
FA: formic acid; HAc: acetic acid; H2C2O4: oxalic acid; SqA: squaric acid; 3-AT: 3-amino-1, 2, 4-triazole; 2-MI: 2-methylimidazole; 1, 2, 4-TA: 1, 2, 4-triazole.
气候变化严重威胁着人类的生活,因此减少人为向大气层中排放CO2迫在眉睫。在发展绿色和可再生能源的同时,需要大力发展温室气体捕获及资源化利用技术[1]。碳捕获、利用与封存(carbon capture,utilization, and storage,CCUS)是针对工业装置尾气中CO2的集中排放、捕集、吸附分离与转化问题而开发的重要“碳减排”技术。其中在CO2捕获环节,研发和制备高效绿色的CO2捕获材料非常关键。目前使用最多的醇胺溶液具有捕集效率高等优点,但同时面临着再生能耗高与设备易腐蚀等问题。而通过选择性物理吸附捕集CO2的多孔材料由于再生能耗较低,具有广阔的潜在应用前景[2-3]。
相对于活性炭与沸石(或分子筛),金属有机骨架(metal-organic frameworks,MOFs)材料兼具高的比表面积、多样的结构、可调节的孔径和孔表面积、可调控的性能等。其具有的1D/2D/3D周期性骨架结构由无机金属离子或簇与有机配体通过化学配位组装而成,并且它们的晶态属性有助于其应用机理的研究[4-9]。
近30年来,MOF材料在烟道气CO2捕获方面的应用研究引起了国内外科研工作者的广泛关注,并获得了很大发展[10-26]:(1) 利用功能基团修饰有机配体或裸露金属位点,向MOF材料中引入高活性的吸附位点,增强骨架与CO2分子之间的亲和力,从而提升其对CO2的捕获性能[5-6, 8-9, 11, 27-30];(2) 利用不同策略,精准调控MOF材料的孔径,使得较小的CO2分子(分子直径为0.33 nm)可以进入MOF材料的孔道,而较大的N2分子(分子直径为0.364 nm)无法进入,从而实现CO2和N2的“分子筛”效应分离[5-6, 8-9, 11, 27-28, 31-33]。
目前,面向工业烟道气CO2捕获的MOF材料的设计与合成研究已步入应用驱使的新阶段。研发和制备具有实用价值的CO2捕获MOF材料是一项重要挑战。在实际应用时,MOF材料不仅应具有高的CO2吸附量和选择性,还需兼具高的稳定耐用性、易再生性与低的合成成本等优点[34-73]。本综述从结构、稳定性、CO2捕获性能与宏量制备几个方面总结并讨论了面向工业烟道气CO2捕获的基于常见廉价配体MOF材料的最新研究进展(图 1、表S1,Supporting information)。
由于廉价配体的长度通常较小,因此基于廉价配体合成的MOF材料多为微孔或超微孔材料。目前,基于廉价配体合成的MOF材料主要包括基于单配体和双配体合成的MOF材料。
廉价配体与金属离子通过配位键相互连接,形成了多种基于单核金属离子或多核金属簇的微孔或超微孔MOF材料。下文列举了部分具有代表性的基于单配体合成的MOFs的结构。
Zn2+离子采用四配位的模式,与线形的2-甲基咪唑中的N原子配位,形成了具有sod拓扑的微孔ZIF-8(图 2a)[74-75]。窗口和笼子的大小分别为0.34和1.16 nm。
氮唑类配体与金属离子配位可形成2D超分子层。不同超分子层之间通过羧酸类配体进行支撑,可形成3D超微孔MOF材料。下文列举了部分典型的基于双配体合成的MOFs的结构。
Zn2+离子与3-AT中的N原子配位,形成双核[Zn2Atz2](Atz=3-AT)金属簇[78]。该金属簇之间通过3-AT连接,形成了2D [ZnAtz]超分子层。不同超分子层之间经草酸支撑,形成了3D超微孔ZnAtzOx_ Water。孔径大小为0.525~0.64 nm。2021年,研究者将3-AT替换为1,2,4-三氮唑,诱导形成了新的2D超分子层[32],不同2D超分子层经草酸支撑,构筑出柱层状CALF-20(图 3a)。CALF-20具有三通超微孔道,且沿[100]、[011]和[011]方向的孔道孔径分别为0.273 nm×0.291 nm、0.194 nm×0.311 nm和0.274 nm×0.304 nm。随后,研究者利用方酸取代了CALF-20中的草酸,通过Material Studio软件模拟构建出了CALF-20的等网格MOF材料,即SquCALF-20(图 3b)[79],其孔径大小约为0.29 nm。在基于廉价配体的MOF材料中,超微孔的形成有助于其高选择性地吸附CO2,从而使其在工业烟道气CO2捕获方面表现出巨大潜力。
如前所述,基于廉价配体合成的MOF材料多为超微孔MOF材料。相较于大孔或介孔MOF材料,这类材料常表现出更高的水、热或化学稳定性。在已报道的基于廉价配体合成的MOF材料中,当+2价过渡金属离子与N/O原子进行配位,或高价金属离子与O原子配位时,所构建的骨架往往展现出卓越的水、热或化学稳定性。这些特性均符合软硬酸碱理论。
在FJUT-3材料中,Co2+离子与方酸中的O原子配位。该材料具有优异的化学稳定性[77]。在用pH=1、2、7、12和14的水溶液分别处理后,FJUT-3仍保持完整的骨架和良好的结晶性(图 4a)。将FJUT-3暴露于水中1 d后,骨架在298 K时对CO2的吸附等温线仍与处理前高度吻合(图 4b)。
在ZnAtzOx_Water材料中,Zn2+离子与3-AT中的N原子和草酸中的O原子配位,具有独特的刚性骨架[78]。将其在水蒸气和沸水中处理后,均未发现其粉末X射线衍射(PXRD)图有明显变化。而且,水蒸气处理前后,该材料对CO2的吸附等温线非常吻合。此外,ZnAtzOx_Water还具有很高的热稳定性,在室温到300 ℃范围内的湿气中,其PXRD图均非常一致。
在CALF-20材料中,Zn2+离子与1,2,4-三氮唑中的N原子和草酸中的O原子配位。该材料也具有很好地抵抗水蒸气和酸性气体侵蚀的能力[32]。在150 ℃的水蒸气中暴露7 d后,CALF-20的PXRD图仍与新合成的样品保持一致(图 4c)。此外,在酸性气体处理前后,CALF-20的PXRD图也保持一致(图 4d)。
在ALF材料中,Al3+离子与FA中的O原子配位,使其具有高的水、热和化学稳定性[33]。在水蒸气[85%相对湿度(RH)]中暴露24 h后,活化的ALF仍然可以保持完整的骨架(图 5a)。在水蒸气处理前后,ALF在低压区对CO2的吸附等温线非常接近(图 5b和表S2)。在不同的酸性或碱性溶液中浸泡后,其PXRD图也与新合成样品的保持一致(图 5d、5g)。在空气中加热后,ALF可稳定至约523 K(图 5f)。此外,基于Zr4+离子与FA中的O原子配位的Zr-FA也具有很好的热稳定性[80]。活化后,Zr-FA在空气中可稳定至约423 K。以上基于廉价配体合成的超微孔MOF材料在水、热或化学稳定性方面具有明显优势。这为基于廉价配体合成的MOF材料在工业烟道气CO2捕获方面的实际应用奠定了重要基础。
如前文所述,基于廉价配体合成的MOF材料的孔径大小通常较接近CO2的分子直径。目前,已报道的这类MOF材料大多通过“分子筛”效应对CO2和N2进行分离。本部分着重从吸附量、吸附焓、吸附选择性与穿透分离效果及分离性能受水蒸气的影响几个方面,讨论了基于廉价配体合成的MOF材料的CO2捕获性能。
在298 K和15 kPa条件下,Zr-FA对CO2的吸附量高达37.5 cm3·cm-3,然而,在0~100 kPa的压力范围内其对N2的吸附量均非常低[76]。在298 K和100 kPa条件下,Zr-FA对CO2/N2(15∶85,V/V)的IAST (ideal absorbed solution theory)选择性高于107。此外,Zr-FA对CO2的零负载吸附焓仅为-35.6 kJ·mol-1(表S3),这一特性有益于吸附剂的循环使用和回收。在298 K条件下,当CO2/N2混合气体穿过装有Zr-FA的填充柱时,CO2被有效吸附在填充柱内,而N2则能够迅速从出口逸出。对CO2/N2混合气体的多轮循环实验证明了Zr-FA具有很好的循环使用性能和可回收性。
