5) O(7)–B(7)–O(11)#12 109.5(5)
    O(6)#1–Rb(1)–O(5)#4 134.80(9) O(9)#10–B(3)–O(1) 108.3(5) O(2)#11–B(7)–O(11)#12 109.6(5)
    O(8)–Li(1)–O(10)#5 105.5(5) O(5)–B(3)–O(10)#10 108.8(5) O(7)–B(7)–O(8)#12 106.6(5)
    O(8)–Li(1)–O(7)#6 108.2(5) O(9)#10–B(3)–O(10)#10 109.7(5) O(2)#11–B(7)–O(8)#12 112.3(5)
    O(10)#5–Li(1)–O(7)#6 125.5(6) O(1)–B(3)–O(10)#10 108.9(5) O(11)#12–B(7)–O(8)#12 108.7(5)
    O(8)–Li(1)–O(11)#6 134.9(6) O(5)–B(4)–O(4) 122.9(5) O(7)–B(8)–O(11) 113.8(5)
    O(10)#5–Li(1)–O(11)#6 110.2(5) O(5)–B(4)–O(13) 117.4(5) O(7)–B(8)–O(12) 124.2(6)
    O(7)#6–Li(1)–O(11)#6 71.8(4) O(4)–B(4)–O(13) 119.7(5) O(11)–B(8)–O(12) 122.0(5)
    O(9)–B(1)–O(3) 122.1(5) O(1)–B(5)–O(4) 121.1(6)
    Symmetry transformations used to generate the equivalent atoms: #1: –x + 1, y + 1/2, –z + 1/2; #2: x, –y + 3/2, z – 1/2; #3: –x + 1, –y + 2, –z + 1; #4: –x + 1, –y + 1, –z + 1; #5: x + 1, y – 1, z; #6: x, –y + 1/2, z + 1/2; #7: x + 1, –y + 3/2, z + 1/2; #8: x, –y + 3/2, z + 1/2; #9: x – 1, y + 1, z; #10: –x + 1, y – 1/2, –z + 3/2; #11: –x + 1, y – 1/2, –z + 1/2; #12: –x + 2, y + 1/2, –z + 1/2; #13: x, –y + 1/2, z – 1/2; #14: –x + 2, y – 1/2, –z + 1/2; #15: –x + 1, y + 1/2, –z + 3/2; #16: x, –y + 5/2, z + 1/2
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  861
  • HTML全文浏览量:  20
文章相关
  • 发布日期:  2020-09-01
  • 收稿日期:  2020-08-22
  • 接受日期:  2020-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章