Received Date:
09 October 2024 Revised Date:
21 November 2024 Available Online:
10 January 2025
Abstract:
An imidazolium-functionalized carboxylic acid ligand (H2L)Cl (1, 3-bis[4′-carboxy-3, 5-dimethyl-(1, 1′-biphenyl)-4-yl]-imidazolium chloride) was designed and synthesized. An imidazolium-functionalized zirconium metal-organic cage [(Cp3Zr3)2(L)3]Cl5 (MOC-1), where Cp3Zr3=(CpZr)3(μ3-O)(μ2-OH)3 and Cp=η5-C5H5, was prepared by the reaction of (H2L)Cl with bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2). MOC-1 was characterized by single-crystal X-ray diffraction, 1H NMR, electrospray ionization-mass spectrometry, UV-Vis absorption spectrum, IR spectroscopy, thermogravimetric analysis, and other test methods. Single-crystal X-ray diffraction analysis demonstrates the cationic skeleton of MOC-1 consists of two Cp3Zr3 units and three L- ligands. The three imidazole groups are located in the middle of the cage and point towards the inside. MOC-1 exhibits a cavity in an irregular pentagonal bipyramidal shape. The host-guest properties between MOC-1 and aryl sulfonate anions of different sizes were studied by 1H NMR. The results show that the host-guest interaction between MOC-1 and G1-G3 (benzenesulfonate, p-chlorophenyl sulfonate, and p-methyl benzenesulfonate, respectively) with better cavity matching was stronger than that between the larger aryl sulfonate anions G4 (p-ethyl benzenesulfonate) and G5 (p-isopropyl benzenesulfonate).
Figure 2.
(a) ESI-MS spectrum of MOC-1; (b) Experimental (blue) and calculated (red) isotope distributions for peaks corresponding to [M-4Cl]4+, [M-4Cl-H]3+, [M-3Cl]3+, and [M-3Cl-H]2+ (M=[(Cp3Zr3)2(L)3]Cl5)
Figure 3.
(a) Coordination mode of the Cp3Zr3 cluster with carboxyl groups; (b) Crystal structure of the MOC-1 cation and its middle position in magnification
Table 2.
Chemical shifts of the free guest molecules and H1 of the host, and the change in the chemical shifts (Δδ) after the host and guest were mixed in a molar ratio of 1∶1
Supporting information is available at http://www.wjhxxb.cn
[1]
McCONNELL A J, WOOD C S, NEELAKANDAN P P, NITSCHKE J R. Stimuli-responsive metal-ligand assemblies[J]. Chem. Rev., 2015, 115(15): 7729-7793 doi: 10.1021/cr500632f
[2]
SAHA M L, YAN X Z, STANG P J. Photophysical properties of organoplatinum(Ⅱ) compounds and derived self-assembled metallacycles and metallacages: fluorescence and its applications[J]. Acc. Chem. Res., 2016, 49(11): 2527-2539 doi: 10.1021/acs.accounts.6b00416
[3]
ZHANG Z Y, ZHAO Z Q, WU L W, LU S, LING S L, LI G P, XU L T, MA L Z, HOU Y L, WANG X C, LI X P, HE G, WANG K, ZOU B, ZHANG M M. Emissive platinum(Ⅱ) cages with reverse fluorescence resonance energy transfer for multiple sensing[J]. J. Am. Chem. Soc., 2020, 142(5): 2592-2600 doi: 10.1021/jacs.9b12689
FANG Y, POWELL J A, LI E, WANG Q, PERRY Z, KIRCHON A, YANG X Y, XIAO Z F, ZHU C F, ZHANG L L, HUANG F H, ZHOU H C. Catalytic reactions within the cavity of coordination cages[J]. Chem. Soc. Rev., 2019, 48(17): 4707-4730 doi: 10.1039/C9CS00091G
[6]
BROWN C J, TOSTE F D, BERGMAN R G, RAYMOND K N. Supramolecular catalysis in metal-ligand cluster hosts[J]. Chem. Rev., 2015, 115(9): 3012-3035 doi: 10.1021/cr4001226
[7]
KAPHAN D M, LEVIN M D, BERGMAN R G, RAYMOND K N, TOSTE F D. A supramolecular microenvironment strategy for transition metal catalysis[J]. Science, 2015, 350(6265): 1235-1238 doi: 10.1126/science.aad3087
[8]
BOALER P J, PISKORZ T K, BICKERTON L E, WANG J Z, DUARTE F, LLOYD-JONES G C, LUSBY P J. Origins of high-activity cage-catalyzed Michael addition[J]. J. Am. Chem. Soc., 2024, 146(28): 19317-19326 doi: 10.1021/jacs.4c05160
[9]
AMOURI H, DESMARETS C, MOUSSA J. Confined nanospaces in metallocages: Guest molecules, weakly encapsulated anions, and catalyst sequestration[J]. Chem. Rev., 2012, 112(4): 2015-2041 doi: 10.1021/cr200345v
[10]
WANG L J, BAI S, HAN Y F. Water-soluble self-assembled cage with triangular metal-metal-bonded units enabling the sequential selective separation of alkanes and isomeric molecules[J]. J. Am. Chem. Soc., 2022, 144(35): 16191-16198 doi: 10.1021/jacs.2c07586
[11]
WANG L J, ZHANG Z E, ZHANG Y Z, HAN Y F. Cavity-partitioned self-assembled cage for sequential separation in aqueous solutions[J]. Angew. Chem. ‒Int. Edit., 2024: e202407278 doi: 10.1002/anie.202407278
[12]