基于FA合成的超微孔ALF在工业烟道气CO2捕获方面极具应用前景[33]。在接近实际温度(略高于室温)的条件下,它对CO2表现出了相对于N2显著优异的吸附性能。在273~323 K内,ALF能高效地吸附CO2,特别地,在低压条件下对CO2的吸附量迅速增加(图 6a、6b)。相反,在298~323 K的温度区间内,ALF对N2几乎不吸附。在进一步对CO2/N2(323 K)混合气的突破实验中也发现,约0.8 mmol·g-1的CO2被捕获,而N2几乎不被吸附(图 6d)。在SO2和NO共存的环境中,ALF的穿透曲线仍能得到良好保持,这表明该材料具有很好的抗腐蚀性气体侵蚀的能力。将其在CO2气氛下加热至353 K,ALF可被成功再生,而且,经过100多个吸脱附循环后,ALF对CO2的吸附量几乎未有变化(图 6e)。此外,与知名亲水性材料如MOF-74-Ni和UiO-66-(OH)2相比,ALF对水的亲和力显著降低(图 6c、6f)[33]。
由图 7a可知,基于方酸合成的超微孔材料FJUT-3在273、298和313 K的不同温度条件下对CO2的吸附量远大于其对N2的吸附量[77]。特别地,在313 K和15 kPa条件下,FJUT-3对CO2的吸附量为20 cm3·g-1,高于许多已报道MOF材料的吸附量[77]。此外,FJUT-3对CO2和N2的零负载吸附焓分别为41.7和16.4 kJ·mol-1,这充分表明了FJUT-3的骨架与CO2分子之间存在着更强的相互作用(图 7b)。如图 7c所示,该材料在不同温度下对CO2/N2的IAST选择性表现出色,分别高达222.6(273 K和100 kPa)、178.3(298 K和100 kPa)和139.3(313 K和100 kPa)。在针对不同温度(尤其是333 K)和100 kPa条件下的CO2/N2混合气进行的突破实验中,FJUT-3对CO2具有极高的捕获能力(图 7d、7e)。此外,在298和313 K条件下,对CO2/N2混合气进行的多轮循环突破实验中,FJUT-3表现出了优异的耐久性(图 7g、7h)。进一步在298 K和100 kPa条件下,针对含有不同RH (33%、73%和83%)的CO2/N2混合气进行的突破实验,以及对RH为73%的CO2/N2混合气进行的多轮循环突破实验中,该材料均展现出了出色的CO2/N2分离性能、良好的抗湿性、耐久性和可回收性(图 7f、7i)。这些均表明FJUT-3可作为一种有前景的吸附剂用于工业烟道气中CO2的捕获。
在303 K和15 kPa下,ZnAtzOx_Water对CO2的吸附量高达2.7 mmol·g-1,而对N2几乎不吸附[78],其在303 K和100 kPa下对CO2/N2混合气体的IAST选择性高达100,是在低压范围内对CO2捕获性能很好的超微孔MOF材料之一。
在273~373 K温度范围内,CALF-20对CO2表现出很高的吸附量,而对N2几乎不吸附(图 8a)[32]。具体而言,在303 K和15 kPa条件下,CALF-20对CO2的吸附量高达2.5 mmol·g-1,同时,对CO2和N2的选择性也很高,约为708.3(表S3)。此外,CALF-20对CO2的零负载吸附热仅为-39 kJ·mol-1。值得注意的是,CALF-20在低压下表现出较差的吸水性(图 8b),且在较高温度下,水吸附等温线的下降趋势比CO2的吸附等温线更为显著,这表明CALF-20在吸附CO2时比水蒸气具有更强的竞争力。通过加热至150 ℃,CALF-20能够实现有效的再生。且在经过30轮吸脱附循环后,其对CO2的吸附能力仍然保持良好(图 8d、表S3)。在针对不同组分比例的CO2/N2 (5∶95、15∶85和30∶70,V/V)混合气的突破实验中,CALF-20-聚砜复合材料展现出很强的CO2捕获能力(图 8e)。此外,在不同RH下对CO2和水蒸气混合气的突破实验(图 8f、8g)表明,CALF-20-聚砜复合材料在潮湿环境中对CO2具有出色的选择性吸附性能。特别是对含有13% RH(图 8h)和47% RH(图 8i)的空气和H2O与CO2和H2O混合气的突破实验中,CO2的存在加速了水的突破,这进一步验证了CALF-20-聚砜复合材料在RH低于40%的条件下,对CO2的物理吸附能力明显优于对水的吸附。相比于目前已报道的面向工业烟道气CO2捕获的高性能MOF材料,CALF-20保持着最佳的记录。
通过软件模拟构建的SquCALF-20,在293 K和15 kPa的条件下,对CO2的模拟吸附量高达3.6 mmol·g-1(表S3),这一数值相较于CALF-20的2.8 mmol·g-1有了显著提升[79]。此外,SquCALF-20对CO2/N2的模拟选择性约为500,同样明显高于CALF-20[79]。尽管方酸的引入增强了SquCALF-20的亲水性,但在低RH环境下,其骨架结构仍然优先吸附CO2。具体而言,在20%的RH条件下,SquCALF-20仍能保持3.4 mmol·g-1的CO2吸附量,这一数值依然高于CALF-20在相同RH条件下的2.7 mmol·g-1 [79]。
在实用条件下,评估MOF材料的CO2捕获性能时,需综合考虑多个因素,包括在实际工作温度下的吸附量和选择性、水蒸气的影响、易再生性及循环使用性能等。基于廉价配体合成的MOF材料在面向工业烟道气CO2捕获这一实际应用时具有很大优势。然而,当前仍面临一项重要挑战,即设计并合成出高效的在低压范围内能够优先于水蒸气捕获CO2的MOF材料。
低的合成成本是评估面向实用性的CO2捕获材料的另一项重要指标。目前已报道的多个基于廉价配体合成的MOF材料能够在实验室规模上实现宏量制备,并且在CO2捕获方面依然表现出色[32, 33, 77]。
在基于单配体合成的MOF材料中,AlF可被宏量制备。通过100 mL甲酸和1.2 g氢氧化铝在三颈圆底烧瓶中的回流,即可得到大量白色固体样品(图 9a)[33]。此外,ALF还具有优异的机械性能,可被制成颗粒状,经过球磨处理成型后的ALF仍能对CO2保持很好的吸附性能(图 9c)。此外,基于方酸的FJUT-3可通过溶剂热反应合成,具体是在1 L螺口小瓶中将22.84 g六水合氯化钴与8.21 g方酸反应,合成出20 g样品(图 9b)[77]。而且,所获得的克级FJUT-3仍具有良好的结晶性和CO2吸附能力(图 9e)。
在基于双配体构筑的MOF材料中,ZnAtzOx_Water可通过简单的毫克级合成放大至5 g规模,同时保持其CO2吸附性能不变[78]。CALF-20可通过在特氟龙高压反应釜中的溶剂热合成制备,具体是将6.60 g草酸锌与5.00 g 1,2,4-三氮唑反应,得到7.30 g粉末样品[32]。值得注意的是,即使将制备规模放大至300万倍,CALF-20样品对CO2的吸附等温线仍然能够很好地保持(图 9d)。
在探讨烟道气CO2捕获的实际应用时,需要综合评估MOF材料的吸附量、选择性、抗湿性、再生性、稳定耐用性及低合成成本等因素。我们从材料的结构、稳定性、CO2捕获性能与宏量制备几个方面展开讨论,并综述了面向工业烟道气CO2捕获的基于廉价配体MOF材料的最新研究进展。在面向实际应用时,基于廉价配体合成的MOF材料具有很大的潜在应用前景。然而,当前仍面临诸多挑战,包括设计并合成能在低压条件下相对于水蒸气高效捕获CO2的MOF材料,以及探索宏量制备方法。具体而言,研究方向可包括:尝试构建具有疏水性孔表面的超微孔MOF材料,或控制组装具有适合线形CO2分子容纳(由多种协同吸附位点围绕而成)的特殊识别“陷阱”的MOF材料,探索相对于水蒸气可优先捕获CO2的高性能MOF材料。此外,研究在常温和常压条件下,MOF材料在水体系中的绿色、宏量制备也具有重要意义。
刘志成, 伊晓东, 高飞雪, 谢在库, 韩布兴, 孙予罕, 何鸣元, 杨俊林. 绿色碳科学: 双碳目标下的科学基础——第292期"双清论坛"学术综述[J]. 物理化学学报, 2023, 39(1): 2112029.LIU Z C, YI X D, GAO F X, XIE Z K, HAN B X, SUN Y H, HE M Y, YANG J L. Green carbon science: a scientific basis for achieving 'dual carbon' goal—academic summary of the 292nd "shuang⁃qing forum"[J]. Acta Phys. ‒Chim. Sin., 2023, 39(1): 2112029
