基于β-异靛蓝骨架的圆偏振发光材料的发现、发展与展望

毕羡 王思斯 张金月 彭雨佳 沈珍 卢华

引用本文: 毕羡, 王思斯, 张金月, 彭雨佳, 沈珍, 卢华. 基于β-异靛蓝骨架的圆偏振发光材料的发现、发展与展望[J]. 无机化学学报, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456 shu
Citation:  Xian BI, Sisi WANG, Jinyue ZHANG, Yujia PENG, Zhen SHEN, Hua LU. Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456 shu

基于β-异靛蓝骨架的圆偏振发光材料的发现、发展与展望

    通讯作者: 王思斯, E-mail: 20223034@hznu.edu.cn; 卢华, E-mail: hualu@hznu.edu.cn
  • 基金项目:

    国家自然科学基金 21871072

    国家自然科学基金 22401067

    杭州师范大学交叉学科研究项目基金 2024JCXK01

摘要: 圆偏振发光(circularly polarized luminescence,CPL)材料因其独特的手性光学特性,在3D显示、生物成像、数据存储和自旋光电子器件等领域展现出广泛的应用潜力,近年来备受科研人员关注。然而,当前的研究主要集中在紫外/可见光区,具有近红外CPL特性的分子材料却非常稀少。相较于可见光波段,近红外光具有穿透能力强、背景散射小等优点,在生物成像、探测和加密通信等领域具有显著优势。作为靛蓝的异构体,β-异靛蓝具有丰富的结构修饰和配位模式,为开发近红外CPL分子材料提供了理想的骨架。本文系统阐述基于β-异靛蓝骨架的CPL分子材料的有趣发现过程,以及如何在此基础上简单高效地实现近红外CPL分子材料的制备。最后,展望基于β-异靛蓝骨架的近红外CPL分子材料的未来发展,预测该骨架将成为近红外CPL领域一类重要的明星骨架材料。

English

  • 靛蓝(indigotin)、异靛蓝(isoindigo)和β-异靛蓝(β-isoindigo)作为一类由吲哚类杂环构筑的分子骨架(图 1a), 因其独特的化学结构与优异的光电性能, 在有机功能材料领域备受关注[1-11]。这3种分子均以双芳环为核心, 但连接模式和结构特征的差异赋予它们不同的化学性质和应用潜力。其中, 靛蓝是人类历史上最早应用的天然染料之一, 自1889年德国巴斯夫公司实现工业化生产以来, 在染料工业和功能材料领域始终占据着重要地位[1-3]。异靛蓝作为靛蓝的同分异构体, 同样由2个吲哚单元偶联形成, 但C=C双键连接位点的变化显著调控了其电子分布, 使其展现出优异的电荷传输和光电转换特性。近20年来, 异靛蓝的研究迅速发展, 已在有机场效应晶体管(OTFTs)和有机光伏(OPVs)领域获得广泛应用[3-11]。相比之下, β-异靛蓝作为靛蓝的另一异构体, 由2个异吲哚单元构成。其结构中杂原子X(X=S、NH、O)的引入, 提供了丰富的修饰位点和多样的配位模式, 从而赋予其性能上的多样性。尽管异吲哚单元在酞菁、苯并咔咯、苯并卟啉等功能分子以及生物活性化合物和天然产物中已被证实为关键的结构砌块, 但以β-异靛蓝为独立骨架的研究仍相对匮乏[12-15]。通过Web of Science检索发现, 截至2025年, 基于β-isoindigo为主题的文献数量仅8篇, 远低于indigo(9 601篇)和isoindigo(810篇)的研究规模。这一显著的研究空白与β-异靛蓝的结构多样性和应用潜力形成了鲜明的对比, 凸显了其作为新兴骨架的独特价值和广阔的探索空间。

    图 1

    图 1.  (a) 靛蓝、异靛蓝和β-异靛蓝骨架结构; (b) 已报道的β-异靛蓝的结构及其合成路径[21]
    Figure 1.  (a) Skeletal structures of indigo, isoindigo, and β-isoindigo; (b) Structures of reported β-isoindigos and their synthetic routes[21]

