C60-MoP-C纳米花范德瓦耳斯异质结及其电催化析氢性能

李文江 关平丽 余锐 程源晟 魏先文

引用本文: 李文江, 关平丽, 余锐, 程源晟, 魏先文. C60-MoP-C纳米花范德瓦耳斯异质结及其电催化析氢性能[J]. 无机化学学报, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289 shu
Citation:  Wenjiang LI, Pingli GUAN, Rui YU, Yuansheng CHENG, Xianwen WEI. C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289 shu

C60-MoP-C纳米花范德瓦耳斯异质结及其电催化析氢性能

    通讯作者: 魏先文, E-mail:xwwei@mail.ahnu.edu.cn,xwwei@ahut.edu.cn
  • 基金项目:

    国家自然科学基金 21771003

    安徽省高校协同创新项目 GXXT-2022-006

    安徽省重大产业创新计划项目 AHZDCYCX-LSDT2023-04

摘要: 采用气固法制备了磷化钼-碳纳米花(MoP-CFs),通过简单的超声自组装将C60修饰在MoP-CFs表面,形成范德瓦耳斯异质结。研究其电催化析氢性能发现,C60的修饰能够有效降低电催化析氢过电位。其中,10% C60-MoP-CFs样品(10%为C60的质量分数)表现出最佳催化活性,在酸性和碱性条件下达到10 mA·cm-2的电流密度时,所需要的过电位分别为158和157 mV,并且具有至少20 h的电催化稳定性。C60与MoP-CFs之间强电子耦合作用促进电子由C60迁移到MoP-CFs表面,有助于减小电荷传输阻力,加快电催化析氢界面反应动力学过程。

English

  • 氢能是替代化石燃料的理想清洁能源。通过电解水制氢反应(HER),将可再生电能转化为氢能,这被认为是解决未来能源问题中能量转换的关键一环[1-2]。然而,由于水裂解动力学过程缓慢,商业化的电解水装置往往需要使用贵金属(如Pt和Ir等)材料作为电催化剂,其高昂的成本为电解水工业化普及带来了极大的阻碍[3-5]。因此,开发廉价且高效的非贵金属HER电催化剂是目前研究的重点。作为极具潜力的非贵金属催化剂,过渡金属磷化物(TMPs)如CoP[6-8]、Ni5P4[9-11]、Cu3P[12-14]、MoP[15-19]等,因其低廉的价格、适宜的d电子结构以及多样的化学态等优点而受到了人们的广泛关注,在HER中表现出了良好的电化学活性[20]。然而,其在导电性和稳定性方面的不足有待进一步改善。

    碳材料具有比表面积大、导电性好和化学稳定性高的显著优势。大量研究表明,利用碳材料(如石墨烯、碳纳米管和多孔碳等)对磷化物进行包覆/负载可以有效提高催化剂的本征活性[21]。富勒烯(C60)作为一种典型零维(0D)碳纳米材料,具有独特的π电子共轭体系,表现出很强的吸电子性质[22]。因此,在基于C60的异质体系中,其界面处往往会发生较为显著的电子偏移现象,进而产生一些高度活跃的催化活性位点。如Choi等[23]发现将C60团簇负载在MoS2表面能有效降低析氢所需过电势,达到电流密度10 mA·cm-2所需过电位(η10)从245 mV减小至172 mV。作者认为C60与MoS2接触后会形成p-n型异质结,进一步激活MoS2惰性基面,产生更多活性位点。此外,Gao等[24]通过将C60吸附在单壁碳纳米管上构筑了一种多功能非金属催化剂,在HER、析氧反应(OER)和氧还原反应(ORR)方面表现出优良的催化活性,其全水解活性甚至比Pt-RuO2商业催化剂组合活性更优。尽管C60在HER催化剂的构筑中已经展现出了如此巨大的应用潜力,但关于使用C60对磷化物的改性研究仍然较少[25-26]

    因此,我们通过气固反应法制备了新颖的磷化钼-碳纳米花(MoP-CFs)材料,并进一步引入C60对MoP-CFs进行修饰改性。研究其HER性能发现,C60的引入能够改善MoP-CFs导电性,加快界面析氢动力学过程。C60的最优质量分数为10%,对应样品10% C60-MoP-CFs的催化活性最好,在酸性和碱性条件下达到电流密度为10 mA·cm-2时所需要的过电位分别为158和157 mV,并且能保持至少20 h的催化稳定性。

    C60(纯度大于99.99%)购买于河南濮阳市永新富勒烯科技有限公司,其他常规试剂均为商业途径获得的分析纯试剂,且使用前未经纯化处理。

    1.1.1   MoP-CFs的合成

    将40 mL乙醇、90 mL去离子水和0.75 mL氨水混合搅拌均匀,记为溶液A。将0.5 g多巴胺和0.31 g钼酸铵溶于10 mL去离子水中形成溶液B。随后,将B溶液缓慢加入到A溶液中,并在室温下持续搅拌24 h。离心洗涤固体沉淀,并将其置于60 ℃烘箱中干燥过夜,得到前驱体。

    将所制备的前驱体与次磷酸钠以质量比1:10混合,放入瓷舟中并置于管式炉中,气体上游放置次磷酸钠,下游放置MoP-CFs前驱体。在Ar气氛下(Ar流速为标准状态下50 mL·min-1)对样品进行热处理,首先以2 ℃·min-1的速率升温至300 ℃,并保温2 h。随后,以5 ℃·min-1的速率升温到900 ℃并保温3 h。待反应降至室温后,即可获得MoP-CFs样品。

