二次离子质谱-激光扫描共聚焦显微镜联用对单细胞显微成像-原理及应用

邵长芳 赵耀 吴魁 贾菲菲 罗群 刘哲 汪福意

引用本文: 邵长芳,  赵耀,  吴魁,  贾菲菲,  罗群,  刘哲,  汪福意. 二次离子质谱-激光扫描共聚焦显微镜联用对单细胞显微成像-原理及应用[J]. 分析化学, 2018, 46(7): 1005-1016. doi: 10.11895/j.issn.0253-3820.181110 shu
Citation:  SHAO Chang-Fang,  ZHAO Yao,  WU Kui,  JIA Fei-Fei,  LUO Qun,  LIU Zhe,  WANG Fu-Yi. Correlated Secondary Ion Mass Spectrometry-Laser Scanning Confocal Microscopy Imaging for Single Cell-Principles and Applications[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1005-1016. doi: 10.11895/j.issn.0253-3820.181110 shu

二次离子质谱-激光扫描共聚焦显微镜联用对单细胞显微成像-原理及应用

  • 基金项目:

    本文系国家自然科学基金项目(Nos.91543101,21671118,21790390,21790392,21575145,21621062)、泰山学者项目和中国科学院青年创新促进会(No.2017051)资助

摘要: 二次离子质谱(SIMS)分析主要用于半导体、地质等领域材料表面分析,随着科学仪器技术的发展,近年来,SIMS在生命科学领域中得到了越来越广泛的应用。SIMS可以实现对样品表面的质谱分析、化学成像以及深度剖析。三维SIMS成像分析的横向分辨率可达80~100 nm,纵向分辨率1~5 nm。但是,由于缺少特异性指示亚细胞结构的碎片离子,单细胞SIMS成像分析仍然面临着诸多挑战。激光扫描共聚焦显微成像(LSCM)作为一种单细胞成像技术已日趋成熟,可以对单细胞中的荧光分子或者对荧光标记的目标分子、细胞器成像,获得高分辨率亚细胞结构成像图。因而,LSCM在单细胞形貌分析上的优势和SIMS在单细胞化学成像方面的优势可以有效互补,其联合应用能显著提升单细胞分析的应用范围、深度和结果的准确性。本文重点介绍SIMS成像以及SIMS-LSCM联用成像在单细胞成像研究中的应用进展,在总结、评述该领域代表性工作的同时,对SIMS-LSCM联用成像在化学和生命科学研究,特别是在细胞生物学和药物发现领域的应用前景进行了展望。

English

    1. [1]

      Herzog R F K, Viehböck F P. Phys.Rev., 1949, 76(6):855-856

    2. [2]

      Benninghoven A. Angew. Chem. Int. Edit., 1994, 33(10):1023-1043

    3. [3]

      Breitenstein D, Rommel C E, Mollers R, Wegener J, Hagenhoff B. Angew. Chem. Int. Edit., 2007, 46(28):5332-5335

    4. [4]

      Moore K L, Lombi E, Zhao F J, Grovenor C R M. Anal. Bioanal. Chem., 2012, 402(10):3263-3273

    5. [5]

      Wirtz T, Philipp P, Audinot J N, Dowsett D, Eswara S. Nanotechnology, 2015, 26(43):434001

    6. [6]

      Kim Y P, Shon H K, Shin S K, Lee T G. Mass Spectrom. Rev., 2015, 34(2):237-247

    7. [7]

      Wang Z, Zhang Y, Liu B, Wu K, Thevuthasan S, Baer D R, Zhu Z, Yu X Y, Wang F. Anal. Chem., 2017, 89(1):960-965

    8. [8]

      Yu J, Zhou Y, Hua X, Liu S, Zhu Z, Yu X Y. Chem. Commun., 2016, 52(73):10952-10955

    9. [9]

      Liu B, Yu X Y, Zhu Z, Hua X, Yang L, Wang Z. Lab Chip, 2014, 14(5):855-859

    10. [10]

      McRae R, Bagchi P, Sumalekshmy S, Fahrni C J. Chem. Rev., 2009, 109(10):4780-4827

    11. [11]

      Passarelli M K, Pirkl A, Moellers R, Grinfeld D, Kollmer F, Havelund R, Newman C F, Marshall P S, Arlinghaus H, Alexander M R, West A, Horning S, Niehuis E, Makarov A, Dollery C T, Gilmore I S. Nat. Methods, 2017, 14(12):1175-1183

