Eu3+掺杂CaLaGaO4红色荧光粉的制备及其荧光性能

赵炎 蒋小康 李忠辉 王佳旭 周恒为 郭海

引用本文: 赵炎, 蒋小康, 李忠辉, 王佳旭, 周恒为, 郭海. Eu3+掺杂CaLaGaO4红色荧光粉的制备及其荧光性能[J]. 无机化学学报, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242 shu
Citation:  Yan ZHAO, Xiaokang JIANG, Zhonghui LI, Jiaxu WANG, Hengwei ZHOU, Hai GUO. Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242 shu

Eu3+掺杂CaLaGaO4红色荧光粉的制备及其荧光性能

    通讯作者: 周恒为, E-mail: zhw33221@163.com; 郭海, E-mail: ghh@zjnu.cn
  • 基金项目:

    伊犁师范大学新疆凝聚态相变与微结构实验室开放课题 XJDX0912Z2405

    伊犁师范大学研究生科研创新项目 YSD2024G004

摘要: 采用高温固相法制备不同浓度Eu3+掺杂CaLaGaO4系列红色荧光粉。研究结果显示,该系列荧光粉能够被392 nm的近紫外光有效激发,在609 nm处有强烈的红光发射,其光强主要依赖于Eu3+5D07F2跃迁所发射的光,且在Eu3+浓度达到0.3时发光强度达到最大,其色坐标为(0.613,0.359),与标准红光坐标(0.670,0.330)较为接近,色纯度高达96.3%。由于热猝灭效应,当样品温度升高至498 K时,发光强度仍保持室温下的75%,激活能为0.151 3 eV。

English

  • 功能材料是人类活动的基础,推动着人类的发展和社会的进步。随着材料科学的迅速发展,发光材料因其发光效率高、热稳定性好、功耗低、寿命长、环境友好等特点,在多个领域中具有广泛的应用前景[1-2],其中,白光发光二极管(LED)材料由于生产成本低、亮度好、寿命长、反应快、无污染、转换率高等优点,被广泛应用于显示、照明、太阳能电池、温度传感器等领域[3-6]

    目前,商用白光LED大多采用YAG∶Ce3+黄色荧光粉与蓝色芯片(GaN)相结合,但该方法产生的白光由于红光成分的缺乏导致其色温高、显色指数低以及长期工作后性能下降,应用受到明显的限制[7-8]。虽然可以通过补偿红光的方式优化白光LED的性能,但目前商用的红色荧光粉存在发光效率低、热稳定性差、制备工艺复杂和成本高的缺点。因此,开发一种发光效率高、热稳定性强、制备简单、低成本的红色荧光粉具有重要的研究意义[9-10]

    稀土离子掺杂发光材料因其发光效率高、热稳定性好、无污染等优势被广泛应用于光学数据存储、现代照明、防伪、光学温度计等领域[9-11]。稀土离子的发光性质主要取决于其4f层电子的性质。随着4f层电子数的变化,稀土离子呈现出不同的电子跃迁形式和极其丰富的能级跃迁,能发出紫外线、可见光和近红外光[12-15],其中三价铕离子(Eu3+)由于其独特的电子层结构跃迁,能够吸收近紫外光或蓝光,与当前蓝光LED芯片发射相吻合,而且其4f-4f的特征发射峰非常窄,能够提供较高的色纯度,常被当作激活离子掺入基质材料中[16-19],例如Mg2YVO6∶Eu3+、SrGa2O4∶Eu3+、CsSr3La(PO4)3F∶Eu3+、NaGd2Ga3Ge2O12∶Eu3+[20-23]

    荧光粉的发光特性不仅与激活离子有关还与其宿主材料有关[24]。ABGaO4(A=Ca、Sr、Ba;B=La、Gd、Y)作为镓酸盐氧化物的一种,因其优异的物理化学性质以及特殊的橄榄石结构,在白光LED用荧光粉基质选择中具有潜在的应用前景,该结构中A和B分别与6个O形成八面体结构,这种结构有望降低激活剂的5d能态,从而获得较长的激发带和发射带[25-27]。近年来该结构的荧光粉得到广泛研究,例如CaGdGaO4∶Bi3+、SrLaGaO4∶Eu3+、CaYGaO4∶Eu3+/Tb3+[28-31]

    我们以CaLaGaO4为基质材料,以稀土离子Eu3+为激活离子,采用高温固相法合成一种新型Eu3+掺杂的CaLaGaO4红色荧光粉。采用多种表征方法对样品的物相、微观形貌和荧光性能进行研究和分析,并探究Eu3+浓度对CaLaGaO4基红色荧光粉发光性能的影响。