    β-异靛蓝(X=S)作为合成的副产物首次报道于1941年[16-17], Drew和Kelly课题组将邻苯二腈溶解于氨的乙醇溶液中, 通入过量的硫化氢气体, 成功制得一种外观类似靛蓝的晶体。进一步的结构表征揭示, 该晶体为二硫代-β-异靛蓝。研究人员还将其与苯胺反应, 衍生出二苯基亚氨-β-异靛蓝(图 1b)。1956年, Golden报道了在高温条件下, 二亚氨基异吲哚啉或邻苯二腈与甲胺反应可以制备二甲亚氨基-β-异靛蓝[18]。尽管此类发色团具备潜力, 但由于其合成需要高温高压和使用有毒气体, 因此未受到广泛关注, 相关研究论文亦相对有限[19-20]。2015年, 日本东北大学Kobayashi教授意外发现邻苯二腈在金属钠和硫醇条件下可高产率获得二亚氨基-β-异靛蓝, 构建了首例β-异靛蓝作为骨架的酞菁分子[21]。2021年, Victor N. Nemykin课题组[22]基于Drew和Kelly的研究, 用硫氢化钠代替硫化氢, 在DMF溶剂中室温下反应, 并用氯化铵溶液猝灭, 成功合成了一系列二硫代-β-异靛蓝的化合物。此外, 他们证实了[23]Drew和Kelly等发现的1-亚胺-3-硫代异吲哚啉的衍生物可作为有效的中间体, 用于进一步制备二氨基-β-异靛蓝衍生物。在这些衍生物中, 亚氨基可通过互变异构化转化为氨基, 两者在多种化学反应中均显示出极高的反应活性和衍生潜力, 为进一步的化学修饰和功能化开辟了新途径。

    鉴于二亚氨基-β-异靛蓝中的亚氨基易与多种含氨基化合物如苯肼、肼、羟胺、苯胺和2-氨基吡啶发生脱氨缩合反应, 我们课题组于2014年报道了3-亚氨基异吲哚-1-酮与2-氨基吡啶的缩合反应, 成功合成了一系列低对称性且高效固体发光的氟硼配合物[24-33]。基于此, 我们设想用二亚氨基-β-异靛蓝与2-氨基吡啶反应构建一类具有拓展共轭的新型氟硼配合物1[34](图 2)。通过理论计算发现, 此类化合物显示出激发态电荷分离, 电荷复合时引起分子轨道角动量的变化来补偿电子自旋角动量的变化, 能够促进从电荷分离单重态到局域三重态的系间跨越(intersystem crossing)。因此, 此类结构是一种新型无重原子光敏/光热化合物。根据经验, 配体与硼配位反应并不需要非常严格的无水无氧条件, 如氟硼二吡咯(BODIPY)的合成在空气条件下滴加三氟化硼乙醚即可高产率获得产物[35-41]。因此, 当我们进行配位反应时并未严格按照无水无氧条件, 当反应结束后, 在紫外灯激发下观察到强烈的橘红色荧光。产物经柱层析法分离提纯后进行结构表征, 基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱测试结果为1 039.54, 与预期化合物1的计算分子量([M+H]+)一致, 且1H NMR谱图的质子位移和数目与化合物1的预测值吻合。然而, 强烈的荧光现象与化合物1的理论预测不符, 引起我们的疑惑。经仔细查阅文献和思考, 发现限域空间内B—F键在一定条件下可以发生水解反应生成B—O—B键[42-43], 如形成B—O—B结构的化合物2。此化合物的质谱数据([M+Na]+)恰为1 039.54, 与实验测得的质谱峰一致。计算结果进一步证明, 化合物2的HOMO和LUMO均匀分布于整个母核结构, 不涉及分子轨道角动量的显著变化, 因而具备较强的发光特性, 与实验观察到的强烈荧光一致。为验证假设, 我们通过单晶培养和晶体结构解析确认, 产物为含B—O—B键的化合物2, 而非预期的化合物1。其晶体结构中, 因B—O—B受限腔中的位阻产生满足螺旋烯性要求的刚性扭曲构象, 晶体堆积结构表明, 该外消旋混合物含有一对具有(P, P)和(M, M)螺旋构型的对映体。

    图 2

    图 2.  基于β-异靛蓝氟硼配合物的设计、合成路线和结果分析[34]
    Figure 2.  Design, synthetic route, and analysis of resultant β-isoindigo-based fluoroboron complexes[34]

    随后我们通过底物拓展, 获得了一系列基于β-异靛蓝骨架的氟硼配合物(BIABs)。通过手性高效液相色谱(HPLC)分离, 得到一对光学稳定的对映体(P, P)和(M, M), 且光学纯异构体具有优异的稳定性, 在溶剂中放置1个月未发现消旋现象。从该类化合物溶液中的圆二色谱(circular dichroism spectrum, CD spectrum)可以看出(P, P)构型化合物和(M, M)构型化合物具有镜像的谱线, 展现出相反的Cotton效应, 且这类螺烯分子在紫外可见光区域(300~700 nm)表现出了较强的手性光学响应。圆偏振发光(CPL)光谱显示, (P, P)构型化合物和(M, M)构型化合物分别可以发射左旋和右旋圆偏振光, 喹啉基的发光不对称因子(glum)最高可达到2.01×10-3。通过公式(BCPL=εΦFglum/2)计算得到的该类化合物中最大波长708 nm处CPL亮度(BCPL)达11.5 L·mol-1·cm-1, 是目前700~900 nm区域内最高值, 表明该类螺烯分子具有优异的CPL性质。为深入理解BIABs的手性光学性质, 我们采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)进行了系统计算。几何优化和电子结构分析在ωB97X-D/6-31G(d)水平上开展, 而激发态性质的计算则将基组升级至6-311G(d), 以进一步提高计算精度。理论计算表明, 喹啉稠合的g值和BCPL远大于吡啶稠合的主要原因是π扩展共轭显著增强了跃迁磁偶极距|m|和cos θ值, 同时减小了跃迁电偶极矩|μ|, 根据公式g=4cos θ(|m|/|μ|), 其吸收不对称因子(|gabs|)显著增强。此外, 我们还尝试通过在β-异靛蓝骨架外围引入甲基或乙基来增加螺旋结构的扭转角, 以促进手性响应[44], 此时glum为1.69×10-3, 相较于母核增强了42倍。