    12. [12]

      Boxer S G, Kraft M L, Weber P K. Annu. Rev. Biophys., 2009, 38(1):53-74

    13. [13]

      Bodzon-Kulakowska A, Suder P. Mass Spectrom. Rev., 2016, 35(1):147-169

    14. [14]

      Fletcher J S, Lockyer N P, Vaidyanathan S, Vickerman J C. Anal. Chem., 2007, 79(6):2199-2206

    15. [15]

      Kraft M L, Weber P K, Longo M L, Hutcheon I D, Boxer S G. Science, 2006, 313(5795):1948-1951

    16. [16]

      Sodhi R N S. Analyst, 2004, 129(6):483-487

    17. [17]

      Wogelred L, Höök F, Agnarsson B, Sjövall P. Biointerphases, 2018, 13(3):03B413

    18. [18]

      Vanbellingen Q P, Elie N, Eller M J, Della-Negra S, Touboul D, Brunelle A. Rapid Commun. Mass Spectrom., 2015, 29(13):1187-1195

    19. [19]

      Henss A, Otto S K, Schaepe K, Pauksch L, Lips K S, Rohnke M. Biointerphases, 2018, 13(3):03B410

    20. [20]

      Wu K, Jia F, Zheng W, Luo Q, Zhao Y, Wang F. J. Biol. Inorg. Chem., 2017, 22(5):653-661

    21. [21]

      Gao D, Huang X, Tao Y. Crit. Rev. Biotechnol., 2016, 36(5):884-890

    22. [22]

      Zenobi R. Science, 2013, 342(6163):1201-1211

    23. [23]

      Dekas A E, Poretsky R S, Orphan V J. Science, 2009, 326(5951):422-426

    24. [24]

      Orphan V J, House C H, Hinrichs K U, McKeegan K D, de Long E F. Science, 2001, 293(5529):484-487

    25. [25]

      Finzi-Hart J A, Pett-Ridge J, Weber P K, Popa R, Fallon S J, Gunderson T, Hutcheon I D, Nealson K H, Capone D G. Proc. Natl. Acad. Sci. USA, 2009, 106(15):6345-6350

    26. [26]

      Lechene C P, Luyten Y, McMahon G, Distel D L. Science, 2007, 317(5844):1563-1566

    27. [27]

      Musat N, Musat F, Weber P K, Pett-Ridge J. Curr. Opin. Biotechnol., 2016, 41:114-121

    28. [28]

      Jiang H, Kilburn M R, Decelle J, Musat N. Curr. Opin. Biotechnol., 2016, 41:130-135

    29. [29]

      Raina J B, Clode P L, Cheong S, Bougoure J, Kilburn M R, Reeder A, Forêt S, Stat M, Beltran V, Thomas-Hall P, Tapiolas D, Motti C M, Gong B, Pernice M, Marjo C E, Seymour J R, Willis B L, Bourne D G. eLife, 2017, 6:e23008

    30. [30]

      Rubakhin S S, Sweedler J V, Chandra S. Quantitative Imaging of Chemical Composition in Single Cells by Secondary Ion Mass Spectrometry:Cisplatin Affects Calcium Stores in Renal Epithelial Cells. InMass Spectrometry Imaging:Principles and Protocols., Eds. Totowa N J, Humana Press, 2010:113-130

    31. [31]

      Usami N, Furusawa Y, Kobayashi K, Lacombe S, Reynaud-Angelin A, Sage E, Wu T D, Croisy A, Guerquin-Kern J L, Le Sech C. Int. J. Radiat Biol., 2008, 84(7):603-611

    32. [32]

      Legin A A, Schintlmeister A, Jakupec M A, Galanski M, Lichtscheidl I, Wagner M, Keppler B K. Chem. Sci., 2014, 5(8):3135-3143

    33. [33]

      Wedlock L E, Kilburn M R, Cliff J B, Filgueira L, Saunders M, Berners-Price S J. Metallomics, 2011, 3(9):917-925

    34. [34]

      Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach T J, Sava G, Dyson P J. J. Med. Chem., 2005, 48(12):4161-4171

    35. [35]

      Weiss A, Berndsen R H, Dubois M, Müller C, Schibli R, Griffioen A W, Dyson P J, Nowak-Sliwinska P. Chem. Sci., 2014, 5(12):4742-4748