SUMIDA K, ROGOW D L, MASON J A, MCDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal⁃organic frameworks[J]. Chem. Rev., 2012, 112(2): 724⁃781 doi: 10.1021/cr2003272
D′ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture: prospects for new materials[J]. Angew. Chem. ‒Int. Edit., 2010, 49(35): 6058⁃6082 doi: 10.1002/anie.201000431
KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs[J]. Sci. Adv., 2018, 4: eaat9180 doi: 10.1126/sciadv.aat9180
FAN W D, ZHANG X R, KANG Z X, LIU X P, SUN D F. Isoreticular chemistry within metal⁃organic frameworks for gas storage and separation[J]. Coord. Chem. Rev., 2021, 440: 213968
FREUND R, CANOSSA S, COHEN S M, YAN W, DENG H X, GUILLERM V, EDDAOUDI M, MADDEN D G, FAIREN⁃JIMENEZ D, LYU H, MACREADIE L K, JI Z, ZHANG Y Y, WANG B, HAASE F, WÖLL C, ZAREMBA O, ANDREO J, WUTTKE S, DIERCKS C S. 25 years of reticular chemistry[J]. Angew. Chem. ‒Int. Edit., 2021, 60(45): 23946⁃23974 doi: 10.1002/anie.202101644
FURUKAWA H, CORDOVA K E, O′KEEFFE M, YAGHI O M. The chemistry and applications of metal⁃organic frameworks[J]. Science, 2013, 341: 1230444 doi: 10.1126/science.1230444
KITAGAWA S. Porous crystalline materials: Closing remarks[J]. Faraday Discuss., 2017, 201: 395⁃404 doi: 10.1039/C7FD90042B
RUNGTAWEEVORANIT B, DIERCKS C S, KALMUTZKI M J, YAGHI O M. Spiers memorial lecture: Progress and prospects of reticular chemistry[J]. Faraday Discuss., 2017, 201: 9⁃45 doi: 10.1039/C7FD00160F
DU L T, LU Z Y, ZHENG K Y, WANG J Y, ZHENG X, PAN Y, YOU X Z, BAI J F. Fine⁃tuning pore size by shifting coordination sites of ligands and surface polarization of metal⁃organic frameworks to sharply enhance the selectivity for CO2[J]. J. Am. Chem. Soc., 2013, 135(2): 562⁃565 doi: 10.1021/ja309992a
LI J T, BHATT P M, LI J Y, EDDAOUDI M, LIU Y L. Recent progress on microfine design of metal⁃organic frameworks: Structure regulation and gas sorption and separation[J]. Adv. Mater., 2020, 32(44): 2002563 doi: 10.1002/adma.202002563
MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A, GARCIA H. Mixed⁃metal MOFs: Unique opportunities in metal⁃organic framework (MOF) functionality and design[J]. Angew. Chem. ‒Int. Edit., 2019, 131: 15330⁃15347 doi: 10.1002/ange.201902229
BHATT P M, GUILLERM V, DATTA S J, SHKURENKO A, EDDAOUDI M. Topology meets reticular chemistry for chemical separations: MOFs as a case study[J]. Chem, 2020, 6(7): 1613⁃1633 doi: 10.1016/j.chempr.2020.06.018
PANG Q Q, TU B B, LI Q W. Metal⁃organic frameworks with multicomponents in order[J]. Coord. Chem. Rev., 2019, 388: 107⁃125 doi: 10.1016/j.ccr.2019.02.022
GHASEMPOUR H, WANG K Y, POWELL J A, ZAREKARIZI F, LV X L, MORSALI A, ZHOU H C. Metal⁃organic frameworks based on multicarboxylate linkers[J]. Coord. Chem. Rev., 2021, 426: 213542 doi: 10.1016/j.ccr.2020.213542
YAGHI O M. Reticular chemistry in all dimensions[J]. ACS Cent. Sci., 2019, 5(8): 1295⁃1300 doi: 10.1021/acscentsci.9b00750
ZHANG Y B, LI Q W, DENG H X. Reticular chemistry at the atomic, molecular, and framework scales[J]. Nano Res., 2021, 14(2): 335⁃337 doi: 10.1007/s12274-020-3226-6
TRICKETT C A, HELAL A, Al⁃MAYTHALONY B A, YAMANI Z H, CORDOVA K E, YAGHI O M. The chemistry of metal⁃organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017, 2: 17045 doi: 10.1038/natrevmats.2017.45
CHEN Z J, KIRLIKOVALI K O, LI P, FARHA O K. Reticular chemistry for highly porous metal⁃organic frameworks: The chemistry and applications[J]. Acc. Chem. Res., 2022, 55(4): 579⁃591 doi: 10.1021/acs.accounts.1c00707
SINGH G, LEE J, KARAKOTI A, BAHADUR R, YI J B, ZHAO D Y, ALBAHILY K, VINU A. Emerging trends in porous materials for CO2 capture and conversion[J]. Chem. Soc. Rev., 2020, 49(13): 4360⁃4404 doi: 10.1039/D0CS00075B