    在前期工作中, 我们虽然构建了一系列红光/近红外CPL材料, 但严格意义上仅有一例化合物的CPL在近红外区域。利用DFT理论计算母核结构的前线分子轨道能量发现, meso位碳原子取代电负性强氮原子可使HOMO和LUMO能显著升高, 但HOMO能量比LUMO能量升高显著, 因此能隙明显降低。而引入氰基可稳定HOMO和LUMO能量, 因此碳原子取代电负性强氮原子和引入氰基综合效应使LUMO能量显著降低。π-扩展在缺电子吡啶环上进一步降低LUMO能量, 从而光谱红移, 有望使螺旋烯型氟硼配合物的CPL达到近红外区(图 3)。随后, 利用二亚氨基-β-异靛蓝与邻含氮芳基乙腈缩合反应, 设计合成了一系列螺烯型β-异靛蓝骨架的BODIPY类似物(β-IBs)(图 4a)[45]β-IB 2a的晶体结构分析表明, 异吲哚啉基单元之间相连的C—C键距离为0.138 1 nm, 这是典型双键的特征。该化合物具有X型螺旋结构, 二面角为31.6°。堆积结构中发现了具有同手性堆积的(P, P)和(M, M)对映体。在分子间的喹啉单元之间能观察到多个紧密的π-π堆积, 形成了滑动堆积排列, 距离在0.353 8~0.360 6 nm之间(图 4b)。这些发现为螺旋结构提供了明确的证据, 并揭示了其独特的结构特征。该类化合物最大吸收峰红移至800 nm, 并产生显著的Cotton效应(127.8 L·mol-1·cm-1) 和|gabs|(3.5×10-3) (图 4c), 这是目前文献所报道的分子层面在近红外区域内的最大值。此外, 这类分子在近红外区域显示出光谱可调的CPL, 随着共轭的拓展, 最大发射峰红移至836 nm, glumBCPL分别为1.24×10-3和1.78 L·mol-1·cm-1, 首次实现了螺烯类化合物的CPL超过800 nm。上述近红外手性特性凸显了基于β-异靛蓝骨架构建手性生物成像和光电材料的潜在应用价值。

    图 3

    图 3.  基于β-异靛蓝骨架的CPL材料的设计以及理论计算的手性性质[45]
    Figure 3.  Design of β-isoindigo-based CPL materials and calculated chirality-related properties[45]

    图 4

    图 4.  (a) β-IBs的结构与合成路径; (b) β-IB 2a的单晶结构及晶体堆积示意图; (c) β-IB 2a的电子CD谱图(左)与CPL谱图(右)[45]
    Figure 4.  (a) Structure and synthetic route of β-IBs; (b) Single-crystal structure and crystal packing diagram of β-IB 2a; (c) Electronic CD spectrum (left) and CPL spectrum (right) of β-IB 2a[45]

    手性发光材料在激发态下可发射左旋或右旋圆偏振光, 其独特的光学特性使其在光学传感、三维显示、偏振显微术、高密度数据存储、自旋光电子器件及手性激光等领域具有重要应用潜力[46]。相较于可见光, 近红外光因其卓越的组织穿透深度、优异的空间分辨率及较低的器件成本, 在生物成像、深层探测和加密通信等前沿领域展现出显著优势[47-49]。然而, 当前CPL材料的研究主要集中于可见光区, 而近红外CPL分子材料的研究仍显不足, 且多集中于金属配合物[50]。这类配合物受限于d-df-f电子跃迁, 表现出较低的摩尔消光系数和量子产率, 同时其激发波长通常局限于紫外可见光范围, 难以实现吸收和发射都在近红外区[51-55](表 1)。因此, 如何突破传统材料的局限, 开发高效的近红外CPL分子体系, 成为手性光学领域亟待解决的关键问题。