    采用高温固相法制备CaLa1-xGaO4xEu3+(x=0.1、0.2、0.3、0.4、0.5、0.6)系列荧光粉,并标记为CLGO∶xEu3+(x=0.1~0.6)。根据Ca、La、Ga、Eu物质的量之比1∶(1-x)∶1∶x称取CaCO3(99.99%)、La2O3(99.99%)、Ga2O3(99.99%)、Eu2O3(99.99%)并加入一定量的乙醇,研磨30 min,随后将研磨完的样品放入氧化铝坩埚中,在马弗炉中1 240 ℃烧结6 h,待样品冷却至室温后研磨备用。实验所用试剂均购自上海阿拉丁生化技术股份有限公司。

    利用X射线衍射仪(XRD,BRUKER D8 ADVANCE型,电压40 kV,电流40 mA,波长0.154 18 nm,扫描步长0.01°,扫描范围5°~80°)、扫描电子显微镜(SEM,JSM-7500F日本日立公司)对样品的物相结构和微观形貌进行表征;通过近紫外漫反射光谱仪(岛津UV3600)、荧光光谱仪(FluoroMax+)以及东方科捷液氮恒温装置对样品的荧光性能进行检测。

    图 1a为不同Eu3+浓度的CLGO荧光粉的XRD图。由图可知,不同浓度Eu3+掺杂的CLGO荧光粉的XRD图与CaLaGaO4标准卡片(PDF No.04-010-6387)基本一致,并没有产生其他杂相,说明Eu3+成功进入CLGO晶体结构中。由图 1b可以看出,随着Eu3+浓度的不断增加,衍射峰的位置逐渐向高角度偏移,这是由于Eu3+半径小于La3+半径,致使晶体收缩引起的。

    图 1

    图 1.  CLGO∶xEu3+(x=0.1~0.6)的(a) XRD图及(b) 对应30°~33°的放大图; (c) CLGO的晶胞结构图
    Figure 1.  (a) XRD patterns of CLGO∶xEu3+ (x=0.1-0.6) and (b) enlarged patterns corresponding to 30°-33°; (c) Cell structure of CaLaGaO4

    图 1c为未掺杂Eu3+的晶胞结构图,由图可知,CaLaGaO4结构为ABCO4型,属于Pnma空间群,其Ca3+、La3+分别同6个O形成[CaO6]和[LaO6]八面体结构,而Ga3+则与4个O形成四面体结构,这些多面体结构按照一定的顺序连接形成CaLaGaO4晶胞,其晶胞参数a=1.180 83 nm,b=0.686 03 nm,c=0.535 29 nm,α=β=γ=90°,V=0.433 6 nm3。掺杂Eu3+与取代离子之间的半径差可以通过公式1计算,从而确定Eu3+作为激活离子进入主晶格的情况[32]

    $ D_r=\left|\frac{R_{\mathrm{s}}(\mathrm{CN})-R_{\mathrm{d}}(\mathrm{CN})}{R_{\mathrm{s}}(\mathrm{CN})}\right| \times 100 \% $

    (1)

    其中Dr为原子半径差的百分比,RsRd分别代表取代离子和掺杂离子半径,CN则是该离子的配位数。当Eu3+半径为0.109 nm时,其CN=6。在CaLaGaO4基质中,考虑到Eu3+与Ca2+和La3+的半径较为相近,Ca2+、La3+在CN=6时,离子半径分别为0.099、0.116 nm。计算可得Eu3+与La3+和Ca2+Dr分别为8.62%和2.02%,均小于30%,说明其能够被取代。XRD结果显示,衍射峰向高角度偏移,这证明Eu3+倾向取代La3+离子而非Ca2+离子。

    图 2a为CLGO∶0.3Eu3+样品的微观形貌。该样品由尺寸大小不一、形状不规则的微米颗粒组成。其晶粒尺寸分布如图 2b所示,由图可知,样品颗粒尺寸大致在10 μm以内,主要分布在1~5 μm。

    图 2

    图 2.  CLGO∶0.3Eu3+样品的(a) 表面形貌和(b) 尺寸分布图
    Figure 2.  (a) Surface morphology and (b) grain size distribution of CLGO∶0.3Eu3+ sample

    图 3为CLGO∶0.3Eu3+样品的[F(R)]2-曲线,插图为该样品的紫外可见漫反射光谱图。结果表明,该样品在200~350 nm范围内有较强的吸收,这是由O2-2p轨道到La3+4f和Eu3+4f轨道之间的电荷转移跃迁(CTB)引起的,其他微小的吸收则是由Eu3+的能级跃迁引起的,利用Kubelka-Munk函数可以得到样品的光学带隙(Eg),如式23所示[28, 33-35]

    $ F(R)=(1-R)^2 /(2 R) $

    (2)

    $ {[F(R) h \nu]^2=A\left(h \nu-E_{\mathrm{g}}\right)} $

    (3)

    图 3

    图 3.  CLGO∶0.3Eu3+的[F(R)]2-曲线
    Figure 3.  [F(R)]2- plot of CLGO∶0.3Eu3+

    Inset: UV-Vis diffuse reflectance spectrum.