    36. [36]

      Lee R F, Escrig S, Croisier M, Clerc-Rosset S, Knott G W, Meibom A, Davey C A, Johnsson K, Dyson P J. Chem. Commun., 2015, 51(92):16486-16489

    37. [37]

      Klerk L A, Dankers P Y W, Popa E R, Bosman A W, Sanders M E, Reedquist K A, Heeren R M A. Anal. Chem., 2010, 82(11):4337-4343

    38. [38]

      Magnusson Y K, Friberg P, Sjovall P, Malm J, Chen Y. Obesity, 2008, 16(12):2745-2753

    39. [39]

      Ostrowski S G, Van Bell C T, Winograd N, Ewing A G. Science, 2004, 305(5680):71-73

    40. [40]

      Leufgen K M, Rulle H, Benninghoven A, Sieber M, Galla H J. Langmuir, 1996, 12(7):1708-1711

    41. [41]

      Bourdos N, Kollmer F, Benninghoven A, Sieber M, Galla H J. Langmuir, 2000, 16(4):1481-1484

    42. [42]

      Monroe E B, Jurchen J C, Lee J, Rubakhin S S, Sweedler J V. J. Am. Chem. Soc., 2005, 127(35):12152-12153

    43. [43]

      Johansson B. Surf. Interface Anal., 2006, 38(11):1401-1412

    44. [44]

      Bloom A N, Tian H, Winograd N. Biointerphases, 2016, 11(2):02A306

    45. [45]

      Bloom A N, Tian H, Schoen C, Winograd N. Anal. Bioanal. Chem., 2017, 409(12):3067-3076

    46. [46]

      Haase A, Arlinghaus H F, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Galla S, Plendl J, Goetz M E, Masic A, Meier W, Thünemann A F, Taubert A, Luch A. ACS Nano, 2011, 5(4):3059-3068

    47. [47]

      Du J, Zhang E, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang Z, Luo Q, Wu K, Wang F. Metallomics, 2015, 7(12):1573-1583

    48. [48]

      Du J, Kang Y, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang Z, Wang Y, Luo Q, Wu K, Wang F. Inorg. Chem., 2016, 55(9):4595-4605

    49. [49]

      Zhang Y, Luo Q, Zheng W, Wan Z, Lin Y, Zhang E, Lü S, Xiang J, Zhao Y, Wang F. Inorg. Chem. Front., 2018, 5(2):413-424

    50. [50]

      Zheng W, Luo Q, Lin Y, Zhao Y, Wang X L, Du Z F, Hao X, Yu Y, Lu S, Ji L Y, Li X C, Yang L, Wang F Y. Chem. Commun., 2013, 49(87):10224-10226

    51. [51]

      Zhang Y, Zheng W, Luo Q, Zhao Y, Zhang E L, Liu S Y, Wang F Y. Dalton Trans., 2015, 44(29):13100-13111

    52. [52]

      Lee P L, Chen B C, Gollavelli G, Shen S Y, Yin Y S, Lei S L, Jhang C L, Lee W R, Ling Y C. J. Hazard. Mater., 2014, 277:3-12

    53. [53]

      Jung Y, Lippard S J. Chem. Rev., 2007, 107(5):1387-1407

    54. [54]

      Proetto M T, Anderton C R, Hu D H, Szymanski C J, Zhu Z H, Patterson J P, Kammeyer J K, Nilewski L G, Rush A M, Bell N C, Evans J E, Orr G, Howell S B, Gianneschi N C. ACS Nano, 2016, 10(4):4046-4054

    55. [55]

      Saka S K, Vogts A, Krohnert K, Hillion F, Rizzoli S O, Wessels J T. Nat. Commun., 2014, 5:3664-3671

    56. [56]

      Liu S, Zheng W, Wu K, Lin Y, Jia F, Zhang Y, Wang Z, Luo Q, Zhao Y, Wang F. Chem. Commun., 2017, 53(29):4136-4139

    57. [57]

      Vreja I C, Kabatas S, Saka S K, Kröhnert K, Höschen C, Opazo F, Diederichsen U, Rizzoli S O. Angew. Chem. Int. Edit., 2015, 54(19):5784-5788

  • 加载中
计量
  • PDF下载量:  17
  • 文章访问数:  582
  • HTML全文浏览量:  129
文章相关
  • 收稿日期:  2018-02-09
  • 修回日期:  2018-04-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章