    表 1

    表 1  代表性近红外金属配合物和β-异靛蓝基CPL材料及其光学性质
    Table 1.  Properties of representative near-infrared metal complexes and β-isoindigo-based CPL-active materials
    下载: 导出CSV
    Compound λabs/nm |gabs| λem/nm |glum| Quantum yield/% Ref.
    Yb(TTA)3iPrPyBox 344 970 0.029 0.029 [52]
    [(Binol)3ErNa3] < 400 1 540 0.47 0.58 [53]
    [Cr(dqp)2]3+ 414 0.012 747 0.2 5.2 [54]
    PtH < 400 750 0.002 5 < 1 [55]
    BIAB 5b 677 0.003 708 0.001 3 24 [34]
    β-IB 2a 800 0.003 835 0.000 78 9 [45]

    基于此, 螺烯手性多环芳烃化合物因其独特的螺旋构型受到关注。该结构可诱导磁电耦合, 有效平衡CPL的手性光学响应(glum值)与发光量子效率, 为设计高性能手性材料提供了理论基础。然而, 现有螺烯化合物的光学活性多局限于可见或紫外波段。尽管通过构筑多重螺烯单元或杂原子掺杂可调控其光谱性质, 但这些策略往往受限于复杂的合成工艺, 且鲜有化合物实现高效近红外CPL发射[56-59]。在此背景下, 基于β-异靛蓝骨架氟硼配合物为构筑近红外螺烯型CPL分子材料提供了一种高效合成策略, 为近红外CPL分子材料的设计和调控开辟了新的机遇(图 5)。更值得一提的是, β-异靛蓝与酞菁具有共同前驱体邻苯二腈, 而后者已衍生出6万余种功能分子。这一化学多样性表明, β-异靛蓝体系在近红外CPL材料开发中具有广阔的结构修饰空间。未来研究将重点关注通过精准的分子工程与超分子自组装技术, 定向构筑高性能近红外CPL材料, 并系统探究其手性诱导的生物学效应。

    图 5

    图 5.  BIABs和β-IBs的结构及其光学性质
    Figure 5.  Structures and optical properties of BIABs and β-IBs

    更重要的是, 基于β-异靛蓝骨架的近红外CPL材料在光诊疗领域展现出显著的应用潜力。近红外光凭借其深组织穿透能力与圆偏振光的高成像对比度, 为高分辨率生物成像和精准治疗提供了新路径。在光动力治疗(PDT)和光热治疗(PTT)中, CPL材料不仅能够实现高效的光能转化, 增强治疗效果, 还能通过手性选择性作用, 减少对健康组织的副作用[60-63]。未来的研究将致力于将这些CPL材料集成到光诊疗系统中, 优化其光学活性与生物相容性, 开发高效的成像与治疗工具, 推动CPL材料在医疗领域的广泛应用。


    1. [1]

      HUANG C Y, HECHT S. A blueprint for transforming indigos to photoresponsive molecular tools[J]. Chem. - Eur. J., 2023, 29(43):  e202300981. doi: 10.1002/chem.202300981

    2. [2]

      KAPLAN G, SEFEROĞLU Z, BERDNIKOVA D V. Photochromic derivatives of indigo: Historical overview of development, challenges and applications[J]. Beilstein J. Org. Chem., 2024, 20:  228-242. doi: 10.3762/bjoc.20.23

    3. [3]

      LANGER P. N-Glycosides of indigo, indirubin, and isoindigo: Blue, red, and yellow sugars and their cancerostatic activity[J]. Beilstein J. Org. Chem., 2024, 20:  2840-2869. doi: 10.3762/bjoc.20.240

    4. [4]

      WANG Y Z, YU Y P, LIAO H L, ZHOU Y C, MCCULLOCH I, YUE W. The chemistry and applications of heteroisoindigo units as enabling links for semiconducting materials[J]. Acc. Chem. Res., 2020, 53(12):  2855-2868. doi: 10.1021/acs.accounts.0c00480

    5. [5]

      STALDER R, MEI J, GRAHAM K R, ESTRADA L A, REYNOLDS J R. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics[J]. Chem. Mater., 2014, 26(1):  664-678. doi: 10.1021/cm402219v

    6. [6]

      WU J J, RAO M, ZHU Y W, WANG P, CHEN M, QU Y J, ZHENG X H, JIANG Y. A NIR-Ⅱ absorbing conjugated polymer based on tetrafused isoindigo with ultrahigh photothermal conversion efficiency for cancer therapy[J]. Chem. Commun., 2024, 60(64):  8427-8430. doi: 10.1039/D4CC02546F

    7. [7]

      CUNHA C, SEIXAS DE MELO J S. From indigo to isoindigo: Rationalizing the high efficiency of photoprotective molecular mechanisms[J]. Dyes Pigment., 2024, 229:  112307. doi: 10.1016/j.dyepig.2024.112307

    8. [8]