    1.1.2   C60-MoP-CFs的合成

    首先,将MoP-CFs粉末和C60以1 mg·mL-1的质量浓度分别超声分散于异丙醇和甲苯溶液中。随后按不同质量分数吸取不同体积的C60的甲苯溶液,缓慢滴加到一定体积的MoP-CFs异丙醇分散液中,在室温超声分散处理30 min,形成均匀混合物。真空条件下干燥以脱除溶剂,得到含不同质量分数的C60的C60-MoP-CFs样品,分别记为5% C60-MoP-CFs、10% C60-MoP-CFs、15% C60-MoP-CFs和20% C60-MoP-CFs。

    使用德国Bruker D8 Advance X射线衍射仪(PXRD)对催化剂进行物相分析,工作电压40 kV,电流40 mA,Cu靶射线作为辐射源,λ=0.154 06 nm,扫描范围10°~80°,扫速5 (°)·min-1。使用日本日立Hitachi S-8100场发射扫描电子显微镜(SEM,加速电压0.5~10 kV)和Hitachi HT-7700透射电子显微镜(TEM,加速电压20~120 kV)观察样品的形貌。通过JEOLJEM-2100F场发射透射电子显微镜(加速电压20~200 kV)获得样品的高分辨率透射电镜(HRTEM)图、高角环形暗场扫描透射电镜(HAADF-STEM)图和能量色散X射线光谱(EDX)元素分布图。使用拉曼光谱仪(Raman,inVia)和红外光谱(FTIR,invenios)表征催化剂中C60的存在。样品表面元素价态通过X射线光电子能谱(XPS)得到,在型号为Thermo Scientific K-Alpha带有单色Al 源的X射线光电子能谱仪上进行测试。

    所有电化学测量均在CHI 660E(上海辰华仪器有限公司)电化学工作站上进行,采用标准三电极系统,工作电极为玻碳电极(GCE,3 mm),石墨棒电极作为对电极,Ag/AgCl电极作为参比电极。工作电极的制备是将5 mg催化剂、500 μL去离子水、490 μL无水乙醇和10 μL Nafion溶液(5%)超声分散均匀,吸取20 μL混合液滴涂于玻碳电极表面,催化剂载量为1.41 mg·cm-2。电解液为0.5 mol·L-1的H2SO4溶液或1.0 mol·L-1的KOH溶液,测试温度为室温。在进行HER活性测试之前,用循环伏安(CV)法以100 mV·s-1的扫描速率进行10圈电化学活化以达到稳定的状态。随后,使用扫速为5 mV·s-1的线性扫描伏安(LSV)法测试其电催化活性[27-28]。此外,电化学阻抗谱(EIS)的测量频率为105~0.01 Hz。电化学活性面积(ECSA)通过双电层电容(Cdl)衡量,选取非法拉第区间,以20 mV·s-1为梯度,测试扫速范围20~100 mV·s-1内的CV曲线。所有相对于Ag/AgCl的电极电势E′均转换为相对于标准可逆氢电极(RHE)的电势E[29-30]

    $ E=E^{\prime}+0.197+0.059 \mathrm{pH} $

    (1)

    C60-MoP-CFs的合成步骤如图 1a所示,首先多巴胺(DA)氧化聚合,并与钼酸根离子通过静电作用共同沉淀形成前驱体。以次磷酸钠作为磷源,通过原位热解处理,使其在高温下释放出磷化氢(PH3),将钼酸根还原形成MoP。与此同时,聚多巴胺也会进一步碳化形成纳米花状的碳基底,得到磷化钼-碳纳米花结构(MoP-CFs),再利用甲苯与异丙醇可互溶的性质将C60引入,构建范德瓦耳斯异质结。图 1b为样品的PXRD图,可证明MoP-CFs材料的成功制备,其中位于27.8°、31.9°、42.9°、56.9°、64.5°、67.2°和73.8°的衍射峰与六方相MoP(PDF No.24-0771)的(001)、(100)、(101)、(110)、(111)、(102)和(201)晶面分别对应[31],并未发现其他杂质的衍射峰,说明钼酸根完全转化为MoP,样品纯度较高。

    图 1

    图 1.  (a) C60-MoP-CFs的合成示意图; (b) MoP-CFs和C60-MoP-CFs的PXRD图; (c) 10% C60-MoP-CFs的SEM图; (d、e) 10% C60-MoP-CFs的TEM图(插图: HRTEM图); (f) 10% C60-MoP-CFs的HAADF-STEM图和相应的元素分布图
    Figure 1.  (a) Synthesis schematic of C60-MoP-CFs; (b) PXRD patterns of MoP-CFs and C60-MoP-CFs; (c) SEM image of 10% C60-MoP-CFs; (d, e) TEM images of 10% C60-MoP-CFs (inset: HRTEM image); (f) HAADF-STEM image and corresponding elemental mappings of 10% C60-MoP-CFs

    通过SEM对材料形貌进行表征,可以看出MoP-CFs呈现直径1 μm左右的花球状形貌,C60为不规则的块状结构(图 1c)。在TEM图(图 1d)中进一步观察到,由于碳纳米花基底的锚定作用,粒径范围为10~30 nm的MoP纳米颗粒均匀分布在碳基底表面,并没有团聚现象出现,这种高度分散的纳米颗粒有助于提供更多的催化活性位点。此外,在HRTEM图中还能明显观察到C60与MoP-CFs之间所产生的异质界面。图 1e中插图所示的颗粒高分辨晶格条纹间距为0.28 nm,对应于MoP的(100)晶面[32],与PXRD结果一致。在元素分布图中(图 1f)检测到Mo、P与C元素的存在,与材料组成一致,并且所有元素在材料中分布均匀。不同C60负载量样品的形貌如图 2所示,改变C60比例以及超声操作,均不会影响MoP-CFs的碳纳米花球结构,但随着C60载量的增加,明显观察到C60晶体数量的增多。