    式中F(R)表示吸收率,R为反射率,An分别代表入射光子能量、比例常数和指数。当n=1/2时材料为间接带隙,n=2时材料为直接带隙。根据文献[36]报道,CLGO基质为直接带隙材料,因此n=2。如图 3所示,CLGO∶0.3Eu3+样品的Eg=3.44 eV,与文献[36]报道的CLGO基质带隙值(3.45 eV)相近。

    图 4a是室温状态下系列CLGO∶xEu3+(x=0.1~0.6)荧光粉在检测波长为609 nm下的激发光谱图,图中包含230~280 nm范围内的宽激发带和一系列窄峰,其中230~280 nm范围内的宽激发峰是由O2-2p轨道到La3+4f和Eu3+4f轨道之间的CTB所引起的,而361、380、392、403以及413 nm附近的窄峰则分别对应Eu3+7F05D47F05L77F05L67F05L67F05D3能级跃迁。从图中可以看出,随着Eu3+浓度的增加,样品在392 nm处的激发峰逐渐增强,当x=0.3时,392 nm处的激发峰达到最大且超过其带边激发,表明CLGO荧光粉在Eu3+掺杂浓度达到0.3后可以被波长为392 nm的光有效激发。

    图 4

    图 4.  CLGO∶xEu3+(x=0.1~0.6)的(a) 激发和(b) 发射谱图
    Figure 4.  (a) Excitation and (b) emission spectra of CLGO∶xEu3+ (x=0.1-0.6)

    图 4b为392 nm的激发下,不同Eu3+浓度的CLGO荧光粉的发射谱图。由图可知,在578、585、594、609、615、620、648和655 nm处有较强的发射峰,分别对应Eu3+5D07F05D07F15D07F15D07F25D07F25D07F25D07F35D07F3能级跃迁,这归因于Eu3+的电子层结构和对应能级之间的转移,各个能级之间的跃迁如图 5示。

    图 5

    图 5.  Eu3+的能级跃迁图
    Figure 5.  Energy level transition diagram of Eu3+

    Eu3+离子的取代位置与其发射强度息息相关,当Eu3+位于反转对称区域时其5D07F1磁偶极子跃迁占主导发射,当位于非反转对称区域时,则5D07F2电偶极子跃迁发射为主导。根据图 4b显示,5D07F2跃迁所发射的光强远远大于5D07F1磁偶极子跃迁产生的光强,因此,该基质掺杂Eu3+主要占据非反转对称区域,其光强主要依赖于Eu3+5D07F2跃迁所发射的光。当x=0.3时,其特征发射达到最强,随后出现明显的浓度猝灭现象,该现象则是由于Eu3+浓度的不断增加导致的Eu3+之间距离缩短,从而引起相邻Eu3+能级之间发生交叉弛豫,进而出现明显的浓度猝灭现象。

    根据Blasse理论研究[36],通过公式4计算临界距离(Rc)以判断在浓度猝灭中起主导的相互作用:

    $ R_{\mathrm{c}}=2\left(\frac{3 V}{4 \pi X_{\mathrm{c}} N}\right)^{\frac{1}{3}} $

    (4)

    式中V为晶胞体积,N代表掺杂离子在单个晶胞中可用的总格位数,Xc是临界浓度,当Rc < 0.5 nm时,离子间交叉弛豫作用起主导作用,当Rc > 0.5 nm时,则是多极子相互作用起主导作用。在CLGO基质中,V=0.433 63 nm,N=2,Xc=0.3,计算得到Rc=1.114 nm,远大于0.5 nm,表明在CLGO基质中,多极子间相互作用在浓度猝灭中占据主导作用。

    室温下,以392 nm为激发波长,609 nm为监测波长,收集CLGO∶0.3Eu3+样品的衰减数据。衰减数据利用公式5进行二次指数衰减函数拟合[37-38],拟合结果如图 6所示。

    $ I_t=I_0+A_1 \exp \left(-t / \tau_1\right)+A_2 \exp \left(-t / \tau_2\right) $

    (5)

    图 6

    图 6.  CLGO∶xEu3+(x=0.1~0.6)的荧光寿命图
    Figure 6.  Fluorescence lifetime plots for CLGO∶xEu3+ (x=0.1-0.6)

    其中,I0It分别表示初始时刻和t时刻的荧光强度,A1A2为常数,τ1τ2为衰减寿命。根据公式6计算平均寿命(τavg),结果如表 1所示,随着Eu3+浓度的不断增加,样品的荧光寿命也随之逐渐减小。

    $ \tau_{\text {avg }}=\frac{A_1 \tau_1^2+A_2 \tau_2^2}{A_1 \tau_1+A_2 \tau_2} $

    (6)