ZHENG Y R, SUNTHARALINGAM K, JOHNSTONE T C, LIPPARD S J. Encapsulation of Pt(Ⅳ) prodrugs within a Pt(Ⅱ) cage for drug delivery[J]. Chem. Sci., 2015, 6(2): 1189-1193 doi: 10.1039/C4SC01892C
[13]
Wang Y P, Zhang Y, Duan X H, Mao J J, Pan M, Shen J, Su C Y. Recent progress in metal-organic cages for biomedical application: Highlighted research during 2018-2023[J]. Coord. Chem. Rev., 2024, 501: 215570 doi: 10.1016/j.ccr.2023.215570
[14]
SHIRINFAR B, AHMED N, PARK Y S, CHO G S, YOUN I S, HAN J K, NAM H G, KIM K S. Selective fluorescent detection of RNA in living cells by using imidazolium-based cyclophane[J]. J. Am. Chem. Soc., 2013, 135(1): 90-93 doi: 10.1021/ja3112274
[15]
KUMAR R, SANDHU S, SINGH P, KUMAR S. Imidazolium based probes for recognition of biologically and medically relevant anions[J]. Chem. Rec., 2017, 17(4): 441-471 doi: 10.1002/tcr.201600108
[16]
XU Z C, KIM S K, YOON J. Revisit to imidazolium receptors for the recognition of anions: Highlighted research during 2006—2009[J]. Chem. Soc. Rev., 2010, 39(5): 1457-1466 doi: 10.1039/b918937h
[17]
HU Y, LONG S S, FU H Y, SHE Y B, XU Z C, YOON J. Revisiting imidazolium receptors for the recognition of anions: Highlighted research during 2010—2019[J]. Chem. Soc. Rev., 2021, 50(1): 589-618 doi: 10.1039/D0CS00642D
[18]
LIU T, BAI S, ZHANG L, HAHN F E, HAN Y F. N-heterocyclic carbene-stabilized metal nanoparticles within porous organic cages for catalytic application[J]. Natl. Sci. Rev., 2022, 9: nwac067 doi: 10.1093/nsr/nwac067
LIU G L, YUAN Y D, WANG J, CHENG Y D, PEH S B, WANG Y X, QIAN Y H, DONG J Q, YUAN D Q, ZHAO D. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages[J]. J. Am. Chem. Soc., 2018, 140(20): 6231-6234 doi: 10.1021/jacs.8b03517
[21]
SULLIVAN M G, WELGAMA H K, CRAWLEY M R, FRIEDMAN A E, COOK T R. Phase-pure zirconium metal-organic polyhedra enabled by a ligand substitution strategy[J]. Chem. Mater., 2024, 36: 567-574 doi: 10.1021/acs.chemmater.3c02775
[22]
CHEN C X, RABAÂ H, WANG H P, LAN P C, XIONG Y Y, WEI Z W, AL-ENIZI A M, NAFADY A, MA S Q. In situ formation of frustrated Lewis pairs in a zirconium metal-organic cage for sustainable CO2 chemical fixation[J]. CCS Chem., 2023, 5(9): 1989-1998 doi: 10.31635/ccschem.023.202302856
[23]
KIM J, NAM D, KITAGAWA H, LIM D W, CHOE W. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry[J]. Nano Res., 2020, 14(2): 392-397
[24]
陶艳丽, 陈维超, 王新龙, 苏忠民. 锆簇基纳米分子胶囊的合成、晶体结构和荧光性质[J]. 无机化学学报, 2019, 35(11): 2108-2116. doi: 10.11862/CJIC.2019.224TAO Y L, CHEN W C, WANG X L, SU Z M. Synthesis, crystal structures and fluorescence properties of two nanosized Zr-based molecular capsules[J]. Chinese J. Inorg. Chem., 2019, 35(11): 2108-2116 doi: 10.11862/CJIC.2019.224
[25]
JU Z F, LIU G L, CHEN Y S, YUAN D Q, CHEN B L. From coordination cages to a stable crystalline porous hydrogen-bonded framework[J]. Chem. ‒Eur. J., 2017, 23(20): 4774-4777 doi: 10.1002/chem.201700798
[26]
SHI W J, LIU D, LI X, BAI S, WANG Y Y, HAN Y F. Supramolecular coordination cages based on N-heterocyclic carbene-gold ligands and their precursors: Self-assembly, structural transformation and guest-binding properties[J]. Chem. ‒Eur. J., 2021, 27(29): 7853-7861 doi: 10.1002/chem.202100710
[27]
YANG D H, LI S Z, MA P T, WANG J P, NIU J Y. Carboxylate-functionalized phosphomolybdates: Ligand-directed conformations[J]. Inorg. Chem., 2013, 52(15): 8987-8992 doi: 10.1021/ic401176j
[28]
ZHANG Y T, ZHU J, LIU Z Y, LI S B, HUANG H, JIANG B X. Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr reduction[J]. Inorg. Chim. Acta, 2022, 543: 121204 doi: 10.1016/j.ica.2022.121204
[29]
ZHAO X, CUI H Y, GUO L L, LI B, LI J, JIA X S, LI C J. General and modular synthesis of covalent organic cages for efficient molecular recognition[J]. Angew. Chem. ‒Int. Edit., 2024: e202411613
Figure 2
(a) ESI-MS spectrum of MOC-1; (b) Experimental (blue) and calculated (red) isotope distributions for peaks corresponding to [M-4Cl]4+, [M-4Cl-H]3+, [M-3Cl]3+, and [M-3Cl-H]2+ (M=[(Cp3Zr3)2(L)3]Cl5)
Figure 3
(a) Coordination mode of the Cp3Zr3 cluster with carboxyl groups; (b) Crystal structure of the MOC-1 cation and its middle position in magnification
Table 2.
Chemical shifts of the free guest molecules and H1 of the host, and the change in the chemical shifts (Δδ) after the host and guest were mixed in a molar ratio of 1∶1