    图 2

    图 2.  未修饰的MoP-CFs(a)、5% C60-MoP-CFs(b)、15% C60-MoP-CFs(c)和20% C60-MoP-CFs(d)的SEM图
    Figure 2.  SEM images of undecorated MoP-CFs (a), 5% C60-MoP-CFs (b), 15% C60-MoP-CFs (c), and 20% C60-MoP-CFs (d), respectively

    通过FTIR和Raman光谱来验证C60的存在并分析C60与MoP-CFs之间的电子传递现象。如图 3a所示,在Raman光谱400~2 000 cm-1波长范围内,MoP-CFs样品仅在1 300和1 580 cm-1处存在2个宽峰,对应碳的D带和G带Raman特征峰,并且二者强度比(ID/IG)较为接近。说明碳纳米花基底的石墨化程度并不高,可能存在较多杂质或缺陷[33]。C60中主要存在494 cm-1和1 465 cm-1处2个峰,分别归属于C60Ag(1)和Ag(2)振动模式,其中1 465 cm-1的尖峰被广泛认为与C60的电子结构密切相关[34]。对比复合材料10% C60-MoP-CFs可以发现,二者特征峰的位置和数目基本一致,说明C60被成功引入复合材料中。从局部放大图中可以看出,相较于C60,10% C60-MoP-CFs中代表Ag(2)模式的特征峰轻微蓝移了约2 cm-1,表明C60与MoP-CFs之间存在一定的电子传递。此外,如FTIR光谱(图 3b)所示,C60样品在527、577、1 183和1 428 cm-1处出现了其Ih对称振动模式中对红外最为敏感的4个T1u振动模式特征峰,并且527和577 cm-1处的2个峰在复合材料样品中同样出现,说明C60被成功修饰到复合材料中[35]

    图 3

    图 3.  MoP-CFs、C60和10% C60-MoP-CFs的拉曼(a)和红外(b)谱图
    Figure 3.  Raman (a) and FTIR (b) spectra of MoP-CFs, C60, and 10% C60-MoP-CFs

    通过XPS分析样品修饰C60前后的元素组成及价层电子结构,结果如图 4所示。全谱中所有谱峰均可与Mo、P、C、O和N元素特征峰匹配,元素比例也与MoP化学组成接近,与前文中各表征结果一致。未修饰的MoP-CFs样品的Mo3d谱图可以拟合为3对特征峰:227.8和231.0 eV的峰对应MoP中Moδ+-P组分的Moδ+3d5/2和Moδ+3d3/2(0 < δ < 4)物种;229.9和233.1 eV处的峰归因于Mo4+3d5/2和Mo4+3d3/2;232.6和235.8 eV处对应Mo6+3d5/2和Mo6+3d3/2特征峰。后2对特征峰主要可能与亚稳态MoP表面氧化形成的氧化态钼(MoO2和MoO3)有关[32]。值得注意的是,当修饰C60后,Moδ+—P的特征峰发生一定程度的蓝移(向低结合能位置偏移约0.3 eV),表明MoP会从C60组分得到电子[36]。在P2p谱图中也能观察到类似的峰偏移现象,Pδ--Mo组分的Pδ-2p3/2和Pδ-2p1/2特征峰原位于129.1和130.0 eV处,在修饰C60后会蓝移约0.4 eV。此外,在132.5 eV处还存在P—C物种特征峰,说明部分P元素也掺杂进入碳纳米花基底中[37]。在C1s谱图中也能观察到C—P和C—N组分,这与从拉曼光谱中所得出的结论相吻合。XPS结果清楚地表明,电子会从C60向MoP发生转移。结合以往文献报道[38-39]可知,MoP和C60的功函数分别为5.19和4.6 eV,MoP功函数较大,表明其费米能级更低。因此,当二者接触形成异质界面时,高费米能级的C60的电子就会自然地向MoP转移,直到双方费米能级平齐。这种由C60修饰引起的从C60向MoP方向发生的界面电子转移现象,可以有效调控MoP电子结构,优化MoP表面活性氢吸附强度,从而增强HER性能。

    图 4

    图 4.  MoP-CFs和10% C60-MoP-CFs的XPS谱图(a)及Mo3d (b)、P2p (c)和C1s (d)的高分辨XPS谱图
    Figure 4.  XPS spectra (a) and high-resolution XPS spectra of the Mo3d (b), P2p (c), and C1s (d) for MoP-CFs and 10% C60-MoP-CFs, respectively

    为了评价C60引入对MoP-CFs催化活性的影响,实验中首先使用LSV测定了不同C60负载量的C60-MoP-CFs的电催化HER性能,选取相同测试条件下的商用Pt/C作为参照。在酸性条件下(0.5 mol·L-1 H2SO4),LSV测试结果如图 5a所示。出于实际应用的考虑,实验中选取达到电流密度10 mA·cm-2(人工光合作用中光能-燃料转换效率为10%时对应的近似电流密度)时所需要的过电位(η10)作为HER活性的衡量指标[40-41]。商业Pt/C展现出最佳的催化活性,η10仅为44 mV。相较于未修饰的MoP-CFs样品,不同C60修饰比例的MoP-CFs样品的HER活性均展现出了一定程度的提高(MoP-CFs、5% C60-MoP-CFs、15% C60-MoP-CFs和20% C60-MoP-CFs的η10分别为213、177、193和202 mV),其中10% C60-MoP-CFs样品效果最佳,达到10 mA·cm-2电流密度时所需要的过电位为158 mV,减小了55 mV。从以上结果可以看出,电催化活性与C60的修饰量密切相关,过多或过少的C60都会影响材料的催化性能。酸性条件下(0.5 mol·L-1 H2SO4)的各样品的Tafel斜率如图 5b所示,未修饰的MoP-CFs、5% C60-MoP-CFs、10% C60-MoP-CFs、15% C60-MoP-CFs和20% C60-MoP-CFs的Tafel斜率依次为145.84、106.48、101.12、118.56和121.52 mV·dec-1,除Pt/C外,仍是10% C60-MoP-CFs的Tafel斜率最小,说明其具有最快的动力学过程。值得注意的是,所有样品的Tafel斜率均大于40 mV·dec-1,表明此类催化剂表面的HER过程的Volmer步为决速步[1]