      LEI T, DOU J H, MA Z J, LIU C J, WANG J Y, PEI J. Chlorination as a useful method to modulate conjugated polymers: Balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers[J]. Chem. Sci., 2013, 4(6):  2447-2452. doi: 10.1039/c3sc50245g

    9. [9]

      ZHOU Y K, ZHANG W F, YU G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells[J]. Chem. Sci., 2021, 12(20):  6844-6878. doi: 10.1039/D1SC01711J

    10. [10]

      MU Y B, XIONG C X, CUI M H, SUN M X, CHEN X Y, XIAO B, SANG H Q, WANG Z X, LIU H X, LAN Z G, SONG Y, WAN X B. A recyclable dynamic semiconducting polymer consisting of Pauli-paramagnetic diradicaloids promoted and stabilized by catechol-boron coordination[J]. Chem. Sci., 2025, 16(3):  1364-1373. doi: 10.1039/D4SC06910B

    11. [11]

      HOU B, LI J, YANG X D, ZHANG J W, XIN H S, GE C W, GAO X K. Azulenoisoindigo: A building block for π-functional materials with reversible redox behavior and proton responsiveness[J]. Chin. Chem. Lett., 2022, 33(4):  2147-2150. doi: 10.1016/j.cclet.2021.08.079

    12. [12]

      LU H, KOBAYASHI N. Optically active porphyrin and phthalocya-nine systems[J]. Chem. Rev., 2016, 10(116):  6184-6261.

    13. [13]

      MEUNIER I, PANDEY R K, SENGE M O, DOUGHERTY T J, SMITH K M. Benzoporphyrin derivatives: Synthesis, structure and preliminary biological activity[J]. J. Chem. Soc - Perkin Trans. 1, 1994, (8):  961-969.

    14. [14]

      LU H, MACK J, YANG Y C, SHEN Z. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chem. Soc. Rev., 2014, 43(13):  4778-4823. doi: 10.1039/C4CS00030G

    15. [15]

      LU H, SHIMIZU S, MACK J, SHEN Z, KOBAYASHI N. Synthesis and spectroscopic properties of fused-ring-expanded azaboradiazaindacenes[J]. Chem.-Asian J., 2011, 6(4):  1026-1037. doi: 10.1002/asia.201000641

    16. [16]

      DREW H D K, KELLY D B. 113. Dithio-β-isoindigo (dithiodiph-thalimidine) from phthalonitrile. Part Ⅰ. A condensation reaction of o-dinitriles[J]. J. Chem Soc., 1941, :  625-630.

    17. [17]

      DREW H D K, KELLY D B. 114. Dithio-β-isoindigo. Part Ⅱ. Mechanism of its formation from phthalonitrile. Derivatives[J]. J. Chem Soc., 1941, :  630-637.

    18. [18]

      ELVIDGE J A, GOLDEN J H. Compounds containing directly linked pyrrole rings. Part Ⅱ. Dialkylimino-β-isoindigos[J]. J. Chem Soc., 1956, :  4144-4150.

    19. [19]

      YUSUKE U, EIJI N. Dithio-β-isoindigo as a collector for traces of gold, silver, copper, cobalt, zinc, and manganese[J]. Journal of the Chemical Society of Japan, 1966, 87:  620-621.

    20. [20]

      NEUSTROEVA N R, KULIKOV M A, VOROB'EV Y G, SMIRNOV R P, ZUEVA N I. Reactivity of dithio-β-isoindigo in complexation and aramination reactions[J]. Russ. J. Coord. Chem., 1999, 25:  279-281.

    21. [21]

      FURUYAMA T, SATO T, KOBAYASHI N. A bottom-up synthesis of antiaromatic expanded phthalocyanines: Pentabenzotriazasmarag-dyrins, i. e. norcorroles of superphthalocyanines[J]. J. Am. Chem. Soc., 2015, 137(43):  13788-13791. doi: 10.1021/jacs.5b09853

    22. [22]

      ZATSIKHA Y V, SHAMOVA L I, NEMYKIN V N. Environmentally benign route for scalable preparation of 1-imino-3-thioisoindolines-The key building blocks for the synthesis of dithio- and diamino-β-isoindigo derivatives[J]. J. Org. Chem., 2021, 86(6):  4733-4746. doi: 10.1021/acs.joc.1c00110

    23. [23]

      ZATSIKHA Y V, SHAMOVA L I, HERBERT D E, NEMYKIN V N. β-Isoindigo-azaDIPYs: Fully conjugated hybrid systems with broad absorption in the visible region[J]. Angew. Chem.-Int. Edit., 2021, 60(22):  12304-12307. doi: 10.1002/anie.202100888

    24. [24]