    表 1

    表 1  CLGO: xEu3+的荧光寿命数据
    Table 1.  Fluorescence lifetime data of CLGO∶xEu3+
    下载: 导出CSV
    x A1 τ1 / ms A2 τ2 / ms τavg / ms
    0.1 0.550 2 1.479 4 0.550 2 1.479 4 1.479 4
    0.2 0.053 8 0.135 4 1.032 6 1.298 4 1.292 1
    0.3 0.145 7 0.050 7 1.012 7 1.034 5 1.027 6
    0.4 0.167 4 0.108 7 0.959 6 0.732 3 0.716 6
    0.5 0.405 1 0.042 3 1.008 2 0.322 6 0.308 6
    0.6 0.723 8 0.112 2 0.654 3 0.221 5 0.182 2

    图 7为CLGO∶0.3Eu3+在392 nm激发下不同温度的光致发光图。结果表明,随着温度的不断增加其发光强度呈现单调递减趋势,这是由于随着温度的不断升高,晶格振动增强,导致激活离子非辐射跃迁增加,从而使发光强度降低。

    图 7

    图 7.  CLGO∶0.3Eu3+变温等高线图
    Figure 7.  Contour map of CLGO∶0.3Eu3+ temperature variatio

    图 8a为在不同温度下测得的光谱数据归一化后与常温下发光强度的占比情况,从图中可以看出在498 K时该样品的荧光强度仍保持在75%左右,说明该荧光粉具有优异的热稳定性,优于目前所报道的Sr9In(VO4)7xEu3+(423 K时为室温的62%)[39]、Gd(BO2)3-Y3BO6-GdBO3∶Eu3+(423 K时为室温的52.8%)[40]、La1.55(1-x)SiO4.33xEu3+(483 K时为室温的50%)[41],为了进一步研究CLGO∶0.3Eu3+的热稳定性,利用Arrhenius方程[42-43]计算其激活能(ΔE),公式如下:

    $ I_T=\frac{I_0}{1+A \exp \left[-\Delta E /\left(k_{\mathrm{B}} T\right)\right]} $

    (7)

    $ \ln \left(\frac{I_0}{I_T}-1\right)=\ln A-\frac{\Delta E}{k_{\mathrm{B}} T} $

    (8)

    图 8

    图 8.  CLGO∶0.3Eu3+的(a) 变温荧光柱状图及(b) ln(I0/I-1)与1/(kBT)线性拟合图
    Figure 8.  (a) Variable-temperature fluorescence histograms and (b) linear fit plots of ln(I0/I-1) and 1/(kBT) of CLGO∶0.3Eu3+

    式中I0IT为298 K和实验温度(T)下的发光强度,A为常数,kB为玻尔兹曼常数。如图 8b所示,通过线性拟合得到其斜率为-0.151 3,因此CLGO∶0.3Eu3+的激活能为0.151 3 eV。

    荧光材料的色坐标和色纯度作为衡量荧光材料的重要指标。通常利用1931 CIE色度图计算荧光材料的CIE坐标,如图 9所示,其色纯度(CP)通常用公式9计算[44]

    $ \mathrm{CP}=\sqrt{\frac{\left(X-X_{\mathrm{i}}\right)^2+\left(Y-Y_{\mathrm{i}}\right)^2}{\left(X_{\mathrm{d}}-X_{\mathrm{i}}\right)^2+\left(Y_{\mathrm{d}}-Y_{\mathrm{i}}\right)^2}} \times 100 \% $

    (9)

    图 9

    图 9.  CLGO∶xEu3+(x=0.1~0.6)的色坐标
    Figure 9.  Chromatic coordinates of CLGO∶xEu3+ (x=0.1-0.6)

    式中,(XY)与(XiYi)分别为荧光材料的色坐标和理想白光色坐标,而主波长下的色坐标则用(XdYd)表示,计算可得CLGO∶0.3Eu3+的色纯度为96.3%,相关色温(CCT)可以用式1011计算[45],结果如表 2所示。

    $ n=(X-0.332) /(Y-0.186) $

    (10)

    $ {\text { CCT }}=-449 n^3+3\;525 n^2-6\;823.3 n+5\;520.33 $

    (11)

    表 2

    表 2  1931 CIE色坐标计算结果
    Table 2.  1931 CIE color coordinate calculation results
    下载: 导出CSV
    x X Y T / K
    0.1 0.566 12 0.367 14 1 620.45
    0.2 0.601 49 0.361 75 1 726.97
    0.3 0.612 99 0.359 36 1 809.56
    0.4 0.596 93 0.359 58 1 721.22
    0.5 0.574 29 0.360 60 1 639.90
    0.6 0.530 79 0.361 58 1 661.69

    采用高温固相法成功制备出一种新型橄榄石结构CaLaGaO4∶Eu3+红色荧光粉,CLGO∶0.3Eu3+由尺寸大小不一、形状不规则的微米颗粒组成,颗粒尺寸为1~5 μm;漫反射结果显示,Eu3+成功掺入CLGO基晶体结构中,其带隙Eg=3.44 eV;荧光光谱结果表明,在392 nm光激发下,该系列荧光粉在609 nm处展现极强的红光发射,在Eu3+浓度达到0.3时,出现明显的浓度猝灭现象,该现象则是由于Eu3+离子之间多极子相互作用所致;该样品展现出较强的热稳定性,在498 K时荧光强度仍保持在室温的75%左右;其色坐标与标准红光坐标(0.670,0.330)较为接近,色纯度高达96.3%。