    图 5

    图 5.  Pt/C、MoP-CFs和C60-MoP-CFs在0.5 mol·L-1 H2SO4中的LSV极化曲线(a)和Tafel斜率图(b); Pt/C、MoP-CFs和C60-MoP-CFs在1.0 mol·L-1 KOH中的LSV极化曲线(c)和Tafel斜率图(d); 样品在酸性条件下的双电层电容图(e) 和对应ECSA归一化LSV极化曲线(f)
    Figure 5.  LSV polarization curves (a) and Tafel slopes (b) of Pt/C, MoP-CFs, and C60-MoP-CFs in 0.5 mol·L-1 H2SO4; LSV polarization curves (c) and Tafel slopes (d) of Pt/C, MoP-CFs, and C60-MoP-CFs in 1.0 mol·L-1 KOH; Double layer capacitance under acidic conditions (e) and corresponding ECSA-normalized LSV curves (f) of the samples

    Δj = ja-jc.

    考虑到磷化物通常可作为良好的两性HER电催化剂使用,实验中进一步测试了不同样品在碱性电解液(1.0 mol·L-1 KOH)中的催化活性,结果如图 5c5d所示。与在酸性溶液中所测结果类似,C60的修饰同样可以有效改善MoP-CFs在碱性条件下的HER性能。未修饰MoP-CFs所需的过电位为208 mV,而最佳的10% C60-MoP-CFs的η10为157 mV,降低了51 mV。此外,10% C60-MoP-CFs的Tafel斜率为105.16 mV·dec-1,较未修饰MoP-CFs的201.15 mV·dec-1同样大幅降低。值得注意的是,与相同类型催化剂的催化活性对比可发现,最佳的10% C60-MoP-CFs在酸性和碱性条件下都表现出了相当可观的催化性能(表 12)。

    表 1

    表 1  类似催化剂在0.5 mol·L-1 H2SO4中的HER活性
    Table 1.  HER activities of similar catalysts in 0.5 mol·L-1 H2SO4
    下载: 导出CSV
    Catalyst Working electrode η10/mV Tafel slope/(mV·dec-1) Ref.
    10% C60-MoP-CFs Glassy carbon 158 105 This work
    MoP-CFs Glassy carbon 213 146 This work
    MoP2 NPs/Mo Mo plate 194 80 [42]
    MoP-C Glassy carbon 169 70 [43]
    MoP-RGO Glassy carbon 150 66 [18]
    rGO-A-MoP Glassy carbon 162 57 [44]
    MoP-NC Glassy carbon 131 66 [45]
    MoP/rGO Glassy carbon 140 72 [46]
    MoP/N, P-CNTs Carbon paper 117 58 [47]

    表 2

    表 2  类似催化剂在1.0 mol·L-1 KOH中的HER活性
    Table 2.  HER activities of similar catalysts in 1.0 mol·L-1 KOH
    下载: 导出CSV
    Catalyst Working electrode η10/mV Tafel slope/(mV·dec-1) Ref.
    10% C60-MoP-CFs Glassy carbon 157 101 This work
    MoP-CFs Glassy carbon 208 201 This work
    MoP/MoS2 Glassy carbon 101 56 [15]
    MoP/MoO2 Glassy carbon 173 58 [48]
    DR-MoP Glassy carbon 156 49 [49]
    MoP/Fe2P/RGO Glassy carbon 156 51 [50]
    Fe-MoP Glassy carbon 195 49 [51]
    MoP Glassy carbon 150 56 [52]
    MoP/NPCs Glassy carbon 205 71 [53]
    MoP nanoparticles Glassy carbon 246 60 [54]
    CoMoP Glassy carbon 215 50 [55]

    为了探究C60对MoP-CFs性能提升的原因,首先通过CV曲线非法拉第区间计算双电层电容值(Cdl)。如图 5e所示,在0.5 mol·L-1 H2SO4溶液中未修饰C60的MoP-CFs的Cdl为24.18 mF·cm-2,而5%~20%的C60修饰样品的Cdl分别为42.43、47.77、28.24和27.24 mF·cm-2。显然,10% C60-MoP-CFs具有最大的Cdl值,表明一定量C60的引入有助于提高材料的ECSA,有助于获得更大的催化电流密度。进一步通过ECSA对LSV结果进行ECSA归一化处理,发现10% C60-MoP-CFs同样具有最低的析氢过电位和最高的电流密度。表明C60的引入不仅增加了ECSA,而且通过其与MoP之间的电子相互作用提高了MoP本征活性[27-30]。此外,为了进一步理解C60修饰对界面电荷传输和反应动力学作用机制,测试了样品MoP-CFs和10% C60-MoP-CFs在0.5 mol·L-1 H2SO4溶液不同电压的EIS图。如图 6a6b所示,可以清晰地看到,随着测试电位的增大,析氢阻抗逐渐减小,对应于更快的界面反应动力学过程,且10% C60-MoP-CFs的电化学阻抗值明显小于MoP-CFs,表明C60的修饰有助于降低阻抗。相应的Bode相位图测试结果如图 6c6d所示。通常,较小的相位角(φ)更有利于参与法拉第过程,而较大相位角更利于参与双电层电容过程,较高频率则可以增加法拉第电阻,加速表面反应动力学过程[56-57]。通过对比发现,10% C60-MoP-CFs具有更小的相位角以及更高的频率,表明C60的引入有助于参与法拉第过程,加快电荷迁移速率,因此,更有利于加速HER动力学过程。