ZHANG Z J, YAO Z Z, XIANG S C, CHEN B L. Perspective of microporous metal⁃organic frameworks for CO2 capture and separation[J]. Energy Environ. Sci., 2014, 7(9): 2781⁃3088 doi: 10.1039/C4EE90035A
YU J M, XIE L H, LI J R, MA Y G, SEMINARIO J M, BALBUENA P B. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem. Rev., 2017, 117(14): 9674⁃9754 doi: 10.1021/acs.chemrev.6b00626
LYU H, CHEN O I, HANIKEL N, HOSSAIN M I, FLAIG R W, PEI X K, AMIN A, DOHERTY M D, IMPASTATO R K, GLOVER T G, MOORE D R, YAGHI O M. Carbon dioxide capture chemistry of amino acid functionalized metal⁃organic frameworks in humid flue gas[J]. J. Am. Chem. Soc., 2022, 144(5): 2387⁃2396 doi: 10.1021/jacs.1c13368
MAURIN G, SERRE C, COOPER A, FéREY G. The new age of MOFs and of their porous⁃related solids[J]. Chem. Soc. Rev., 2017, 46(11): 3104⁃3107 doi: 10.1039/C7CS90049J
HENDON C H, RIETH A J, KORZYŃSKI M D, DINCă M. Grand challenges and future opportunities for metal⁃organic frameworks[J]. ACS Cent. Sci., 2017, 3(6): 554⁃563 doi: 10.1021/acscentsci.7b00197
HE Y B, CHEN F L, LI B, QIAN G D, ZHOU W, CHEN B L. Porous metal⁃organic frameworks for fuel storage[J]. Coord. Chem. Rev., 2018, 373: 167⁃198 doi: 10.1016/j.ccr.2017.10.002
ZHANG Z J, ZHAO Y G, GONG Q H, LI Z, LI J. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem. Commun., 2013, 49(7): 653⁃661 doi: 10.1039/C2CC35561B
WANG Q, BAI J F, LU Z Y, PAN Y, YOU X Z. Finely tuning MOFs towards high⁃performance post⁃combustion CO2 capture materials[J]. Chem. Commun., 2016, 52(3): 443⁃452 doi: 10.1039/C5CC07751F
CASKEY S R, WONG⁃FOY A G, MATZGER A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. J. Am. Chem. Soc., 2008, 130(33): 10870⁃10871 doi: 10.1021/ja8036096
MCDONALD T M, LEE W R, MASON J A, WIERS B M, HONG C S, LONG J R. Capture of carbon dioxide from air and flue gas in the alkylamine⁃appended metal⁃organic framework mmen⁃Mg2(dobpdc)[J]. J. Am. Chem. Soc., 2012, 134(16): 7056⁃7065 doi: 10.1021/ja300034j
NUGENT P, BELMABKHOUT Y, BURD S D, CAIRNS A J, LUEBKE R, FORREST K, PHAM T, MA S Q, SPACE B, WOJTAS L, EDDAOUDI M, ZAWOROTKO M J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature., 2013, 495(7439): 80⁃84 doi: 10.1038/nature11893
LIN J B, NGUYEN T T T, VAIDHYANATHAN R, BURNER J, TAYLOR J M, DUREKOVA H, AKHTA F, MAH R K, GHAFFARI⁃N O, MARX S, FYLSTRA N, IREMONGER S S, DAWSON K W, SARKAR P, HOVINGTON P, RAJENDRAN A, WOO T K, SHIMIZU G K H. A scalable metal⁃organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374: 1464⁃1469 doi: 10.1126/science.abi7281
EVANS H A, MULLANGI D, DENG Z Y, WANG Y X, PEH S B, WEI F X, WANG J, BROWN C M, ZHAO D, CANEPA P, CHEETHAM K C. Aluminum formate, Al(HCOO)3: An earth⁃abundant, scalable, and highly selective material for CO2 capture[J]. Sci. Adv., 2022, 8(44): eade1473 doi: 10.1126/sciadv.ade1473
WANG X Y, GU Y M, ZONG X P, ZHAO S S, WANG S D. Fluorido⁃bridged iron⁃based metal⁃organic frameworks for carbon dioxide capture in humid flue gas[J]. Fuel., 2024, 368: 131669 doi: 10.1016/j.fuel.2024.131669
LI Y Z, WANG G D, LU S J, XU F, ZHANG H, SUI Y W, HOU L. A moisture stable metal⁃organic framework for highly efficient CO2/N2, CO2/CH4 and CO2/CO separation[J]. Chem. Eng. J., 2024, 484: 149494 doi: 10.1016/j.cej.2024.149494
TU S, YU L, LIU J Q, LIN D X, WU Y, LI Z, WANG H, XIA Q B. Efficient CO2 capture under humid conditions on a novel amide⁃functionalized Fe⁃soc metal⁃organic framework[J]. ACS Appl. Mater. Interfaces, 2023, 15(9): 12240⁃12247 doi: 10.1021/acsami.3c00096