    1. [1]

      Li Y Y, Li H Y, Li Y, Li D J, Xie J X, Ma H Y, Qu H Q, Xu J Z, Han Y Y, Wang L Y. Structure, properties and application of Eu3+ doped bismuth molybdate red-emitting phosphor synthesized by sol-gel method[J]. Opt. Mater., 2023, 144:  114336. doi: 10.1016/j.optmat.2023.114336

    2. [2]

      Panda R, Behera M, Kumar R A, Joshi D, Padhi R. Luminescence studies of high color purity red-emitting CaAl4O7∶Eu3+ phosphor prepared by microwave-assisted synthesis technique[J]. J. Alloy. Compd., 2023, 968:  171879. doi: 10.1016/j.jallcom.2023.171879

    3. [3]

      Ding R, Chen Y M, Wang H G, Li W F, Su Y H, Sheng Y, An X Y, Liu L N, Li C. Study on structural luminescence characteristics of a new Dy3+ activated white luminescent phosphor[J]. Phys. B, 2024, 690:  416281. doi: 10.1016/j.physb.2024.416281

    4. [4]

      Hu S A, Liu B, Yang Y G, Du Q, Zhang Y Y, Yu H J, Qiu C C, Wang X P, Li Q G, Wang J Y. Preparation and luminescence characteristics of Bi3+ doped BaLaGa3O7 phosphors[J]. Opt. Mater., 2023, 143:  114220. doi: 10.1016/j.optmat.2023.114220

    5. [5]

      Guo H, Zheng Y L, Shi T N, Qin Z Y, Zhao G Y, Liu Y F, Zhang G H, Wu D H, Dong L P, Hou J S, Fang Y Z. Preparation and photoluminescence properties of high thermal stability Sr3Ga2Sn1.5Si2.5O14∶Eu3+ red phosphors for high-power light-emitting diodes application[J]. Opt. Mater., 2023, 20:  100264.

    6. [6]

      Maske R T, Yerpude A N, Dhoble S J. Wet chemical synthesis of Sm3+ doped Ca10(PO4)6Cl2 phosphor for w-LED application[J]. Mater. Lett: X, 2023, 19:  100214.

    7. [7]

      Santra A, Das A, Murmu S, Ghorai U K. BaTiO3∶Sm3+ nanophosphor with K+ ion incorporation for modulating non-radiative transitions[J]. J. Indian Chem. Soc., 2023, 100:  101071. doi: 10.1016/j.jics.2023.101071

    8. [8]

      Kong Y C, Chen S R, Deng S W, He J, Li X S, Zhou J C. Thiogallate phosphor for white LEDs with water resistance and green light-emitting capability[J]. J. Lumin., 2023, 263:  120096. doi: 10.1016/j.jlumin.2023.120096

    9. [9]

      Wei C, Zhang J, Sun Z, Ran J Y, Li S, Zhu S, Jiang C, Wen Y J, Ran S Q. Na5Y(MoO4)4∶Sm3+ red phosphor with good thermal stability and high color rendering index for plant growth lighting and white light emitting diodes[J]. J. Alloy. Compd., 2024, 991:  174428. doi: 10.1016/j.jallcom.2024.174428

    10. [10]

      Behera M, Panda R, Kumar R, Mishra N K, Kumar K, Monte T D. Microwave-assisted combustion synthesis and characterization studies of novel dysprosium doped yttrium calcium borate (Dy3+∶Y2CaB10O19) phosphor materials for efficient white light applications[J]. Ceram. Int., 2024, 50(11):  18146-18156. doi: 10.1016/j.ceramint.2024.02.298

    11. [11]

      Zhang X J, Zhang Z Q, Feng Y M, Yuan H L, Wang G L. Luminescence performance of bismuth-activated Ba3Lu2B6O15 phosphors[J]. J. Mol. Struct., 2023, 1294:  136523. doi: 10.1016/j.molstruc.2023.136523

    12. [12]

      Xu S, Zhu D Y, Gong D L, Wu F, Dong H F, Mu Z F. Study on the structure and luminescence properties of a novel Li3Sc2(PO4)3∶Eu3+ orange-red emission phosphor for LEDs[J]. Opt. Mater., 2023, 143:  114239. doi: 10.1016/j.optmat.2023.114239

    13. [13]

      Rohilla P, Rao A S. Energy transfer induced color tunable photoluminescence performance of thermally stable Sm3+/Eu3+ co-doped Ba3MoTiO8 phosphors for white LED applications[J]. J. Mater. Sci., 2023, 34(23):  1662-1681.