    图 6

    图 6.  MoP-CFs和10% C60-MoP-CFs在0.5 mol·L-1 H2SO4溶液中不同测试电压下的EIS图(a、b)和Bode相位图(c、d)
    Figure 6.  EIS plots (a, b) and Bode phase plots (c, d) of MoP-CFs and 10% C60-MoP-CFs at different applied potentials in 0.5 mol·L-1 H2SO4

    实验中通过多次循环伏安法以及计时电流法(i-t)分别测试了10% C60-MoP-CFs催化剂在酸性和碱性溶液中的稳定性,0.5 mol·L-1 H2SO4溶液测试电压为-0.20 V,1.0 mol·L-1 KOH溶液测试电压为-0.21 V,测试结果如图 7所示。在酸性条件下,不论是3 000次循环还是20 h长时间测试,10% C60-MoP-CFs材料循环前后LSV测试曲线以及i-t测试过程中电流密度都未发生较大变化,表明该材料的良好酸性稳定性。然而,值得注意的是,10% C60-MoP-CFs在1.0 mol·L-1 KOH中i-t测试过程中电流密度发生部分衰减。为此,实验中通过PXRD和SEM对反应后的10% C60-MoP-CFs进行了表征。如图 7d所示,循环反应后MoP的物相结构未发生明显变化,并且其花状形貌也能基本保持稳定。此外,对比反应前后10% C60-MoP-CFs样品的Mo3d和P2p的XPS谱图(图 8)发现,反应前后MoP相关特征峰并无明显变化,说明其稳定性良好,而Mo—O和P—O组分含量有所减少,说明表面氧化物在i-t测试过程中被还原。因此,我们推测碱性条件下的电流密度部分衰减可能是由于10% C60-MoP-CFs样品发生局部溶解或少量脱落[58-59]

    图 7

    图 7.  10% C60-MoP-CFs在(a) 0.5 mol·L-1 H2SO4和(b) 1.0 mol·L-1 KOH中3 000圈CV前后的LSV图; (c) 10% C60-MoP-CFs在0.5 mol·L-1 H2SO4和1.0 mol·L-1 KOH中的i-t图; (d) 3 000圈CV后的PXRD图(插图: 稳定性测试之后的SEM图)
    Figure 7.  LSV curves before and after 3 000 cycles of CV for 10% C60-MoP-CFs in (a) 0.5 mol·L-1 H2SO4 and (b) 1.0 mol·L-1 KOH, respectively; (c) i-t plots of 10% C60-MoP-CFs in 0.5 mol·L-1 H2SO4 and 1.0 mol·L-1 KOH; (d) PXRD pattern after 3 000 cycles of CV (inset: the SEM image after stabilization test)

    图 8

    图 8.  稳定性测试前后10% C60-MoP-CFs的Mo3d (a)和P2p (b)高分辨XPS谱图
    Figure 8.  High-resolution XPS spectra of the Mo3d (a) and P2p (b) of 10% C60-MoP-CFs before and after stabilization test

    通过气固反应合成了新颖的MoP-C纳米花,采用简单的双溶剂超声法将C60进行成功负载,制备出了不同C60比例的C60-MoP-CFs范德瓦耳斯异质结构。对于不同C60比例的C60-MoP-CFs进行HER性能研究发现,10% C60-MoP-CFs展现出最优异的电催化析氢性能。在酸性和碱性条件下,当电流密度为10 mA·cm-2时,对应的过电位分别为158和157 mV,相较于未修饰的MoP-CFs分别降低了55和51 mV,且10% C60-MoP-CFs无论是在酸性还是碱性条件下都至少具有20 h的电催化稳定性。Raman和FTIR结果表明C60能够与MoP-CFs之间产生电子耦合作用,从而影响两者的电子结构。这种电子耦合作用能改善MoP-CFs的导电性,加速界面处电子转移速率,从而有助于加快复合材料界面的析氢动力学过程。


    1. [1]

      Huang F H, Wang J Z, Wang M, Zhang C, Xue Y N, Liu J, Xu T, Cai N, Chen W M, Yu F Q. Core-shell Ni2P@CoP nanoarrays supported on NF as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. J. Colloid Surface A, 2021, 623(20):  126526.

    2. [2]

      Yang H Y, Chen Z L, Guo P F, Fei B, Wu R B. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2020, 261:  118240. doi: 10.1016/j.apcatb.2019.118240

    3. [3]

      Zhao Z J, Zhu Z X, Bao X B, Wang F, Li S J, Liu S J, Yang Y. Facile construction of metal phosphides (MP, M=Co, Ni, Fe, and Cu) wrapped in three-dimensional N, P-codoped carbon skeleton toward highly efficient hydrogen evolution catalysis and lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2021, 13(8):  9820-9829. doi: 10.1021/acsami.0c19914

    4. [4]

      Chu W J, Shi Z J, Hou Y D, Ma D N, Bai X, Gao Y F, Yang N J. Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2020, 12(2):  2763-2772. doi: 10.1021/acsami.9b13182

    5. [5]

      Wang W Q, Xi S M, Shao Y L, Sun W H, Wang S K, Gao J F, Mao C M, Guo X S, Li G C. Oxide passivated CoNi@NC-supported Ru(OH)xCly cluster as highly efficient catalysts for the oxygen and hydrogen evolution[J]. ACS Sustain. Chem. Eng., 2019, 7(20):  17227-17236. doi: 10.1021/acssuschemeng.9b03884

    6. [6]

      Zhu Y R, Lu P C, Li F Z, Ding Y H, Chen Y F. Metal-rich porous copper cobalt phosphide nanoplates as a high-rate and stable battery-type cathode material for battery-supercapacitor hybrid devices[J]. ACS Appl. Energy Mater., 2021, 4(4):  3962-3974. doi: 10.1021/acsaem.1c00335

    7. [7]

      Jin M T, Zhang X, Shi R, Lian Q, Niu S Z, Peng O W, Wang Q, Cheng C. Hierarchical CoP@Ni2P catalysts for pH-universal hydrogen evolution at high current density[J]. Appl. Catal. B: Environ., 2021, 296(5):  120423.

