
Trip=2,4,6-iPr3-C6H3.
异核双金属配合物不仅具有原有单个金属的属性[1-4],其2个金属中心之间的协同作用[5-9]还可以影响各自固有的性质,使得该类配合物表现出独特的物理化学性质[10-13]。异核双金属配合物的合成和反应性研究受到了化学家们的重点关注[14-19],并且广泛应用于药物化学、合成化学和新型材料等领域。
锇是第六周期Ⅷ族过渡金属元素,具有大的原子半径和电子密度以及丰富多样的成键特性[20-25]。锇配合物可以作为模型分子用于探讨钌相似物催化反应的机理,模拟类似化学反应中可能存在的中间体[26]。锇配合物与生物DNA之间有较强的相互作用,使得该类配合物在抗肿瘤方面有重要用途[27]。此外,锇配合物还在材料方面有着广泛的用途。因此锇金属配合物的合成及相关性能的研究受到化学工作者的广泛关注[28-30]。近期相关国内学者报道了系列锗配合物的合成、反应性和应用示例,所以锗化学也是当今主族元素化学的研究重点之一[31-34]。但是,同时包含后过渡金属元素和锗元素的异核双金属配合物合成报道较少,而基于同一配体稳定的锇-锗双金属配合物则更为罕见,仅有作者关于系列锇-锗配合物的合成及反应性的少量相关报道[35]。因此,继续研究锇-锗双金属配合物的合成及考察相关化学性质,对于分析该类型配合物中锇-锗的协同效应,探讨这些配合物在合成催化材料和药学等领域的应用具有重要意义。
我们前期报道了系列锇-锗双金属配合物,其中配合物[OsGe(ArTrip)(PPh2-C6H4)(H)Cl](ArTrip=C6H3-2-(η6-Trip)-6-Trip,Trip=2,4,6-iPr3-C6H3)表现出新颖的化学反应性质。研究发现,在锇金属的影响下,该分子中的锗原子能够参与苯环上的C—H键活化,生成锗原子与PPh3上苯环碳原子键合环化的产物[32],表明锇-锗双金属配合物中2种金属不仅具有自身的化学成键特性,同时也能相互影响,与独立的单金属配合物在化学性质方面存在很大区别[36]。为了继续探究锇-锗双金属配合物可能的化学反应特性,我们研究了[OsGe(ArTrip)(PPh3)(H)Cl2] (1)的反应性,考察了配合物1分别与格氏试剂、锂试剂和质子酸的反应,合成并表征了锇-锗双金属配合物[OsGe(ArTrip)(PPh3)(H)Br2] (2)、[OsGe(ArTrip)(PPh3)(H)Et2] (3)和[OsGe(ArTrip)(PPh3)(H)2Cl2]BF4 (4),并探讨了配合物4的稳定性。这些工作能够为相关研究领域的化学工作者提供有用的信息,促进锇-锗双金属配合物的研究发展。
除另有说明外,所有实验均在室温下、氮气(或氩气)气氛中采用标准的Schlenk技术操作。乙醚(Et2O)、正己烷(CH3(CH2)4CH3)、甲苯(C6H5CH3)均为分析纯,用前在氮气氛中经钠-二苯甲酮除水后新蒸。二氯甲烷(CH2Cl2)为分析纯,用前经氢化钙除水后新蒸。LiHBEt3购自Sigma-Aldrich。EtMgBr购自百灵威。HBF4·Et2O购自Alfa-Aesar。配合物1按照相关文献[35]合成。
单晶X射线衍射结构分析在Rigaku R-Axis RAPID IP diffractomer上采集数据,采用石墨单色化的Mo Kα射线(λ=0.071 073 nm),电压50 kV,电流40 mA。全部强度数据均经过SADABS吸收校正。晶体结构由直接法解出。对全部非氢原子(除无序溶剂分子外)坐标及其各向异性热参数进行全矩阵最小二乘法修正(SHELXS-97程序包)。
1H、31P、19F、13C和1H-13C HSQC-NMR在Bruker AV400核磁共振仪(1H 400.13 MHz;13C 100.61 MHz;31P 161.97 MHz;19F 376.4 MHz)及Bruker AV500核磁共振仪(1H 500.17 MHz;13C 125.77 MHz;31P 202.47 MHz)上测试。1H NMR、13C{1H} NMR采用TMS定标,31P{1H} NMR采用85% H3PO4定标,19F{1H} NMR采用CFCl3定标,如无特别说明,操作温度为298 K。
元素分析(EA)在Thermo Quest Italia S.P.A. EA1110元素分析仪上进行。