    14. [14]

      Deng M L, Huang S, Sun Y, Wang Y N, Yan Y, Shang M M. A novel broad-band red K2MgSiO4∶Eu2+ phosphor and defect-induced tunable emission from red to yellow[J]. J. Lumin., 2023, 263:  120137. doi: 10.1016/j.jlumin.2023.120137

    15. [15]

      Tang H, Li H, Song R T, Yang Z Q, Zhao R, Guo Z W, Li J P, Wang B, Zhu J. Highly thermostable Ba2Ln2Ge4O13∶Dy3+ (Ln=Y, Gd) phosphors: Synthesis and optical properties[J]. Ceram. Int., 2023, 49(19):  31898-31906. doi: 10.1016/j.ceramint.2023.07.152

    16. [16]

      Linghu P, Gong X Y, Zhang J, Cui R R, Guo X. A novel red BaLaInO4∶Eu3+ phosphor for WLEDs[J]. J. Solid State Chem., 2023, 327:  124282. doi: 10.1016/j.jssc.2023.124282

    17. [17]

      Deepali , Jayasimhadri M. UV-excited blue- to green-emitting Tb3+-activated sodium calcium metasilicate color tunable phosphor for luminescence devices[J]. Luminescence, 2022, 37(9):  1465-1474. doi: 10.1002/bio.4319

    18. [18]

      Zou L Y, Yang N, Zhang Z W, Chen J, Shi J X. Improving the quality of red light emitting from Eu3+ by Co-doping Tb3+ in LuBa3(BO3)3[J]. Opt. Mater., 2023, 143:  114199. doi: 10.1016/j.optmat.2023.114199

    19. [19]

      Ruan F Y, Fan G D, Li N, Zhou J F, Li Y, Fan D, Chen Q Q, Lin Z Y. Charge compensation effect of alkali metal ions on luminescence enhancement and negative thermal quenching of Sr1-xLaNaTeO6xEu3+ red phosphors[J]. Ceram. Int., 2024, 50(8):  12866-12876. doi: 10.1016/j.ceramint.2024.01.194

    20. [20]

      Li J Y, Chen X Y, Gao D, Zhang M X, Zhang M K, Wang S Y, Liu X, Yu R J. A novel fluorapatite-type deep-red CsSr3La(PO4)3F∶Eu3+ phosphor with intense 5D0-7F4 transition for temperature sensors, plant growth lighting, and w-LEDs[J]. J. Lumin., 2024, 275:  120761. doi: 10.1016/j.jlumin.2024.120761

    21. [21]

      Xie F Y, Gu J Q, Zhong S L, Zhang P L, Wen Y H, Li Y N, Xu H L, Yao S Y, Zhang Q H, Li J H. A competitive trivalent-europium-activated phosphor: Achieving highly efficient red light emission in a sodium-rich garnet host[J]. Mater. Today Chem., 2024, 37:  102019. doi: 10.1016/j.mtchem.2024.102019

    22. [22]

      Lee T Y, Park Y, Jeon H. Resonant cavity phosphor[J]. Nat. Commun., 2023, 14(1):  6661-6669. doi: 10.1038/s41467-023-42296-1

    23. [23]

      Salazar-Medina A J, Navarro R E, Santacruz-O H, Orozco-Valencia A U, Lopez-Esquivel R I, Soberanes Y, Salas-Juarez C J. Luminescence properties of Eu3+ complexes based on macrocyclic ligands and its colorimetric analysis for white warm phosphor[J]. Opt. Quantum Electron., 2024, 56(6):  1064-1082. doi: 10.1007/s11082-024-07013-2

    24. [24]

      Kumar P, Singh D, Gupta I. UV excitable GdSr2AlO5∶Eu3+ red emitting nanophosphors: Structure refinement, photoluminescence, Judd-Ofelt analysis and thermal stability for w-LEDs[J]. J. Alloy. Compd., 2023, 966:  171410. doi: 10.1016/j.jallcom.2023.171410

    25. [25]

      Jiang Z L, Hu T, Men F C, Yang H, Lv W, Wen D W, Zeng Q G, Gao Y. An efficient and thermally stable red emitting Eu2+ doped oxide for rechargeable portable flashlight[J]. Chem. Eng. J., 2024, 482:  149086. doi: 10.1016/j.cej.2024.149086

    26. [26]

      Hu T, Jiang Z L, Wang B, Yu T, Wen D W, Zeng Q G, Gao Y. Eu2+ luminescence in CaYGaO4 olivine: A new efficient red phosphor for warm illumination[J]. J. Mater. Chem. C, 2023, 11(6):  2153-2161. doi: 10.1039/D2TC04585K

    27. [27]

      Chi F F, Liu Q, Zhang J R, Jiang B, Niu X H, Liu S L. Energy transfer and photoluminescence properties of CaYGaO4∶Bi3+, Tb3+ phosphors[J]. Opt. Mater., 2023, 143:  114245. doi: 10.1016/j.optmat.2023.114245