    8. [8]

      Jiang X L, Li Y, He M, Zhou L X, Zheng Q J, Xie F Y, Jie W J, Lin D M. Construction of NiFeP/CoP nanosheets/nanowires hierarchical array as advanced electrocatalysts for water oxidation[J]. Int. J. Hydrog. Energy, 2019, 44(36):  19986-19994. doi: 10.1016/j.ijhydene.2019.06.018

    9. [9]

      Rao Y, Wang S W, Zhang R Y, Jiang S H, Chen S, Yu Y N, Bao S J, Xu M W, Yue Q, Xin H L, Kang Y J. Nanoporous V-doped Ni5P4 microsphere: A highly efficient electrocatalyst for hydrogen evolution reaction at all pH[J]. ACS Appl. Mater. Interfaces, 2020, 12(33):  37092-37099. doi: 10.1021/acsami.0c08202

    10. [10]

      Das M, Jena N, Purkait T, Kamboj N, Sarkar A D, Dey R S. Single-phase Ni5P4-copper foam superhydrophilic and aerophobic core-shell nanostructures for efficient hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(41):  23989-23999. doi: 10.1039/C9TA06729A

    11. [11]

      Mishra I K, Zhou H Q, Sun J Y, Qin F, Dahal K, Bao J M, Chen S, Ren Z F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation[J]. Energy Environ. Sci., 2018, 11(8):  2246-2252. doi: 10.1039/C8EE01270A

    12. [12]

      Tong C, Xiang R, Peng L S, Tan L Q, Tang X Y, Wang J C, Li L, Liao Q, Wei Z D. Amorphous FeOx (x=1, 1.5) coated Cu3P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts[J]. J. Mater. Chem. A, 2020, 8(6):  3351-3356. doi: 10.1039/C9TA11779B

    13. [13]

      Liu M, Zhang R, Zhang L X, Liu D N, Hao S, Du G, Asiri A M, Kong R M, Sun X P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction[J]. Inorg. Chem. Front., 2017, 4(3):  420-423. doi: 10.1039/C6QI00384B

    14. [14]

      Tian J Q, Liu Q, Cheng N Y, Asiri A M, Sun X P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water[J]. Angew. Chem. Int. Ed., 2014, 53(36):  9577-9581. doi: 10.1002/anie.201403842

    15. [15]

      Wang P Y, Wang X Q, Diao R Y, Guo Y J, Wang Y X, Zhou C, Xie K F, Sun S M, Zhang Y H. Hierarchical tubular MoP/MoS2 composite with enhanced electrochemical hydrogen evolution activity[J]. J. Mater. Sci.-Mater. Electron., 2021, 32(10):  14047-14056. doi: 10.1007/s10854-021-05984-6

    16. [16]

      Lin L F, Chen M, Wu L M. Hierarchical MoP/NiFeP hybrid hollow spheres as highly efficient bifunctional electrocatalysts for overall water splitting[J]. Mater. Chem. Front., 2021, 5(1):  375-385. doi: 10.1039/D0QM00635A

    17. [17]

      Liang K, Pakhira S, Yang Z Z, Nijamudheen A, Ju L C, Wang M Y, Aguirre Velez C I, Sterbinsky G E, Du Y G, Feng Z X, Mendoza Cortes G L, Yang Y. S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte[J]. ACS Catal., 2019, 9(1):  651-659. doi: 10.1021/acscatal.8b04291

    18. [18]

      Wu Z X, Wang J, Zhu J, Guo J P, Xiao W P, Xuan C J, Lei W, Wang D L. Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution[J]. Electrochim. Acta, 2017, 232(1):  254-261.

    19. [19]

      Du C C, Shang M X, Mao J X, Song W B. Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting[J]. J. Mater. Chem. A, 2017, 5(30):  15940-15949. doi: 10.1039/C7TA03669H

    20. [20]

      Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chem. Soc. Rev., 2016, 45(6):  1529-1541. doi: 10.1039/C5CS00434A

    21. [21]

      Xu H B, Li H Z, Xie L, Zhao D Y, Kong B. Interfacial assembly of functional mesoporous carbon-based materials into films for batteries and electrocatalysis[J]. Adv. Mater. Interfaces, 2022, 9(10):  2101998. doi: 10.1002/admi.202101998

    22. [22]

      程源晟, 蔡号东, 凌敏, 宋超, 魏先文. 光电化学催化中的富勒烯基材料: 机理及应用[J]. 无机化学学报, 2020,36,(6): 1014-1034. CHENG Y S, CAI H D, LING M, SONG C, WEI X W. Fullerene-based materials in photocatalysis and electrochemical catalysis: Fundamentals and applications[J]. Chinese J. Inorg. Chem., 2020, 36(6):  1014-1034.