      LIU H, LU H, XU J, LIU Z P, LI Z F, MACK J, SHEN Z. Boronpyridyl-imino-isoindoline dyes: Facile synthesis and photophysical properties[J]. Chem Commun., 2014, 50(9):  1074-1076. doi: 10.1039/C3CC48316A

    25. [25]

      LIU H, LU H, ZHOU Z K, SHIMIZU S, LI Z F, KOBAYASHI N, SHEN Z. Asymmetric core-expanded aza-BODIPY analogues: Facile synthesis and optical properties[J]. Chem. Commun., 2015, 51(9):  1713-1716. doi: 10.1039/C4CC06704E

    26. [26]

      LIU H, LU H, WU F, LI Z F, KOBAYASHI N, SHEN Z. Synthesis and spectroscopic properties of novel meso-cyano boron-pyridyl-isoindoline dyes[J]. Org. Biomol. Chem., 2014, 12(41):  8223-8229. doi: 10.1039/C4OB01077A

    27. [27]

      LIU H, WU Y P, LI Z F, LU H. Aza boron-pyridyl-isoindoline isomers: Synthesis and photophysical properties[J]. J. Porphyr. Phthalocyanines, 2014, 18(8/9):  679-685.

    28. [28]

      WANG X Q, LIU H T, CUI J C, WU Y P, LU H, LU J, LIU Z P, HE W J. Synthesis and fluorescence properties of isoindoline-benzazole-based boron difluoride complexes[J]. New J. Chem., 2014, 38(3):  1277-1283. doi: 10.1039/c3nj01361h

    29. [29]

      WU Y P, LU H, WANG S S, LI Z F, SHEN Z. Asymmetric boron-complexes containing keto-isoindolinyl and pyridyl groups: Solvatochromic fluorescence, efficient solid-state emission and DFT calculations[J]. J. Mater. Chem. C, 2015, 3(47):  12281-12289. doi: 10.1039/C5TC03084F

    30. [30]

      WU Y P, WANG S S, LI Z F, SHEN Z, LU H. Chiral binaphthyl-linked BODIPY analogues: Synthesis and spectroscopic properties[J]. J. Mater. Chem. C, 2016, 4(21):  4668-4674. doi: 10.1039/C6TC00975A

    31. [31]

      ZHANG H, WU Y P, FAN M, XIAO X, MACK J, KUBHEKA G, NYOKONG T, LU H. Aza boron-pyridyl-isoindoline analogues: Synthesis and photophysical properties[J]. New J. Chem., 2017, 41(13):  5802-5807. doi: 10.1039/C7NJ00707H

    32. [32]

      XIAO Y, HUANG X Y, FENG J, NI Z G, GAI L Z, XIAO X Q, SUI X B, LU H. A simple route toward triplet-forming thionated BODIPY-based photosensitizers[J]. Dyes Pigment., 2022, 200:  110167. doi: 10.1016/j.dyepig.2022.110167

    33. [33]

      GAI L Z, ZHANG R J, SHI X G, NI Z G, WANG S S, ZHANG J L, LU H, GUO Z J. BOINPYs: Facile synthesis and photothermal properties triggered by photoinduced nonadiabatic decay[J]. Chem. Sci., 2023, 14(6):  1434-1442. doi: 10.1039/D2SC06435A

    34. [34]

      XU Y Q, NI Z G, XIAO Y, CHEN Z W, WANG S S, GAI L Z, ZHENG Y X, SHEN Z, LU H, GUO Z J. Helical β-isoindigo-based chromophores with B—O—B bridge: Facile synthesis and tunable near-infrared circularly polarized luminescence[J]. Angew. Chem.-Int. Edit., 2023, 62(8):  e202218023. doi: 10.1002/anie.202218023

    35. [35]

      SHENG W L, LV F, TANG B, HAO E H, JIAO L J. Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C—H bond activation[J]. Chin. Chem. Lett., 2019, 30(10):  1825-1833. doi: 10.1016/j.cclet.2019.08.004

    36. [36]

      LOUDET A, BURGESS K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties[J]. Chem. Rev., 2007, 107(11):  4891-4932. doi: 10.1021/cr078381n

    37. [37]

      XU N, ZHANG G D, XUE Z Y, WANG M M, SU Y, FANG H, YU Z H, LIU H K, LU H, SU Z. NIR photoactivated electron intersystem crossing to evoke calcium-mediated lysosome-dependent cell death and immunotherapy[J]. Chem. Eng. J., 2024, 497:  155022. doi: 10.1016/j.cej.2024.155022

    38. [38]

      WU S M, ZHANG W Z, LI C R, NI Z G, CHEN W F, GAI L Z, TIAN J W, GUO Z J, LU H. Rational design of CT-coupled J-aggregation platform based on Aza-BODIPY for highly efficient phototherapy[J]. Chem. Sci., 2024, 15(16):  5973-5979. doi: 10.1039/D3SC06976A

    39. [39]

      WANG S S, GAI L Z, CHEN Y C, JI X B, LU H, GUO Z J. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy[J]. Chem. Soc. Rev., 2024, 53(8):  3976-4019.