向Schlenk瓶中加入10 mL甲苯和配合物1(200 mg,0.185 mmol),冷却至-78 ℃,随后向Schlenk瓶中溶液缓慢加入EtMgBr(0.13 mL,0.389 mmol),于-78 ℃反应1 h,再缓慢升至室温过夜。加入水(7 μL,0.389 mmol)猝灭生成的EtMgCl,过滤除去盐类,再浓缩甲苯至近干,加入3 mL正己烷析出沉淀。用3 mL已用冰浴冷却的正己烷洗涤固体2次,得到黄色产物192 mg,产率89%。晶体培养:室温下将配合物2溶于甲苯并抽除部分溶剂以形成饱和溶液,置于Schlenk瓶中,然后缓慢滴加入正己烷分层,室温下静置1周生成黄色块状晶体。元素分析(C54H65GeBr2OsP)计算值(%):C,55.54;H,5.61。实验值(%):C,55.82;H,5.47。1H NMR(500 MHz,C6D6,298 K):δ 8.00~6.90(m,20H,C6H3,C6H2,C6H5,PPh3),5.88(s,1H,C6H2),4.89(s,1H,C6H2),3.35(sept,3JHH=6.6 Hz,1H),2.87(sept,3JHH=6.6 Hz,2H),2.44(sept,3JHH=6.6 Hz,1H),2.18(sept,3JHH=6.6 Hz,1H),1.94(sept,3JHH=6.6 Hz,1H)(CHMe2),1.72(d,3JHH=6.6 Hz,3H),1.54(t,3JHH=6.6 Hz,6H),1.27(d,3JHH=6.6 Hz,6H),1.20(d,3JHH=6.6 Hz,3H),1.17(d,3JHH=6.6 Hz,3H),0.86(d,3JHH=6.6 Hz,3H),0.82(d,3JHH=6.6 Hz,3H),0.79(d,3JHH=6.6 Hz,3H),0.75(d,3JHH=6.6 Hz,3H),0.48(d,3JHH=6.6 Hz,3H)(CHMe2),-10.82(d,2JPH=38.4 Hz,1H)(Os—H)。31P{1H} NMR(202 MHz,C6D6):δ 15.9(s,PPh3)。13C{1H} NMR(125 MHz,C6D6,298 K):δ 162.4, 148.4, 147.9, 147.7,147.3,146.9,139.6,139.2,138.8, 136.6,136.4,136.2,134.2,134.1,133.7,132.5,132.4, 131.6,129.6,129.3,128.6,127.5,125.8,125.6,120.9,120.7,120.1,119.9,111.1,103.8,99.3,81.4,74.0(C6H3,C6H2,PPh3),34.9,31.6,31.4,30.0,28.9,26.9,26.7,26.1,25.4,24.6,24.4,24.3,23.8,23.0,22.5,22.1,21.5(CHMe2)。
方法一:向Schlenk瓶中加入10 mL甲苯和配合物2(200 mg,0.171 mmol),冷却至-78 ℃,随后向Schlenk瓶中溶液缓慢加入EtMgBr(0.12 mL,0.36 mmol),于-78 ℃反应1 h,再缓慢升至室温过夜,然后在60 ℃继续搅拌2 h。过滤除去盐类,再浓缩甲苯至近干,加入3 mL正己烷使其析出沉淀。后续用3 mL冰浴冷却的正己烷洗涤固体2次,得到黄色产物114 mg,产率63%。方法二:向Schlenk瓶中加入10 mL甲苯和配合物1(200 mg,0.185 mmol),冷却至-78 ℃。向Schlenk瓶中溶液缓慢加入LiHBEt3(0.38 mL,0.38 mmol),于-78 ℃反应1 h,再缓慢升至室温过夜,然后60 ℃继续搅拌2 h。过滤,浓缩甲苯至近干,加入3 mL正己烷使其析出沉淀。后续用3 mL冰冻的正己烷洗涤固体2次,得到黄色产物110 mg,产率56%。该配合物未手性分离。元素分析(C58H75GeOsP)计算值(%):C,65.35;H,7.09。实验值(%):C,65.72;H,7.27。1H NMR(500 MHz,C6D6,298 K):δ 7.79~6.93(m,18H,C6H3,C6H2,PPh3),5.62(s,1H,C6H2),4.94(s,1H,C6H2),3.01(sept,3JHH=6.6 Hz,1H),2.84(sept,3JHH=6.6 Hz,2H),2.76(sept,3JHH=6.6 Hz,1H),2.48(sept,3JHH=6.6 Hz,1H),1.65(d,3JHH=6.6 Hz,3H)(CHMe2),1.54(sept,3JHH=6.6 Hz,1H)(CHMe2),1.48(t,3JHH=6.6 Hz,6H),1.38(d,3JHH=6.6 Hz,6H),1.25(d,3JHH=6.6 Hz,6H),1.17(d,3JHH=6.6 Hz,3H)(CHMe2),1.15(d,3JHH=7.2 Hz,4H)(CH2CH3),1.10(d,3JHH=6.6 Hz,6H)(CHMe2),0.97(t,3JHH=7.2 Hz,3H)(CH2CH3),0.88(d,3JHH=6.6 Hz,3H),0.71(d,3JHH=6.6 Hz,3H)(CHMe2),0.04(t,3JHH=7.2 Hz,3H)(CH2CH3),-12.12(d,2JPH=48.7 Hz,1H)(Os—H)。