SONG D H, JIANG F L, YUAN D Q, CHEN Q H, HONG M C. Optimizing sieving effect for CO2 capture from humid air using an adaptive ultramicroporous framework[J]. Small., 2023, 19(44): 2302677 doi: 10.1002/smll.202302677
LOUGHRAN R P, HURLEY T, GLADYSIAK A, CHIDAMBARAM A, KHIVANTSEV K, WALTER E D, GRAHAM T R, REARDON P, SZANYI J, FAST D B, MILLER Q R S, PARK A H A, STYLIANOU K C. CO2 capture from wet flue gas using a water⁃stable and cost⁃ effective metal⁃organic framework[J]. Cell Rep. Phys Sci., 2023, 4(7): 101470 doi: 10.1016/j.xcrp.2023.101470
HU Y Q, JIANG Y J, LI J H, WANG L Y, STEINER M, NEUMANN R F, LUAN B Q, ZHANG Y B. New⁃generation anion⁃pillared metal⁃organic frameworks with customized cages for highly efficient CO2 capture[J]. Adv. Funct. Mater., 2023, 33(14): 2213915 doi: 10.1002/adfm.202213915
ESSALHI M, MOHAN M, DISSEM N, FERHI N, ABIDI A, MARIS T, DUONG A. Two different pore architectures of cyamelurate⁃based metal⁃organic frameworks for highly selective CO2 capture under ambient conditions[J]. Inorg. Chem. Front., 2023, 10(3): 1037⁃1048 doi: 10.1039/D2QI02208G
QAZVINI O T, TELFER S G. MUF⁃16: A robust metal⁃organic framework for pre⁃ and post⁃combustion carbon dioxide capture[J]. ACS Appl. Mater. Interfaces, 2021, 13(10): 12141⁃12148 doi: 10.1021/acsami.1c01156
BRIGGS L, NEWBY R, HAN X, MORRIS C G, SAVAGE M, KRAP C P, EASUN T L, FROGLEY M D, CINQUE G, MURRAY C A, TANG C C, SUN J L, YANG S H, SCHRÖDER M. Binding and separation of CO2, SO2 and C2H2 in homo⁃ and hetero⁃metallic metal⁃ organic framework materials[J]. J. Mater. Chem. A, 2021, 9(11): 7190⁃7197 doi: 10.1039/D1TA00687H
WU D, LIU C P, TIAN J Y, JIANG F L, YUAN D Q, CHEN Q H, HONG M C. Acid⁃base⁃resistant metal⁃organic framework for size⁃selective carbon dioxide capture[J]. Inorg. Chem., 2020, 59(18): 13542⁃13550 doi: 10.1021/acs.inorgchem.0c01912
QAZVINI O T, TELFER S G. A robust metal⁃organic framework for post⁃combustion carbon dioxide capture[J]. J. Mater. Chem. A, 2020, 8(24): 12028⁃12034 doi: 10.1039/D0TA04121A
GAO Y J, ZHANG M X, CHEN C, ZHANG Y, GU Y M, WANG Q, ZHANG W W, PAN Y, MA J, BAI J F. A low symmetry cluster meets a low symmetry ligand to sharply boost MOF thermal stability[J]. Chem. Commun., 2020, 56(80): 11985⁃11988 doi: 10.1039/D0CC04543H
WANG Z S, LI M, PENG Y L, ZHANG Z J, CHEN W, HUANG X C. An ultrastable metal azolate framework with binding pockets for optimal carbon dioxide capture[J]. Angew. Chem. ‒Int. Edit., 2019, 58(45): 16071⁃16076 doi: 10.1002/anie.201909046
CHEN C, ZHANG M X, ZHANG W W, BAI J F. Stable amide⁃functionalized metal⁃organic framework with highly selective CO2 adsorption[J]. Inorg. Chem., 2019, 58(4): 2729⁃2735 doi: 10.1021/acs.inorgchem.8b03308
ZHANG Q Q, LIU X F, MA L, WEI Y S, WANG Z Y, XU H, ZANG S Q. Remoulding a MOF′s pores by auxiliary ligand introduction for stability improvement and highly selective CO2⁃capture[J]. Chem. Commun., 2018, 54(85): 12029⁃12032 doi: 10.1039/C8CC06593D
LI H W, FENG X, MA D, ZHANG M X, ZHANG Y Y, LIU Y, ZHANG J W, WANG B. Stable aluminum metal⁃organic frameworks (Al⁃MOFs) for balanced CO2 and water selectivity[J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3160⁃3163 doi: 10.1021/acsami.7b17026
CHEN Y W, QIAO Z W, HUANG J L, WU H X, XIAO J, XIA Q B, XI H X, HU J, ZHOU J, LI Z. Unusual moisture⁃enhanced CO2 capture within microporous PCN⁃250 frameworks[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38638⁃38647 doi: 10.1021/acsami.8b14400
NANDI S, HALDAR S, CHAKRABORT D, VAIDHYANATHAN R. Strategically designed azolyl⁃carboxylate MOFs for potential humid CO2 capture[J]. J. Mater. Chem. A., 2017, 5(2): 535⁃543 doi: 10.1039/C6TA07145G
