树枝状银微纳结构的表面增强拉曼散射效应研究

陈韶云 王圆 刘辉 胡成龙 刘学清 刘继延

引用本文: 陈韶云,  王圆,  刘辉,  胡成龙,  刘学清,  刘继延. 树枝状银微纳结构的表面增强拉曼散射效应研究[J]. 分析化学, 2017, 45(3): 374-380. doi: 10.11895/j.issn.0253-3820.160785 shu
Citation:  CHEN Shao-Yun,  WANG Yuan,  LIU Hui,  HU Cheng-Long,  LIU Xue-Qing,  LIU Ji-Yan. Surface-enhanced Raman Scattering Effect of Silver Dendritic Nanostructures[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 374-380. doi: 10.11895/j.issn.0253-3820.160785 shu

树枝状银微纳结构的表面增强拉曼散射效应研究

  • 基金项目:

    本文系国家自然科学基金(No.51303066)和湖北省自然科学基金(No.2016CFB194)资助项目

摘要: 利用两电极电化学沉积法制备出一种树枝状银微纳结构基体。扫描电子显微镜(SEM)的表征结果证实所制备的银基体呈现出完整的树枝状结构,具有对称性的树枝和树干,且树叶清晰可见。实验结果表明,树枝状银微纳结构的表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)可以检测到超低浓度的罗丹明6G(Rhodamine 6G,R6G,10-10 mol/L)光谱信号,即树枝状银微纳结构作为SERS基体表现出较好的灵敏性;当R6G的浓度在10-5~10-10 mol/L范围依次降低一个数量级时,谱带610 cm-1处的拉曼散射强度的相对标准偏差分别为12.1%,12.0%,11.7%,10.9%,13.2%和14.3%,表明所制备银基体的SERS“热点”(Hot spots)分布较均一,树枝状银微纳结构作为SERS基体具有较好的重现性;当低SERS活性的3-巯基丙酸(3-Mercaptopropionic acid,3MPA)的检测浓度为10-5 mol/L时,利用树枝状银基体能检测到3MPA的SERS光谱,说明所制备的银基体对低活性物质也具有较好的SERS灵敏性。

English

    1. [1]

      Alonso-Gonzalez P, Albella P, Schnell M, Chen J, Huth F, García-Etxarri A, Casanova F, Golmar F, Arzubiaga L, Hueso L E, Aizpurua J, Hillenbrand R. Nat. Commun., 2012,3:684

    2. [2]

      Luther J M, Jain P K, Ewers T, Alivisatos A P. Nat. Mater., 2011,10(5):361-366

    3. [3]

      Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Nordlander P, Halas, N. J.Nano Lett., 2005,5(8):1569-1574

    4. [4]

      Dick L A, McFarland A D, Haynes C L, van Duyne R P. J. Phys. Chem. B, 2002,106(4):853-860

    5. [5]

      LUO Zhi-Xun, FANG Yan. Spectroscopy and Spectral Analysis, 2006, 26(2):358-364 骆智训, 方炎.光谱学与光谱分析,2006,26(2):358-364

    6. [6]

      Zhu C H, Meng G W, Huang Q, Zhang Z, Xu Q L, Liu G Q, Huang Z L, Chu Z Q. Chem. Commun., 2011,47(9):2709-2711

    7. [7]

      ZUO Qi, CHEN Yao, SHI Cai-Xia, CHEN Zeng-Ping. Chinese J. Anal. Chem.,2015,43(11):1656-1663 左奇, 陈瑶, 石彩霞, 陈增萍.分析化学,2015,43(11):1656-1663

    8. [8]

      Siddhanta S, Thakur V, Narayana C, Shivaprasad S M. ACS Appl. Mater. Interfaces, 2012,4(11):5807-5812

    9. [9]

      Futamata M, Maruyama Y, Ishikawa M. Vib. Spectrosc., 2002,30(1):17-23

    10. [10]

      Au L, Chen Y, Zhou F, Camargo P H, Lim B, Li Z Y, Xia Y. Nano Res., 2008,1(6):441-449

    11. [11]

      Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp R A. Nano Lett., 2006,6(11):2630-2636

    12. [12]

      Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S W, Kim B. J. Am. Chem. Soc., 2008,131(2):758-762

    13. [13]

      He L, Huang J, Xu T, Chen L, Zhang K, Han S, Lee S T. J. Mater. Chem., 2012,22(4):1370-134