31P{1H} NMR(202 MHz,C6D6):δ 15.4(s,PPh3)。13C{1H} NMR(125 MHz,C6D6,298 K):δ 164.2,148.1,147.5,147.4,146.8,143.7,141.4, 141.0,134.7,134.6,131.8,129.1,127.4,127.3,126.9, 125.1,120.5,120.3,106.6,103.9,103.8,100.1,100.0,78.2,69.5(C6H3,C6H2,PPh3),34.9,31.2,30.0,29.5, 29.2, 27.3, 26.7,26.6,24.7,24.3,24.2,23.2,22.4,22.3,21.8,14.1,12.1,10.5(CMe,CHMe2,GeCH2CH3)。
向Schlenk瓶中加入10 mL二氯甲烷和配合物1(200 mg,0.185 mmol),然后加入HBF4·Et2O(56 μL,0.37 mmol),室温下搅拌1 h,溶液变为灰色。浓缩二氯甲烷至近干,加入5 mL乙醚析出沉淀,用砂芯过滤,随后用5 mL乙醚洗涤沉淀2次,得到白色产物207 mg,产率96%。晶体培养:室温下将配合物4溶于二氯甲烷中,抽去部分溶剂以形成饱和溶液,置于Schlenk瓶中,然后缓慢滴加入乙醚分层,于0 ℃冰箱中静置3 d,生成无色块状晶体。元素分析(C54H66BCl2F4GeOsP)计算值(%):C,55.59;H,5.70。实验值(%):C,55.73;H,5.44。1H NMR(400 MHz,CD2Cl2,298 K):δ 7.77~7.36(m,18H,C6H3,PPh3),6.99(s, 2H,C6H2),6.29(s,2H,C6H2),2.91(sept,3JHH=6.8 Hz,1H),2.40(sept,3JHH=6.8 Hz,4H)(CHMe2),1.49(d,3JHH=6.8 Hz, 6H)(CHMe2), 1.46(sept, 3JHH=6.8 Hz, 1H)(CHMe2), 1.41(d,3JHH=6.8 Hz,6H), 1.27(d,3JHH=6.8 Hz,6H),1.19(d,3JHH=6.5 Hz, 6H), 0.92(t, 3JHH=6.8 Hz, 12H)(CHMe2),-11.86(d,2JPH=29.6 Hz,2H)(Os—H)。31P{1H} NMR(162 MHz,CH2Cl2):δ 9.5(s,PPh3)。19F{1H} NMR(376 MHz,CD2Cl2):δ -160.9(s,BF4)。13C{1H} NMR(100 MHz,CD2Cl2,298 K):δ 160.3,149.4,148.5,147.1,138.9, 135.5,134.1,134.0,133.9,133.6,133.2,132.5,131.2, 129.34, 129.27, 129.2, 128.5, 125.7,125.6,125.4,120.5,86.1(C6H3,C6H2,PPh3),34.5,31.5,31.4,30.5,26.2,24.8,24.1,22.3,22.1(CHMe2)。
在前期的探索中,我们发现锇配合物[OsGe (ArTrip)(PPh3)(H)Cl2] (1)不与PMe3、DMSO等Lewis碱发生配体取代反应,说明锇原子的电子密度对该配合物的化学性质和稳定性产生较大影响[24, 37]。为了探究本系列锇-锗双金属配合物的可能反应性质[38-39],我们考察了配合物1与EtMgBr、LiHBEt3的反应,试图消除配合物1上的氢原子和氯原子,预期得到锇-锗双键配合物。核磁管中的反应结果显示,配合物1与EtMgBr在低温下生成单一产物,经表征其结构为锇-锗双金属配合物[OsGe(ArTrip)(PPh3)(H)Br2] (2),产率89%,其中溴原子取代了氯原子与锗原子成键(Scheme 1)。配合物2与2倍(物质的量,下同)的EtMgBr经加热至60 ℃继续反应2 h,生成了乙基取代溴原子与锗成键的锇-锗双金属配合物[OsGe(ArTrip)(PPh3)(H)Et2] (3),产率63%(Scheme 1)。另外,配合物3也可以由1与LiHBEt3反应直接生成。这是首次在锇-锗双金属配合物中实现锗原子上Cl/Br、Br/Et或Cl/Et基团的取代反应,同时也说明配合物2和3中的锗原子受到锇原子的影响,其电子性质已发生明显改变,其Lewis酸性弱于碱土金属镁和非金属硼,更倾向于与Lewis弱碱(Br-和Et)结合,其中配合物2可以作为自由基配合物前体参与作用。