LIANG L F, LIU C P, JIANG F L, CHEN Q H, ZHANG L J, XUE H, JIANG H L, QIAN J J, YUAN D Q, HONG M C. Carbon dioxide capture and conversion by an acid⁃base resistant metal⁃organic framework[J]. Nat. Commun., 2017, 8(1): 1233 doi: 10.1038/s41467-017-01166-3
CHEN C, JIANG Q B, XU H F, LIN Z. Highly efficient synthesis of a moisture⁃stable nitrogen⁃abundant metal⁃organic framework (MOF) for large⁃scale CO2 capture[J]. Ind. Eng. Chem. Res., 2019, 58(4): 1773⁃1777 doi: 10.1021/acs.iecr.8b05239
HU Z G, WANG Y X, FAROOQ S, ZHAO D. A highly stable metal⁃organic framework with optimum aperture size for CO2 capture[J]. Aiche J., 2017, 63(9): 4103⁃4114 doi: 10.1002/aic.15837
CHANDRASEKHAR P, SAVITHA G, MOORTHY J N. Robust MOFs of "tsg" topology based on trigonal prismatic organic and metal cluster sbus: Single crystal to single crystal postsynthetic metal exchange and selective CO2 capture[J]. Chem. Eur. J., 2017, 23(30): 7297⁃7305 doi: 10.1002/chem.201700139
LIU L, WANG S M, HAN Z B, DING M L, YUAN D Q, JIANG H L. Exceptionally robust in⁃based metal⁃organic framework for highly efficient carbon dioxide capture and conversion[J]. Inorg. Chem., 2016, 55(7): 3558⁃3565 doi: 10.1021/acs.inorgchem.6b00050
MASALA A, VITILLO J G, MONDINO G, GRANDE C A, BLOM R, MANZOLI M, MARSHALL M, BORDIGA S. CO2 capture in dry and wet conditions in UTSA⁃16 metal⁃organic framework[J]. ACS Appl. Mater. Interfaces, 2016, 9(1): 455⁃463
CHEN K J, MADDEN D G, PHAM T, FORREST K A, KUMAR A, YANG Q Y, XUE W, SPACE B, PERRY J J, ZHANG J P, CHEN X M, ZAWOROTKO M J. Tuning pore size in square⁃lattice coordination networks for size⁃selective sieving of CO2[J]. Angew. Chem. ‒Int. Edit., 2016, 55(35): 10268⁃10272 doi: 10.1002/anie.201603934
BENOIT V, PILLAI R S, ORSI A, NORMAND P, JOBIC H, NOUAR F, BILLEMONT P, BLOCH E, BOURRELLY S, DEVIC T, WRIGHT P A, DE WEIRELD G, SERRE C, MAURIN G, LLEWELLYN P L. MIL⁃91(Ti), a small pore metal⁃organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport[J]. J. Mater. Chem. A, 2016, 4(4): 1383⁃1389 doi: 10.1039/C5TA09349J
YE Y X, XIONG S S, WU X N, ZHANG L Q, LI Z Y, WANG L H, MA X L, CHEN Q H, ZHANG Z J, XIANG S C. Microporous metal⁃organic framework stabilized by balanced multiple host⁃couteranion hydrogen⁃bonding interactions for high⁃density CO2 capture at ambient conditions[J]. Inorg. Chem., 2015, 55(1): 292⁃299
BAO S J, KRISHNA R, HE Y B, QIN J S, SU Z M, LI S L, XIE W, DU D Y, HE W W, ZHANG S R, LAN Y Q. A stable metal⁃organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture[J]. J. Mater. Chem. A, 2015, 3(14): 7361⁃7367 doi: 10.1039/C5TA00256G
FRACAROLI A M, FURUKAWA H, SUZUKI M, DODD M, OKAJIMA S, GÁNDARA F, REIMER J A, YAGHI O M. Metal‑ organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. J. Am. Chem. Soc., 2014, 136(25): 8863⁃8866 doi: 10.1021/ja503296c
YANG Q Y, VAESEN S, RAGON F, WIERSUM A D, WU D, LAGO A, DEVIC T, MARTINEAU C, TAULELLE F, LLEWELLYN P L, JOBIC H, ZHONG C L, SERRE C, DE WEIRELD G, MAURIN G. A water stable metal⁃organic framework with optimal features for CO2 capture[J]. Angew. Chem. ‒Int. Ed., 2013, 52(39): 10316⁃10320 doi: 10.1002/anie.201302682
LIAO P Q, ZHOU D D, ZHU A X, JIANG L, LIN R B, ZHANG J P, CHEN X M. Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws[J]. J. Am. Chem. Soc., 2012, 134(42): 17380⁃17383 doi: 10.1021/ja3073512
ZHOU X P, LI M, LIU J, LI D. Gyroidal metal⁃organic frameworks[J]. J. Am. Chem. Soc., 2011, 134(1): 67⁃70