    23. [23]

      Choi T H, Lee J, Parija A, Cho J, Verkhoturov S V, Al-Hashimi M, Fang L, Banerjee S. An in situ sulfidation approach for the integration of MoS2 nanosheets on carbon fiber paper and the modulation of its electrocatalytic activity by interfacing with nC60[J]. ACS Catal., 2016, 6(9):  6246-6254. doi: 10.1021/acscatal.6b01942

    24. [24]

      Gao R, Dai Q B, Du F, Yan D P, Dai L M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution[J]. J. Am. Chem. Soc., 2019, 141(29):  11658-11666. doi: 10.1021/jacs.9b05006

    25. [25]

      Yu D L, Guan P L, Huang Y F, Cheng Y S, Ling M, Wu K L, Wu F H, Wei X W. In-situ construction of water-soluble C60 derivative modified cobalt phosphides for efficient electrocatalytic hydrogen evolution in acidic and alkaline media[J]. Mater. Lett., 2023, 352:  135184. doi: 10.1016/j.matlet.2023.135184

    26. [26]

      Zhu X J, Zhang T M, Jiang D C, Duan H L, Sun Z J, Zhang M M, Jin H C, Guan R N, Liu Y J, Chen M Q, Ji H X, Du P W, Yan W S, Wei S Q, Lu Y L, Yang S F. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules[J]. Nat. Commun., 2018, 9(1):  4177. doi: 10.1038/s41467-018-06437-1

    27. [27]

      Wei T R, Liu W X, Zhang S S, Liu Q, Luo J, Liu X J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production[J]. Chem. Commun., 2023, 59:  442-445. doi: 10.1039/D2CC05722K

    28. [28]

      Zhang Q, Lian K, Liu Q, Qi G C, Zhang S S, Luo J, Liu X J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries[J]. J. Colloid Interface Sci., 2023, 646:  844-854. doi: 10.1016/j.jcis.2023.05.074

    29. [29]

      Gao S S, Zhang Y, Zhang Y J, Wang B, Yang S C. Modification of carbon nanotubes via birch reaction for enhanced HER catalyst by constructing pearl necklace-like NiCo2P2-CNT composite[J]. Small, 2018, 14(51):  1804388. doi: 10.1002/smll.201804388

    30. [30]

      Hui S, Wei T R, Liu Q, Zhang S S, Luo J, Liu X J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production[J]. J. Colloid Interface Sci., 2023, 634:  730-736. doi: 10.1016/j.jcis.2022.12.067

    31. [31]

      Zhang J T, Wang X D, Xue Y R, Xu Z Y, Pei J J, Zhuang Z B. Self-assembly precursor-derived MoP supported on N, P-codoped reduced graphene oxides as efficient catalysts for hydrogen evolution reaction[J]. Inorg. Chem., 2018, 57(21):  13859-13865. doi: 10.1021/acs.inorgchem.8b02359

    32. [32]

      Liu B C, Li H, Cao B, Jiang J N, Gao R, Zhang J. Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range[J]. Adv. Funct. Mater., 2018, 28(30):  1801527. doi: 10.1002/adfm.201801527

    33. [33]

      Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications[J]. ACS Catal., 2012, 2(5):  781-794. doi: 10.1021/cs200652y

    34. [34]

      Fu H B, Xu T G, Zhu S B, Zhu Y F. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environ. Sci. Technol., 2008, 42(21):  8064-8069. doi: 10.1021/es801484x

    35. [35]

      Hare J P, John Dennis T, Kroto H W, Taylor R, Wahab Allaf A, Balm S, Walton D R M. The IR spectra of fullerene-60 and -70[J]. J. Chem. Soc. Chem. Commun., 1991, 6:  412-413.

    36. [36]

      Zhang W, Yan H J, Liu Y, Wang D X, Jiao Y Q, Wu A P, Wang X W, Wang R H, Tian C G. Multi-interfacial engineering of an interlinked Ni2P-MoP heterojunction to modulate the electronic structure for efficient overall water splitting[J]. J. Mater. Chem. A, 2023, 11(27):  15033-15043. doi: 10.1039/D3TA01789C

    37. [37]

      Huang X K, Wang X, Jiang P B, Lan K, Qin J H, Gong L, Wang K Z, Yang M, Ma L, Li R. Ultrasmall MoP encapsulated in nitrogen-doped carbon hybrid frameworks for highly efficient hydrogen evolution reaction in both acid and alkaline solutions[J]. Inorg. Chem. Front., 2019, 6(6):  1482-1489. doi: 10.1039/C9QI00279K

    38. [38]

      Yang C, Wang X P, Wu Y L, T , Hu T L, Jin Z L. Rational construction of electrostatic self-assembly of metallike MoP and ZnIn2S4 based on density functional theory to form Schottky junction for photocatalytic hydrogen production[J]. Sol. RRL, 2023, 7(11):  2300311.

    39. [39]

      Kolsch S, Fritz F, Fenner M A, Kurch S, Wöhrl N, Mayne A J, Dujardin G, Meyer C. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond[J]. J. Appl. Phys., 2018, 123(1):  015103. doi: 10.1063/1.5019486

    40. [40]

      Wei C, Xu Z J. The comprehensive understanding of 10 mA·cmgeo-2 as an evaluation parameter for electrochemical water splitting[J]. Small Methods, 2018, 2(11):  1800168. doi: 10.1002/smtd.201800168

    41. [41]

      Wei T R, Meng G, Zhou Y H, Wang Z F, Liu Q, Luo J, Liu X J. Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater[J]. Chem. Commun., 2023, 59(66):  9992-9995. doi: 10.1039/D3CC02419A

    42. [42]

      Pu Z H, Saana Amiinu I, Wang M, Yang Y S, Mu S C. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range[J]. Nanoscale, 2016, 8(16):  8500-8504. doi: 10.1039/C6NR00820H

    43. [43]