配合物2经单晶X射线衍射表征为溴原子取代的新型锇-锗双金属配合物,其晶体结构如图 2所示,部分键长键角见表 1。与配合物1结构类似,配合物2以锇原子中心是经典的三角钢琴架结构,以锗原子为中心则是四面体构型。在配合物2的晶体中,Os—Ge键长为0.241 0(5) nm,与配合物1中的相关键长(0.240 6(2) nm)相近[35],而锇原子与苯环各个碳原子之间的键长分布为0.221 1(1)~0.232 4(9) nm,与其他苯基配位的锇配合物键长相当,说明其主体骨架未发生明显改变。而Os—P键长为0.231 5(2) nm,比配合物Os(SnMe3)(η2-S2CNMe2)(CO)(PPh3)2中的Os—P键长(0.236 3(2)、0.238 7(9) nm)[40]略短。配合物2中的Ge—Br键长分别为0.236 0(8)、0.235 3(2) nm,和其他类似过渡金属配合物中的相关键长(0.236 6(3)、0.237 6(0) nm)相比略短[36],且锇配合物1、2中的Ge—X键增加值较小,可能原因是锇原子中心相对较大的电子密度增强了对电子的吸引作用,从而影响了溴原子转移较多电子至Ge—Br键,使得该键长变短。配合物2的核磁谱图与其固态结构一致,31P{1H}谱(图S1,Supporting information)和1H NMR谱(图S2)的信号能够分别指征该配合物的特征组成和立体结构。
Bond | 1[32] | 2 | 4 |
M—Ge | 0.240 6(2) | 0.241 0(5) | 0.241 6(7) |
M—P | 0.231 3(9) | 0.231 5(2) | 0.232 5(4) |
Ge—C | 0.198 4(5) | 0.199 9(8) | 0.197 7(6) |
Ge—X1 | 0.221 5(6) | 0.236 1(5) | 0.211 5(6) |
Ge—X2 | 0.220 7(6) | 0.235 3(2) | 0.215 3(5) |
Ge—M—P | 95.6(9) | 96.7(2) | 106.7(5) |
C—Ge—M | 106.0(1) | 106.4(2) | 105.1(3) |
我们尝试各类方法培养配合物3的晶体,但都未能成功。31P{1H} NMR谱(图S5)和1H NMR谱(图S6)中的信号表明配合物3与配合物2结构类似。结合二维核磁数据指认,氢谱中δ=1.15处的双重峰和0.97、0.04处的2个三重峰,归属为锗上的乙基氢信号。13C{1H} NMR谱(图S7)中δ=78.2(s)、69.5(s)处的2个单峰信号,归属为与锇配位苯环上的2个不饱和碳信号。在δ=14.1处的单峰和δ=12.1、10.5处的2个单峰,归属为配合物3中锗原子上的乙基碳信号。这一数据与钌类似物[RuGe(ArTrip)Et2(PPh3)(H)]的核磁信号(1H:δ=0.07、1.03、0.86;13C{1H}:δ=0.86、1.03、0.07)相似[35],同时配合物3的原子氢信号以及膦配体信号与配合物1、2比对存在明显区别。根据钌、锇配合物的相似化学性质,结合核磁数据结果,基本可以判定配合物3为钌配合物的类似物。
经过尝试发现,配合物1与常见的不饱和炔烃(苯乙炔、二苯乙炔等)均不反应,可能是由于锇原子中心处于18电子饱和状态从而具有化学反应惰性,但配合物1与AgBF4反应的核磁谱图显示结果较为混乱,说明此类配合物存在还原消除的可能性。据文献报道,部分锇配合物能够与质子酸HBF4发生加成反应,生成双氢原子配位或者氢分子配位的加成产物,也有部分配合物能够与HBF4发生消除反应,脱去一分子氢气,生成相应的还原消除产物[41-43]。所以我们也尝试了配合物1与质子酸的反应,监测核磁管中反应发现,配合物1与HCl在室温下的反应比较混乱。室温下将配合物1与1倍的HBF4反应,经处理后可得到单一产物配合物4,为双原子氢配位的离子型锇-锗双金属配合物[OsGe(ArTrip)(PPh3)(H)2Cl2]BF4,产率为96%(Scheme 2)。该配合物不稳定,室温下与1倍的H2O作用,可消除一分子HBF4而转化成配合物1。这表明分子内协同作用的锗原子和芳基配体增强了该类型双金属配合物的水耐受性,表现出与常见单中心锗配合物明显不同的化学性质。