    40. [40]

      WANG S S, BI X, ZHU H, JI X B, LU H, SHEN Z. Rational design of aggregation-induced emission-active bisboron complexes (BOQHYs) for high-fidelity lipid droplet imaging[J]. Aggregate, 2025, 6(2):  e670.

    41. [41]

      CHANG L, ZHOU S J, KONG X D, GAI L Z, LU H. 3-/3, 5-Styryl-substituted BODIPY with N-bridged annulation: Synthesis and spectroscopic properties[J]. Synthesis, 2024, 56(11):  1735-1740.

    42. [42]

      ALBRETT A M, CONRADIE J, BOYD P D W, CLARK G R, GHOSH A, BROTHERS P J. Corrole as a binucleating ligand: Preparation, molecular structure and density functional theory study of diboron corroles[J]. J. Am. Chem. Soc., 2008, 130(10):  2888-2889.

    43. [43]

      WANG S S, WANG Z L, SONG W T, GAO H, WU F, ZHAO Y, CHAN K S, SHEN Z. B—O—B bridged BOPPY derivatives: Synthesis, structures, and acid-catalyzed cis-trans isomeric interconversion[J]. Dalton Trans., 2022, 51(7):  2708-2714.

    44. [44]

      YU C Y, XU Y Q, BI X, NI Z G, XIAO H P, HU X G, LU H. Periphery engineering to enhance the chiroptical response of β-isoindigo-based aza-BODIPY analogs[J]. Tetrahedron Lett., 2023, 133:  154833.

    45. [45]

      CHEN Z W, NI Z G, CHEN X Y, XU Y Q, YU C Y, WANG S S, WANG X Y, LU H. Helicene-type β-isoindigo-based boron-dipyrromethene analogs with strong near-infrared chiroptical activity[J]. Aggregate, 2024, 5(3):  e498.

    46. [46]

      GONG Z L, ZHU X F, ZHOU Z H, ZHANG S W, YANG D, ZHAO B, ZHANG Y P, DENG J P, CHENG Y X, ZHENG Y X, ZANG S Q, KUANG H, DUAN P F, YUAN M J, CHEN C F, ZHAO Y S, ZHONG Y W, TANG B Z, LIU M H. Frontiers in circularly polarized luminescence: Molecular design, self-assembly, nanomaterials, and applications[J]. Sci. China Chem., 2021, 64(12):  2060-2104.

    47. [47]

      WAN L, ZHANG R, CHO E, LI H, COROPCEANU V, BRÉDAS J L, GAO F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends[J]. Nat. Photonics, 2023, 17(8):  649-655.

    48. [48]

      WILLIS O G, ZINNA F, DI BARI L. NIR-circularly polarized luminescence from chiral complexes of lanthanides and d-metals[J]. Angew. Chem.-Int. Edit., 2023, 62(25):  e202302358.

    49. [49]

      WANG Q, XU H R, QI Z, MEI J, TIAN H, QU D H. Dynamic near-infrared circularly polarized luminescence encoded by transient supramolecular chiral assemblies[J]. Angew. Chem.-Int. Edit., 2024, 63(32):  e202407385.

    50. [50]

      LIANG N, CAO C, XIE Z L, LIU J X, FENG Y S, YAO C J. Advances in near-infrared circularly polarized luminescence with organometallic and small organic molecules[J]. Mater. Today, 2024, 75:  309-333.

    51. [51]

      ARRICO L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chem.-Eur. J., 2021, 27(9):  2920-2934.

    52. [52]

      ZINNA F, ARRICO L, DI BARI L. Near-infrared circularly polarized luminescence from chiral Yb (Ⅲ)-diketonatesb[J]. Chem. Commun., 2019, 55(46):  6607-6609.

    53. [53]

      MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes[J]. J. Am. Chem. Soc., 2022, 144(14):  6148-6153.

    54. [54]

      JIMéNEZ J R, DOISTAU B, CRUZ C M, BESNARD C, CUERVA J M, CAMPAÑA A G, PIGUET C. Chiral molecular ruby [Cr(dqp)2]3+ with long-lived circularly polarized luminescence[J]. J. Am. Chem. Soc., 2019, 141(33):  13244-13252.

    55. [55]

      VÁZQUEZ DOMÍNGUEZ P, JOURNAUD O, VANTHUYNE N, JACQUEMIN D, FAVEREAU L, CRASSOUS J, ROS A. Helical donor-acceptor platinum complexes displaying dual luminescence and near-infrared circularly polarized luminescence[J]. Dalton Trans., 2021, 50(38):  13220-13226.