    14. [14]

      Hu C L, Chen S Y, Wang Y, Liu X Q, Liu J Y, Zhang W H, Chen J. Talanta, 2016,161:599-605

    15. [15]

      Casado-Rodriguez M A, Sanchez-Molina M, Lucena-Serrano A, Lucena-Serrano C, Rodriguez-Gonzalez B, Algarra M, Contreras-Caceres R. Nanoscale, 2016,8(8):4557-4564

    16. [16]

      Yang Y J, Meng G W. J. Appl. Phys., 2011,107(4):044315

    17. [17]

      Gutés A, Carraro C, Maboudian R. J. Am. Chem. Soc., 2010,132(5):1476-1477

    18. [18]

      Yi Z, Chen S,Chen Y, Luo J, Wu W, Yi Y, Tang Y. Thin Solid Films, 2012,520(7):2701-2707

    19. [19]

      Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, TianZ Q. Nature, 2010,464(7287):392-395

    20. [20]

      Guerrero R A, Aroca R F. Angew. Chem. Int. Ed., 2011,50(3):665-668

    21. [21]

      Liu S, Chen G Y, Prasad P N, Swihart M T. Chem. Mater., 2011,23(18):4098-4101

    22. [22]

      Liusman C, Li H, Lu G, Wu J F, Boey S Z, Zhang H. J. Phys. Chem. C, 2012,116(18):1039-103950

    23. [23]

      Hsueh H Y, Chen H Y, Hung Y C, Ling Y C, Gwo S, Ho R M. Adv. Mater., 2013,25(12):1780-1786

    24. [24]

      Liberman V, Yilmaz C, Bloomstein T M, Somu S, Echegoyen Y, Busnaina A,Cann S G, Krohn K E, Marchant M F, Rothschild.M. Adv. Mater., 2010,22(38):4298-4302

    25. [25]

      Zhu C, Meng G, Huang Q, Zhang Z, Xu Q, Liu G, Chu Z. Chem. Commun., 2011,47(9):2709-2711

    26. [26]

      Chen S Y, Hu C L, Zhang W H, Chen J. ChemPlusChem, 2016,81(2):161-165

    27. [27]

      Xiao Z L, Han C Y, Kwok W K, Wang H H, Welp U, Wang J, Crabtree G W. J. Am. Chem. Soc., 2004,126(8):2316-2317

    28. [28]

      Sun Y, Xia Y. Adv. Mater., 2003,15(9):695-699

    29. [29]

      Zhang X, Zheng Y, Liu X, Lu W, Dai J, Lei D Y, MacFarlane D R. Adv. Mater., 2015,27(6):1090-1096

    30. [30]

      Watanabe H, Hayazawa N, Inouye Y, Kawata S. J. Phys. Chem. B, 2005,109(11):5012-5020

    31. [31]

      Zhang K B, Zeng T X, Tan X L, Wu W D, Tang Y J, Zhang H B. Appl. Surf. Sci., 2015,347:569-573

    32. [32]

      Nie S, Emory S R, Science, 1997,275(5303):1102-1106

    33. [33]

      Shafer K E, Haynes C L, Glucksberg M R, Van R P. J. Am. Chem. Soc., 2003,125(2):588-593

    34. [34]

      Gong X, Bao Y, Qiu C, Jiang C. Chem. Commun., 2012,48(56):7003-7018

    35. [35]

      Liu X, Shao Y, Tang Y, Yao K F. Sci. Rep., 2014,4:5835-5835

    36. [36]

      Castro J L, López-Ramírez M R, Arenas J F, Otero J C. J. Raman Spectrosc., 2004,35(11):997-1000

    37. [37]

      Wang D S, Kerker M, Phys. Rev. B, 1981,24(4):1777-1790

    38. [38]

      Schuck P J, Fromm D P, Sundaramurthy A, Kino G S, Moerner W E. Phys. Rev. Lett., 2005,94(1):017402.1-017402.4

    39. [39]

      Wang H, Levin C S, Halas N J. J. Am. Chem. Soc., 2005,127(43):14992-14993

    40. [40]

      Krug J T, Wang G D, Emory S R, Nie S M. J. Am. Chem. Soc., 1999,121(39):9208-9214

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  754
  • HTML全文浏览量:  80
文章相关
  • 收稿日期:  2016-10-27
  • 修回日期:  2016-12-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章