我们成功培养出配合物4的晶体,其分子结构如图 3所示,部分键长键角见表 1。经晶体数据解析,配合物4分子为面对称,三苯基膦配体处于分子的对称面上,其晶体中Os—Ge键长为0.241 6(7) nm,与配合物1、2中的相关键长接近,说明锇原子与锗原子之间存在键合作用,同时推测锇原子中心为七配位,在锇原子左右各有一个原子氢配位。配合物4中Ge—M—P键角(106.7(5)°)与其他相关配合物存在明显区别,确定其分子组成和结构与其他已报道的锇-锗配合物存在明显不同。
配合物4的核磁谱图以及元素分析数据也支持这一结论。室温下,31P{1H} NMR谱(图S9)、19F{1H} NMR谱(图S10)和1H NMR谱(图S11)信号表明配合物4的主体结构框架与其他配合物相似。配合物1中氢原子的耦合常数为2JPH=37.8 Hz,与配合物4存在明显区别,说明配合物4中锇原子配位环境不同,结合单晶数据推断其分子内存在2个氢原子与锇原子成键,确定该配合物包含双原子氢与锇配位的结构。
我们探索了配合物[OsGe(ArTrip)(PPh3)(H)Cl2] (1)的取代反应性质,其与2倍的EtMgBr反应生成了溴原子取代氯原子与锗成键的锇-锗双金属配合物[OsGe(ArTrip)(PPh3)(H)Br2] (2),与2倍的EtMgBr于60 ℃下继续反应可得到乙基取代溴原子与锗成键的锇-锗双金属配合物[OsGe(ArTrip)(PPh3)(H)Et2] (3),配合物3也能通过配合物1与LiHBEt3直接反应得到。配合物1与HBF4反应能够生成双原子氢与锇原子配位的加成产物[OsGe(ArTrip)(PPh3)(H)2Cl2]BF4 (4),配合物4不稳定,在室温下与1倍的H2O作用可转化成配合物1。本研究表明,不同核心金属元素的改变也能影响到分子整体成键特性和结构稳定性。
Supporting information is available at
Xue W X, Zhu Z W, Chen S X, You B, Tang C H. Atomically dispersed Co-N/C catalyst for divergent synthesis of nitrogen-containing compounds from alkenes[J]. J. Am. Chem. Soc., 2023, 145(7): 4142-4149. doi: 10.1021/jacs.2c12344
Kushch N D, Kazakova A V, Dubrovskii A D, Shilov G V, Buravov L, Morgunov R B, Kurganova E V, Tanimoto Y, Yagubskii E B. Molecular magnetic semiconductors formed by cationic and anionic networks: (ET)2Mn[N(CN)2]3 and (ET)2CuMn[N(CN)2]4[J]. J. Mater. Chem., 2007, 17(41): 4407-4413. doi: 10.1039/b706129c
Zou X Y, Li A, Ma C, Gao Z, Zhou B W, Zhu L, Huang Z. Nitrogen-doped carbon confined Cu-Ag bimetals for efficient electroreduction of CO2 to high-order products[J]. Chem. Eng. J., 2023, 468: 143606. doi: 10.1016/j.cej.2023.143606
Cordero-Borboa A E, Sterling-Black E, Gómez-Cortés A, Vázquez-Zavala A. X-ray diffraction evidence of the single solid solution character of bi-metallic Pt-Pd catalyst particles on an amorphous SiO2 substrate[J]. Appl. Surf. Sci., 2003, 220(1/2/3/4): 169-174.