    56. [56]

      LI J K, CHEN X Y, GUO Y L, WANG X C, SUE A C H, CAO X Y, WANG X Y. B, N-embedded double hetero[7]helicenes with strong chiroptical responses in the visible light region[J]. J. Am. Chem. Soc., 2021, 143(43):  17958-17963.

    57. [57]

      HUO G F, XU W T, HU J, HAN Y, FAN W, WANG W, SUN Z, YANG H B, WU J. Perylene-embedded helical nanographenes with emission up to 1010 nm: Synthesis, structures, and chiroptical properties[J]. Angew. Chem.-Int. Edit., 2025, 64(4):  e202416707.

    58. [58]

      MAHLMEISTER B, MAHL M, REICHELT H, SHOYAMA K, STOLTE M, WÜRTHNER F. Helically twisted nanoribbons based on emissive near-infrared responsive quaterrylene bisimides[J]. J. Am. Chem. Soc., 2022, 144(23):  10507-10514.

    59. [59]

      BOSSON J, LABRADOR G M, BESNARD C, JACQUEMIN D, LACOUR J. Chiral near-infrared fluorophores by self-promoted oxidative coupling of cationic helicenes with amines/enamines[J]. Angew. Chem.-Int. Edit., 2021, 60(16):  8733-8738.

    60. [60]

      LI Y W, MIAO Z W, SHANG Z W, CAI Y, CHENG J J, XU X Q. A visible-and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3-x nanoparticles[J]. Adv. Func. Mater., 2020, 30(4):  1906311.

    61. [61]

      GUAN T Y, LIU Y, LI J Y, CHEN M M, SHANG X Y, HU P, LI R F, GAO H, TU D T, ZHENG W, CHEN X Y. Near-infrared-triggered chirality-dependent photodynamic therapy based on hybrid upconversion nanoparticle hydrogels[J]. Chem. Eng. J., 2023, 474:  145429.

    62. [62]

      HAO C L, WANG G Y, CHEN C, XU J, XU C L, KUANG H, XU L G. Circularly polarized light-enabled chiral nanomaterials: From fabrication to application[J]. Nano-Micro Lett., 2023, 15(1):  39.

    63. [63]

      LI X Z, ZHAO X, WANG X Y, XIONG A X, WANG Z C, SHI Z L, ZHANG J Y, WANG H L, WEI W, HE C, MA J J, GUO Z J, DUAN C Y, ZHAO J, WANG X X. Programmable modular assembly of homochiral Ⅰ(Ⅲ) -metallohelices to reverse metallodrug resistance by inhibiting CDK1[J]. Angew. Chem. -Int. Edit., 2025, 64(7):  e202419292.

  • 图 1  (a) 靛蓝、异靛蓝和β-异靛蓝骨架结构; (b) 已报道的β-异靛蓝的结构及其合成路径[21]

    Figure 1  (a) Skeletal structures of indigo, isoindigo, and β-isoindigo; (b) Structures of reported β-isoindigos and their synthetic routes[21]

    图 2  基于β-异靛蓝氟硼配合物的设计、合成路线和结果分析[34]

    Figure 2  Design, synthetic route, and analysis of resultant β-isoindigo-based fluoroboron complexes[34]

    图 3  基于β-异靛蓝骨架的CPL材料的设计以及理论计算的手性性质[45]

    Figure 3  Design of β-isoindigo-based CPL materials and calculated chirality-related properties[45]

    图 4  (a) β-IBs的结构与合成路径; (b) β-IB 2a的单晶结构及晶体堆积示意图; (c) β-IB 2a的电子CD谱图(左)与CPL谱图(右)[45]

    Figure 4  (a) Structure and synthetic route of β-IBs; (b) Single-crystal structure and crystal packing diagram of β-IB 2a; (c) Electronic CD spectrum (left) and CPL spectrum (right) of β-IB 2a[45]

    图 5  BIABs和β-IBs的结构及其光学性质

    Figure 5  Structures and optical properties of BIABs and β-IBs

    表 1  代表性近红外金属配合物和β-异靛蓝基CPL材料及其光学性质

    Table 1.  Properties of representative near-infrared metal complexes and β-isoindigo-based CPL-active materials

    Compound λabs/nm |gabs| λem/nm |glum| Quantum yield/% Ref.
    Yb(TTA)3iPrPyBox 344 970 0.029 0.029 [52]
    [(Binol)3ErNa3] < 400 1 540 0.47 0.58 [53]
    [Cr(dqp)2]3+ 414 0.012 747 0.2 5.2 [54]
    PtH < 400 750 0.002 5 < 1 [55]
    BIAB 5b 677 0.003 708 0.001 3 24 [34]
    β-IB 2a 800 0.003 835 0.000 78 9 [45]
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  340
  • HTML全文浏览量:  31
文章相关
  • 发布日期:  2025-06-10
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-03-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章