DATTA S J, KHUMNOON C, LEE Z H, MOON W K, DOCAO S, NGUYEN T H, HWANG I C, MOON D, OLEYNIKOV P, OSAMU TERASAKI O, YOON K B. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350(6258): 302⁃306 doi: 10.1126/science.aab1680
MORRIS W, LEUNG B, FURUKAWA H, YAGHI O K, HE N, HAYASHI H, HOUNDONOUGBO Y, ASTA M, LAIRD B B, YAGHI O M. A combined experimental⁃computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc., 2010, 132(32): 11006⁃11008 doi: 10.1021/ja104035j
BANERJEE R, PHAN A, WANG B, KNOBLER C, FURUKAWA H, O′KEEFFE M, YAGHI O M. High⁃throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939⁃943 doi: 10.1126/science.1152516
JEONG S M, CHO K H, LEE S K, YOON J W, LEE J S, JO D, LEE U H. Carbon dioxide capture in a carbonate⁃pillared ultramicroporous metal⁃organic framework[J]. ACS Sustain. Chem. Eng., 2024, 12(21): 8165⁃8173 doi: 10.1021/acssuschemeng.4c01172
SHI Z L, TAO Y, WU J S, ZHANG C Z, HE H L, LONG L L, LEE Y J, LI T, ZHANG Y B. Robust metal⁃triazolate frameworks for CO2 capture from flue gas[J]. J. Am. Chem. Soc., 2020, 142(6): 2750⁃ 2754 doi: 10.1021/jacs.9b12879
YU C, DING Q, HU J B, WANG Q J, CUI X L, XING H B. Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal⁃organic framework[J]. Chem. Eng. J., 2021, 405(21): 126937
NANDI S, COLLINS S, CHAKRABORTY D, BANERJEE D, THALLAPALLY P K, WOO T K, VAIDHYANATHAN R. Ultralow parasitic energy for postcombustion CO2 capture realized in a nickel isonicotinate metal⁃organic framework with excellent moisture stability[J]. J. Am. Chem. Soc., 2017, 139(5): 1734⁃1737 doi: 10.1021/jacs.6b10455
ZHOU H F, LIU B, HOU L, ZHANG W Y, WANG Y Y. Rational construction of a stable Zn4O⁃based MOF for highly efficient CO2 capture and conversion[J]. Chem. Commun., 2018, 54(5): 456⁃459 doi: 10.1039/C7CC08473K
PARK K S, NI Z, CÔTÉ A P, CHOI J Y, HUANG R D, URIBE⁃ROMO F J, CHAE H K, O'KEEFFE M, YAGHI O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci., 2006, 103(27): 10186⁃10191 doi: 10.1073/pnas.0602439103
HUANG X C, LIN Y Y, ZHANG J P, CHEN X M. Ligand⁃directed strategy for zeolite⁃type metal⁃organic frameworks: Zinc imidazolates with unusual zeolitic topologies[J]. Angew. Chem. ‒Int. Edit., 2006, 45(10): 1557⁃1559
SHI Y S, XIE Y, ALSHAHRANI T, CHEN B L. A zirconium⁃based microporous metal⁃organic framework for molecular sieving CO2 separation[J]. Crystengcomm., 2023, 25(11): 1643⁃1647 doi: 10.1039/D3CE00085K
ZHANG L, HE Z Y, LIU Y P, YOU J J, LIN L, JIA J H, CHEN S, HUA N B, MA L A, YE X Y, LIU Y R, CHEN C X, WANG Q T. A robust squarate⁃cobalt metal⁃organic framework for CO2/N2 separation[J]. ACS Appl. Mater. Interfaces, 2023, 15(25): 30394⁃30401
BANERJEE A, NANDI S, NASA P, VAIDHYANATHAN R. Enhancing the carbon capture capacities of a rigid ultra⁃microporous MOF through gate⁃opening at low CO2 pressures assisted by swiveling oxalate pillars[J]. Chem. Commun., 2016, 52(9): 1851⁃1854 doi: 10.1039/C5CC08172F
GOPALSAMY K, FAN D, NASKAR S, MAGNIN Y, MAURIN G. Engineering of an isoreticular series of CALF‑20 metal‑organic frameworks for CO2 capture[J]. ACS Appl. Eng. Mater., 2024, 2(1): 96⁃103 doi: 10.1021/acsaenm.3c00622
LIANG W B, BABARAO R, MURPHY M J, D′ALESSANDRO D M. The first example of a zirconium⁃oxide based metal⁃organic framework constructed from monocarboxylate ligands[J]. Dalton. Trans., 2015, 44(4): 1516⁃1519
图 2 (a) ZIF-8[74]、(b) ALF[33]和(c) FJUT-3[77]的结构示意图(文献[74]: 属于2006美国国家科学院所有; 文献[33]: 属于2022美国科学促进会所有; 文献[77]: 属于2023美国化学会所有)
Figure 2 Structure diagrams of (a) ZIF-8[74], (b) ALF[33], and (c) FJUT-3[77] (Ref. [33]: Copyright 2022 American Association for the Advancement of Science; Ref. [74]: Copyright 2006 National Academy of Sciences; Ref. [77]: Copyright 2023 American Chemical Society)