Fu F L, Cheng Z H, Lu J W. Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: A review[J]. RSC Adv., 2015, 5(104): 85395-85409. doi: 10.1039/C5RA13067K
Raza N, Kumar T, Singh V, Kim K H. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material[J]. Coord. Chem. Rev., 2021, 430: 213660. doi: 10.1016/j.ccr.2020.213660
Soni J, Sethiya A, Sahiba N, Agarwal S. Recent advancements in organic synthesis catalyzed by graphene oxide metal composites as heterogeneous nanocatalysts[J]. Appl. Organometal. Chem., 2021, 35(4): e6162. doi: 10.1002/aoc.6162
Yang Y, Jia T, Han Y Z, Nan Z A, Yuan S F, Yang F L, Sun D. An All-alkynyl protected 74-nuclei silver(Ⅰ)-copper(Ⅰ)-oxo nanocluster: Oxo-induced hierarchical bimetal aggregation and anisotropic surface ligand orientation[J]. Angew. Chime. Int. Ed., 2019, 58(35): 12280-12285. doi: 10.1002/anie.201906538
Gholinejad M, Khosravi F, Afrasi M, Sansano J M, Najera C. Applications of bimetallic PdCu catalysts[J]. Catal. Sci. Technol., 2021, 11(8): 2652-2702. doi: 10.1039/D0CY02339F
Liu Z H, Hao W J, Liu Z X, Gao W, Zhang Z H, Zhang Y N, Li X, Tong L L, Tang B. Bimetal-catalyzed cascade reaction for efficient synthesis of n-isopropenyl 1, 2, 3-triazoles via in-situ generated 2- azidopropenes[J]. Chem.-Asian J., 2019, 14(12): 2149-2154. doi: 10.1002/asia.201900402
Gao Y Q, Zhang D W, Yuan H, Min Y X, Chen S Y, Xu L. Long distance bimetallic site in crystal with relay metal-N-N-metal mechanism and new descriptors for electrocatalytic nitrogen reduction reaction[J]. Appl. Catal. A-Gen., 2023, 652: 119030. doi: 10.1016/j.apcata.2023.119030
Settimi C, Zingaretti D, Sanna S, Verginelli I, Luisetto I, Tebano A, Baciocchi R. Synthesis and characterization of zero-valent Fe-Cu and Fe-Ni bimetals for the dehalogenation of trichloroethylene vapors[J]. Sustainability, 2022, 14(13): 7760. doi: 10.3390/su14137760
Özdemir Z. Effect of heat treatment on the impact toughness of 'high-chromium cast iron-low alloy steel' bimetal components[J]. Met. Sci. Heat Treat., 2017, 58(11/12): 738-741.
Zhao X X, Wei J N, Xi Z F. Light-driven dinitrogen activation with transition metal complexes: Mechanisms and applications[J]. Chin. J. Chem., 2023, 41(18): 2400-2407. doi: 10.1002/cjoc.202300151
Zhong M D, Cui X L, Wu B T, Wang G X, Zhang W X, Wei J N, Zhao L L, Xi Z F. Dinitrogen functionalization affording structurally well-defined cobalt diazenido complexes[J]. CCS Chem., 2022, 4(2): 532-539. doi: 10.31635/ccschem.021.202100945
Raidt M, Siegfried L, Kaden T A. Formation and dissociation kinetics of dinuclear metal complexes with pyrazole and triazole bridged bis-macrocycles[J]. Dalton Trans., 2003, 23: 4493-4497.