    28. [28]

      Gai S J, Gao P X, Ken K, Tang C Z, Zhao Y Y, Wei J Q, Zhang Y, Molokeev M S, Xia M, Zhou Z. Superior quantum efficiency blue-emitting phosphors with high thermal stability toward multipurpose LED applications[J]. Adv. Opt. Mater., 2024, 12(14):  2302870. doi: 10.1002/adom.202302870

    29. [29]

      Qiu Y F, Cui R R, Zhang J, Deng C Y. A novel Eu3+‑doped SrLaGaO4 red phosphor with high efficiency and color purity for WLED applications[J]. J. Solid State Chem., 2023, 327:  124265. doi: 10.1016/j.jssc.2023.124265

    30. [30]

      Voiculescu A M, Hau S, Stanciu G, Cheorghe C. Effects of Eu3+ concentration on the thermoluminescence properties of narrow-band red-emitting Eu3+∶SrLaGaO4 phosphor[J]. J. Alloy. Compd., 2023, 958:  170507. doi: 10.1016/j.jallcom.2023.170507

    31. [31]

      Guo H J, Chen Y Q, Wang L, Shi Q F, Cui C, Huang P, Qiao J W. Utilizing diametrically opposite thermal quenching luminescence to achieve highly sensitive temperature measurement and anti-counterfeiting[J]. Inorg. Chem. Front., 2024, 11(3):  799-807. doi: 10.1039/D3QI02063K

    32. [32]

      Xu S, Zhu D Y, Wu F G, Dong H F, Zhang X, Pang W, Mu Z F. High quantum efficiency and excellent thermal stability in Eu3+-activated CaY2ZrGaAl3O12 phosphors for LEDs[J]. Opt. Mater., 2024, 150:  115284. doi: 10.1016/j.optmat.2024.115284

    33. [33]

      Park J Y, Jung J Y, Yang H K. Development of reddish orange-emitting Y2Sn2O7∶Eu3+phosphors for latent fingerprint detection and anti-counterfeit security ink[J]. Mater. Res. Bull., 2024, 175:  112756. doi: 10.1016/j.materresbull.2024.112756

    34. [34]

      Peng X Y, Guo X, Cui R R, Lin-hu P, Zhang J, Deng C Y. Novel orange-red phosphor BaLaGaO4: Sm3+ with high quantum efficiency and good thermal stability for indoor illumination and anti-counterfeiting ink applications[J]. Ceram. Int., 2024, 50(17):  30111-30123. doi: 10.1016/j.ceramint.2024.05.310

    35. [35]

      Vasanthi B, Gopakumar N, Anjana P S. Thermally stable and red emitting bismuth ions sensitized SrGa2O4∶Eu3+ phosphors for phosphor-converted WLED applications[J]. Solid State Sci., 2024, 151:  107526. doi: 10.1016/j.solidstatesciences.2024.107526

    36. [36]

      Zuo C Y, Chen R J, Jiang X L, Yang Y M, Li C L, Yang W L, Lin H, Liu L N, Li S S, Zeng F M, Su Z M. Effect of ion occupancy and Li+ ion doping on luminescence characteristics of CaLaGaO4∶Bi3+ blue phosphor[J]. Ceram. Int., 2024, 50:  29580-29589. doi: 10.1016/j.ceramint.2024.05.253

    37. [37]

      Cao J L, Ren Q, Ou H. Colour tunable Ca3Y2Ge3O12∶Tb3+, Eu3+ phosphors with high quantum yield for white LED applications[J]. Ceram. Int., 2024, 50(9):  15668-15676. doi: 10.1016/j.ceramint.2024.02.047

    38. [38]

      Yang S W, Wu M, He C, Wu Y P, Zhang Y J, Yu J J. High quantum efficiency blue phosphor K2SrCa(PO4)2∶Eu2+ for plant growth[J]. J. Alloy. Compd., 2024, 989:  174295-174305. doi: 10.1016/j.jallcom.2024.174295

    39. [39]

      Kong J J, Wang Y J, Tong W M, Li L F, Xu Y, Chen N M, Liu N J. Highly efficient cyan-red emission in self-activated Sr9In(VO4)7xEu3+ phosphors for applications in W-LEDs and optical thermometry[J]. J. Alloy. Compd., 2024, 983:  173936. doi: 10.1016/j.jallcom.2024.173936

    40. [40]

      Tran M T, Van Quang N, Huyen N T, Tu N, Du N V, Trung D Q, Tuan N T, Hung N D, Viet D X, Tung D T, Kien N D T, Tam T T H, Huy P T. High quantum efficiency and excellent color purity of red-emitting Eu3+-heavily doped Gd(BO2)3-Y3BO6-GdBO3 phosphors for NUV-pumped WLED applications[J]. RSC Adv., 2023, 13(36):  25069-25080. doi: 10.1039/D3RA03955B

    41. [41]