图 3 (a) CALF-20[32]与(b) 模拟SquCALF-20[79]的结构示意图(文献[32]: 属于2021美国科学促进会所有; 文献[79]: 属于2024美国化学会所有)
Figure 3 Structure diagrams of (a) CALF-20[32] and (b) simulated SquCALF-20[79] (Ref. [32]: Copyright 2021 American Association for the Advancement of Science; Ref. [79]: Copyright 2024 American Chemical Society)
图 4 (a) FJUT-3在酸性和碱性溶液中浸泡后的PXRD图; (b) FJUT-3和在水中暴露1 d后的样品在298 K对CO2的吸附等温线[77]; CALF-20在(c) 不同温度水蒸气和(d) 酸性气体中的PXRD图[32]
Figure 4 (a) PXRD patterns of FJUT-3 after soaking in the aqueous solution with different pH values; (b) CO2 adsorption isotherms at 298 K of FJUT-3 and the sample after exposing to water for 1 d[77]; PXRD patterns of CALF-20 after exposing to (c) the steam at different temperatures and (d) acid gases[32]
图 5 ALF的水/热/化学稳定性表征: 在85 ℃ (358 K)下暴露于85% RH的水蒸气中1~24 h后的(a) PXRD图、(b) CO2吸附等温线和(c) b中红色方框部分的相应放大图; (d、e、g、h) 在不同的酸碱及有机溶剂中浸泡后的和(f) 不同温度下的PXRD图[33]
Figure 5 Characterization of water/thermal/chemical stability of ALF: (a) PXRD patterns, (b) CO2 adsorption isotherms, and (c) the corresponding enlarged image of the red box in b after exposing to the 85% RH for 24 h at 85 ℃ (358 K); (d, e, g, h) PXRD patterns after exposing to acid-base and boiled solvent media and (f) at variable temperatures[33]
图 6 ALF(a) 在不同温度下对CO2的吸附等温线及(b)在298 K对CO2和N2的吸附等温线[插图: 对CO2/N2(15∶85, V/V)的IAST选择性]; (c)ALF、MOF-74-Ni和UiO-66-(OH)2在298 K对水蒸气的吸附等温线; ALF(d) 在323 K对CO2/N2(15∶85, V/V)的突破曲线、(e) 在干燥CO2气氛下原位热重测定多轮气体吸脱附的循环曲线、(f) 323 K时在干燥和潮湿条件下的CO2突破曲线[33]
Figure 6 (a) CO2 adsorption isotherms at different temperatures, and (b) CO2 and N2 adsorption isotherms at 298 K [Inset: IAST selectivity for CO2/N2 (15∶85, V/V)] of ALF; (c) H2O adsorption isotherms at 298 K of ALF, MOF-74-Ni, and UiO-66-(OH)2; (d) Breakthrough curves for CO2/N2 (15∶85, V/V) at 323 K, (e) in situ thermogravimetric analysis cycling studies under dry CO2 atmosphere, (f) CO2 breakthrough curves under dry and wet conditions at 323 K of ALF[33]
图 7 FJUT-3对CO2和N2气体的(a) 吸附等温线和(b) 吸附焓、(c) 对CO2/N2的IAST选择性、(d、e) 在不同温度下对CO2/N2干燥混合气和(f) 在不同RH的CO2/N2混合气中的突破曲线; FJUT-3在100 kPa和(g) 298 K或(h) 313 K下对CO2/N2混合气与(i) 在100 kPa和298 K下对CO2/N2 (RH: 73%)混合气的多轮循环测试[77]
Figure 7 (a) Adsorption isotherms and (b) adsorption enthalpies for CO2 and N2, (c) IAST selectivity for CO2/N2, breakthrough curves for (d, e) CO2/N2 dry mixture at various temperatures and (f) CO2/N2 mixture under different RH conditions of FJUT-3; Cycling test of a CO2/N2 mixture at 100 kPa and (g) 298 K or (h) 313 K, and (i) a CO2/N2 mixture (RH: 73%) at 100 kPa and 298 K of FJUT-3[77]
图 8 CALF-20 (a)对CO2、N2和(b) H2O的吸附等温线、(c) 对H2O的模拟吸附位点与(d) 在CO2气氛下吸脱附气体的多轮循环曲线; CALF-20-聚砜复合材料(e) 对不同组分的CO2/N2混合气、(f) 在不同RH下对CO2和(g) H2O、(h) 13%和(i) 47% RH的(空气+H2O)与(CO2+H2O)混合气的突破曲线; (j) CALF-20-聚砜复合材料在不同RH下对CO2和H2O的竞争负载量[32]
Figure 8 Adsorption isotherms for (a) CO2, N2 and (b) H2O, (c) simulated H2O adsorption sites, and (d) multi-cycle curves under CO2 atmosphere of pure CALF-20; Breakthrough curves for (e) different components of CO2/N2 mixtures, (f) CO2 and (g) H2O at various RH values, (air+H2O) and (CO2+H2O) at (h) 13% and (i) 47% RH of CALF-20-polysulfone composite; (j) Competitive CO2 and H2O loading at various RH values of CALF-20-polysulfone composite[32]
图 9 宏量制备的(a) 1 kg的ALF粉末样品(左)和颗粒样品(右)[33]及(b) FJUT-3样品[77]; 宏量制备的(c) ALF[33]、(d) CALF-20[32]与(e) FJUT-3[77]对CO2的吸附等温线
Figure 9 Photos of large batch prepared (a) 1 kg sample of ALF powder (left) and pellets (right)[33] and (b) FJUT-3 sample[77]; CO2 adsorption isotherms of large batch prepared (c) ALF[33]; (d) CALF-20[32], and (e) FJUT-3[77]