Maurya R R, Mohan V, Singh P, Singh S, Bahadur I. A novel benzimidazole based cadmium(Ⅱ) dinuclear complex as bioactive material with different coordination number and their interactions with BSA and HSA: Synthesis, characterization and docking studies[J]. J. Mol. Liq., 2021, 328: 115471. doi: 10.1016/j.molliq.2021.115471
Simon J, Stammler A, Oldengott J, Bögge H, Glaser T. Proof of phosphate diester binding ability of cytotoxic DNA-binding complexes[J]. Inorg. Chem., 2020, 59(19): 14615-14619. doi: 10.1021/acs.inorgchem.0c02644
Manda S, Hari N, Monda S, Mohanta S. Dinuclear, dimer-of-dinuclear and new type of polymeric metal complexes of copper(Ⅱ)-zinc(Ⅱ)/cadmium(Ⅱ) derived from a less explored compartmental ligand[J]. Inorg. Chim. Acta, 2018, 483: 527-538. doi: 10.1016/j.ica.2018.08.017
Xing J P, Jiang X, Wang P, Zhao J J. Bimetal single-molecule magnets supported on benzene with large magnetic anisotropy and unquenched orbital moment[J]. Phys. Rev. Res., 2021, 3(3): 033005. doi: 10.1103/PhysRevResearch.3.033005
Gao H W, Zang J B, Liu X X, Wang Y H, Tian P F, Zhou S Y, Song S W, Chen P P, Li W. Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst[J]. Appl. Surf. Sci., 2019, 494: 101-110. doi: 10.1016/j.apsusc.2019.07.181
Zhang P Y, Zeng G C, Song T, Huang S B, Wang T T, Zeng H P. Synthesis of a plasmonic CuNi bimetal modified with carbon quantum dots as a non-semiconductor-driven photocatalyst for effective water splitting[J]. J. Catal., 2019, 369: 267-275. doi: 10.1016/j.jcat.2018.11.003
Qu Z Q, Sun Q M. Advances in zeolite-supported metal catalysts for propane dehydrogenation[J]. Inorg. Chem. Front., 2022, 9(13): 3095-3115. doi: 10.1039/D2QI00653G
Esteruelas M A, González A I, López A M, Oñate E. An osmium- carbene complex with Fischer‑Schrock ambivalent behavior[J]. Organometallics, 2003, 22: 414-425. doi: 10.1021/om0208826
Esteruelas M A, Oliván M, Oñate E, Ruiz N, Tajada M A. Synthesis of hydrido-vinylidene and hydrido-carbyne osmium complexes containing pyrazole: New examples of N—H…Y (Y=N, F, Cl) hydrogen bonds[J]. Organometallics, 1999, 18: 2953-2960. doi: 10.1021/om990234v
Dong C H, Ji M S, Yang X Z, Yao J N, Chen H. Reaction mechanisms of CO2 reduction to formaldehyde catalyzed by hourglass Ru, Fe, and Os complexes: A density functional theory study[J]. Catalysts, 2017, 7(1): 5.
Huang C Y, Huang W Q, Ji P C, Song F L, Liu T, Li M Y, Guo H Z, Huang Y L, Yu C C, Wang C X, Ni W X. A pyrazolate osmium(Ⅵ) nitride exhibits anticancer activity through modulating protein homeostasis in HepG2 cells[J]. Int. J. Mol. Sci., 2022, 23(21): 12779. doi: 10.3390/ijms232112779
Baya M, Crochet P, Esteruelas M A, Gutierrez-Puebla E, Ruiz N. Oxidative addition of HX (X=H, SiR3, GeR3, SnR3, Cl) molecules to the complex Os(η5-C5H5)Cl(PiPr3)2[J]. Organometallics, 1999, 18: 5034-5043. doi: 10.1021/om990235n
Baya M, Esteruelas M A, Oñate E. Influence of the group 14 element on the deprotonation of OsH(η5-C5H5)(C≡CPh)(EPh3)(PiPr3) (E=Si, Ge): Two different organometallic chemistries[J]. Organometallics, 2001, 20: 4875-4886. doi: 10.1021/om010504l
Pöller S, Beyl Y, Vivekananthan J, Guschin D A, Schuhmann W. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications[J]. Bioelectrochemistry, 2012, 87: 178-184. doi: 10.1016/j.bioelechem.2011.11.015
Wang D M, Zhai C, Chen Y Z, He Y H, Chen X D, Wang S L, Zhao L L, Frenking G, Wang X P, Tan G W. An isolable germylyne radical with a one-coordinate germanium atom[J]. Nat. Chem., 2023, 15(2): 200. doi: 10.1038/s41557-022-01081-1
孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023,37,(13): 151-158. SUN C C, BI J L. Influence of edge modification on the electronic structure of germanene nanoribbons[J]. Materials Reports, 2023, 37(13): 151-158.