      Wu H, Zhang J, Jiang C, Zhai Z Y. Photoluminescence of Eu3+ in silicate-based phosphors by near-infrared and near-ultraviolet excitation for multifunctional applications[J]. Infrared Phys. Technol., 2023, 133:  104867. doi: 10.1016/j.infrared.2023.104867

    42. [42]

      Chen Y L, Wu H Y, Li Y M, Liu Z P, Wan J Y, Hu Y H. Synthesis of Sr2Ta2O7∶Eu3+ red phosphor and its luminescence characteristics[J]. J. Mater. Sci.: Mater. Electron., 2023, 34(24):  1740-1749. doi: 10.1007/s10854-023-11187-y

    43. [43]

      Ru J J, Zhao B, Zeng F, Guo F Y. Color tuning via energy transfer of K2Ba(MoO4)2∶Dy3+/Eu3+ phosphors with the thermal-stable property[J]. Bull. Mater. Sci., 2024, 47(2):  74-84. doi: 10.1007/s12034-023-03130-y

    44. [44]

      Sahu M, Sahu I P. Studies on the structural, thermal, and luminescence properties of Sr1-xZrSi2O7xEu3+ phosphors for solid-state lighting[J]. Appl. Phys. A, 2024, 130(5):  322-339. doi: 10.1007/s00339-024-07458-y

    45. [45]

      Wu X L, Wu Z, Ren Q, Hai O, Liu K X. Tuning of emission in BaLa1-x-yGa3O7xDy3+, yEu3+ by local symmetry effects for WLEDs[J]. Polyhedron, 2024, 256:  116995. doi: 10.1016/j.poly.2024.116995

  • 图 1  CLGO∶xEu3+(x=0.1~0.6)的(a) XRD图及(b) 对应30°~33°的放大图; (c) CLGO的晶胞结构图

    Figure 1  (a) XRD patterns of CLGO∶xEu3+ (x=0.1-0.6) and (b) enlarged patterns corresponding to 30°-33°; (c) Cell structure of CaLaGaO4

    图 2  CLGO∶0.3Eu3+样品的(a) 表面形貌和(b) 尺寸分布图

    Figure 2  (a) Surface morphology and (b) grain size distribution of CLGO∶0.3Eu3+ sample

    图 3  CLGO∶0.3Eu3+的[F(R)]2-曲线

    Figure 3  [F(R)]2- plot of CLGO∶0.3Eu3+

    Inset: UV-Vis diffuse reflectance spectrum.

    图 4  CLGO∶xEu3+(x=0.1~0.6)的(a) 激发和(b) 发射谱图

    Figure 4  (a) Excitation and (b) emission spectra of CLGO∶xEu3+ (x=0.1-0.6)

    图 5  Eu3+的能级跃迁图

    Figure 5  Energy level transition diagram of Eu3+

    图 6  CLGO∶xEu3+(x=0.1~0.6)的荧光寿命图

    Figure 6  Fluorescence lifetime plots for CLGO∶xEu3+ (x=0.1-0.6)

    图 7  CLGO∶0.3Eu3+变温等高线图

    Figure 7  Contour map of CLGO∶0.3Eu3+ temperature variatio

    图 8  CLGO∶0.3Eu3+的(a) 变温荧光柱状图及(b) ln(I0/I-1)与1/(kBT)线性拟合图

    Figure 8  (a) Variable-temperature fluorescence histograms and (b) linear fit plots of ln(I0/I-1) and 1/(kBT) of CLGO∶0.3Eu3+

    图 9  CLGO∶xEu3+(x=0.1~0.6)的色坐标

    Figure 9  Chromatic coordinates of CLGO∶xEu3+ (x=0.1-0.6)

    表 1  CLGO: xEu3+的荧光寿命数据

    Table 1.  Fluorescence lifetime data of CLGO∶xEu3+

    x A1 τ1 / ms A2 τ2 / ms τavg / ms
    0.1 0.550 2 1.479 4 0.550 2 1.479 4 1.479 4
    0.2 0.053 8 0.135 4 1.032 6 1.298 4 1.292 1
    0.3 0.145 7 0.050 7 1.012 7 1.034 5 1.027 6
    0.4 0.167 4 0.108 7 0.959 6 0.732 3 0.716 6
    0.5 0.405 1 0.042 3 1.008 2 0.322 6 0.308 6
    0.6 0.723 8 0.112 2 0.654 3 0.221 5 0.182 2
    下载: 导出CSV

    表 2  1931 CIE色坐标计算结果

    Table 2.  1931 CIE color coordinate calculation results

    x X Y T / K
    0.1 0.566 12 0.367 14 1 620.45
    0.2 0.601 49 0.361 75 1 726.97
    0.3 0.612 99 0.359 36 1 809.56
    0.4 0.596 93 0.359 58 1 721.22
    0.5 0.574 29 0.360 60 1 639.90
    0.6 0.530 79 0.361 58 1 661.69
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  38
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2024-10-10
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-09-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章