张亿, 单通, 王焱, 钟洪亮. 以锗为桥接原子的受体材料及其在有机太阳能电池中的应用[J]. 高等学校化学学报, 2023,44,(7): 151-158. ZHANG Y, SHAN T, WANG Y, ZHONG H L. Non-fullerene acceptors with germanium as bridge atom and their applications in organic solar cells[J]. Chem. J. Chinese Universities, 2023, 44(7): 151-158.
徐清浩, 肖斌. 有机锗亲核试剂的交叉偶联反应[J]. 化学通报, 2020,83,(7): 610-614. XU Q H, XIAO B. Cross-coupling reactions of organogermanium nucleophiles[J]. Chemistry, 2020, 83(7): 610-614.
Nie P, Yu Q, Zhu H P, Wen T B. Ruthenium and osmium germyl complexes derived from the reactions of MXCl(PPh3)3 (M=Ru, Os; X=Cl, H) with terphenylchlorogermylene (C6H3-2, 6-Trip2)GeCl (Trip=2, 4, 6-iPr3C6H2)[J]. Eur. J. Inorg. Chem., 2017, : 4784-4796.
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum I B, Weigand W. Highly cytotoxic osmium(Ⅱ) compounds and their ruthenium(Ⅱ) analogues targeting ovarian carcinoma cell lines and evading cisplatin resistance mechanisms[J]. Int. J. Mol. Sci., 2022, 23(9): 4976. doi: 10.3390/ijms23094976
Wen T B, Hung W Y, Zhou Z Y, Lo M F, Williams I D, Jia G C. Synthesis and characterization of[OsCl2(=C=CHR)(PPh3)2] and related complexes[J]. Eur. J. Inorg. Chem., 2004, : 2837-2846.
Clark A M, Rickard C E F, Roper W R, Woodman T J, Wright L J. Stepwise conversion of an osmium trimethylstannyl complex to a triiodostannyl complex and nucleophilic substitution reactions at the tin-iodine bonds[J]. Organometallics, 2000, 19: 1766-1774. doi: 10.1021/om990904x
Esteruelas M A, González A I, López A, Oliván M, Oñate E. Preparation of half-sandwich osmium-allyl complexes by consecutive C—C bond formation and C—H bond activation reactions[J]. Organometallics, 2006, 25: 693-705. doi: 10.1021/om050907b
Buil M L, Esteruelas M A, Garcés K, García-Raboso J, Oliván M. Trapping of a 12‑valence‑electron osmium intermediate[J]. Organometallics, 2009, 28: 4606-4609. doi: 10.1021/om9002544
Dub P A, Fillipov O A, Silantyev G A, Belkova N V, Daran J C, Epstein L M, Poli R, Shubina E S. Protonation of Cp*M(dppe)H hydrides: Peculiarities of the osmium congener[J]. Eur. J. Inorg. Chem., 2010, : 1489-1500.
Esteruelas M A, García-Raboso J, Oliván M. Preparation of half-sandwich osmium complexes by deprotonation of aromatic and pro-aromatic acids with a hexahydride brønsted base[J]. Organometallics, 2011, 30: 3844-3852. doi: 10.1021/om200371r
Baya M, Esteruelas M A, Oliván M, Oñate E. Monocationic trihydride and dicationic dihydride-dihydrogen and bis(dihydrogen) osmium complexes containing cyclic and acyclic triamine ligands: Influence of the N—Os—N angles on the hydrogen-hydrogen interactions[J]. Inorg. Chem., 2009, 48: 2677-2686. doi: 10.1021/ic8023259
表 1 配合物1、2和4的部分键长(nm)和键角(°)
Table 1. Selected bond lengths (nm) and angles (°) of complexes 1, 2, and 4
Bond | 1[32] | 2 | 4 |
M—Ge | 0.240 6(2) | 0.241 0(5) | 0.241 6(7) |
M—P | 0.231 3(9) | 0.231 5(2) | 0.232 5(4) |
Ge—C | 0.198 4(5) | 0.199 9(8) | 0.197 7(6) |
Ge—X1 | 0.221 5(6) | 0.236 1(5) | 0.211 5(6) |
Ge—X2 | 0.220 7(6) | 0.235 3(2) | 0.215 3(5) |
Ge—M—P | 95.6(9) | 96.7(2) | 106.7(5) |
C—Ge—M | 106.0(1) | 106.4(2) | 105.1(3) |