      Wu Z X, Wang J, Liu R, Xia K D, Xuan C J, Guo J P, Lei W, Wang D L. Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes[J]. Nano Energy, 2017, 32:  511-519. doi: 10.1016/j.nanoen.2017.01.014

    44. [44]

      Ojha K, Sharma M, Kolev H, Ganguli A K. Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media[J]. Catal. Sci. Technol., 2017, 7(3):  668-676. doi: 10.1039/C6CY02406H

    45. [45]

      Li Y, Cai L, Huang Q L, Liu J, Tang R R, Zhou W H. Highly efficient synthesis of carbon-based molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution[J]. Nanoscale Res. Lett., 2020, 15(1):  6. doi: 10.1186/s11671-020-3246-x

    46. [46]

      Yan H J, Jiao Y Q, Wu A P, Tian C G, Zhang X M, Wang L, Ren Z Y, Fu H G. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range[J]. Chem. Commun., 2016, 52(61):  9530-9533. doi: 10.1039/C6CC04220A

    47. [47]

      Zhao Y, Wang S, Li C Y, Yu X B, Zhu C L, Zhang X T, Chen Y J. Nanostructured molybdenum phosphide/N, P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution[J]. RSC Adv., 2016, 6(9):  7370-7377. doi: 10.1039/C5RA24773J

    48. [48]

      Wang D Z, Duan Q F, Wu Z Z. Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation[J]. Mater. Lett., 2019, 241:  227-230. doi: 10.1016/j.matlet.2019.01.095

    49. [49]

      Zhang X Y, Wu Z Z, Wang D Z. Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media[J]. Electrochim. Acta, 2018, 281:  540-548. doi: 10.1016/j.electacta.2018.05.176

    50. [50]

      Wang K W, Tan J S, Lu Z J, Chen S, She X L, Zhang H W, Yang D J. Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2018, 43(30):  13939-13945. doi: 10.1016/j.ijhydene.2018.02.012

    51. [51]

      Liang X, Zhang D Z, Wu Z Z, Wang D Z. The Fe-promoted MoP catalyst with high activity for water splitting[J]. Appl. Catal. A-Gen., 2016, 524:  134-138. doi: 10.1016/j.apcata.2016.06.029

    52. [52]

      Wang T Y, Du K Z, Liu W L, Zhu Z W, Shao Y H, Li M X. Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation[J]. J. Mater. Chem. A, 2015, 3(8):  4368-4373. doi: 10.1039/C4TA06651K

    53. [53]

      Wang S, Wang J, Li P, Wu Z X, Liu X E. N, P-codoped carbon layer coupled with MoP nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction[J]. Materials, 2018, 11(8):  1316. doi: 10.3390/ma11081316

    54. [54]

      Chen X B, Wang D Z, Wang Z P, Zhou P, Wu Z Z, Jiang F. Molybdenum phosphide: A new highly efficient catalyst for the electrochemical hydrogen evolution reaction[J]. Chem. Commum., 2014, 50(79):  11683-11685. doi: 10.1039/C4CC05936K

    55. [55]

      Wang D Z, Zhang X Y, Zhang D Z, Shen Y L, Wu Z Z. Influence of Mo/P ratio on CoMoP nanoparticles as highly efficient HER catalysts[J]. Appl. Catal. A-Gen., 2016, 511:  11-15. doi: 10.1016/j.apcata.2015.11.029

    56. [56]

      Wu J, Wang X, Zheng W H, Sun Y, Xie Y, Ma K K, Zhang Z, Liao Q L, Tian Z, Kang Z, Zhang Y. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction[J]. J. Am. Chem. Soc., 2022, 144(41):  19163-19172. doi: 10.1021/jacs.2c08726

    57. [57]

      Ge W X, Chen Y X, Fan Y, Zhu Y H, Liu H L, Song L, Liu Z, Lian C, Jiang H L, Li C Z. Dynamically formed surfactant assembly at the electrified electrode-electrolyte interface boosting CO2 electroreduction[J]. J. Am. Chem. Soc., 2022, 144(14):  6613-6622. doi: 10.1021/jacs.2c02486

    58. [58]

      Peng W, Li X G, He Z M, Li Z S, Zhang X Y, Sun X P, Li Q, Yang H, Han J T, Huang Y H. Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2021, 299:  120657. doi: 10.1016/j.apcatb.2021.120657

    59. [59]

      Li J, Huang H, Cao X X, Wu H H, Pan K M, Zhang Q B, Wu N T, Liu X M. Template-free fabrication of MoP nanoparticles encapsulated in N-doped hollow carbon spheres for efficient alkaline hydrogen evolution[J]. Chem. Eng. J., 2021, 416:  127677. doi: 10.1016/j.cej.2020.127677

  • 图 1  (a) C60-MoP-CFs的合成示意图; (b) MoP-CFs和C60-MoP-CFs的PXRD图; (c) 10% C60-MoP-CFs的SEM图; (d、e) 10% C60-MoP-CFs的TEM图(插图: HRTEM图); (f) 10% C60-MoP-CFs的HAADF-STEM图和相应的元素分布图

    Figure 1  (a) Synthesis schematic of C60-MoP-CFs; (b) PXRD patterns of MoP-CFs and C60-MoP-CFs; (c) SEM image of 10% C60-MoP-CFs; (d, e) TEM images of 10% C60-MoP-CFs (inset: HRTEM image); (f) HAADF-STEM image and corresponding elemental mappings of 10% C60-MoP-CFs

    图 2  未修饰的MoP-CFs(a)、5% C60-MoP-CFs(b)、15% C60-MoP-CFs(c)和20% C60-MoP-CFs(d)的SEM图

    Figure 2  SEM images of undecorated MoP-CFs (a), 5% C60-MoP-CFs (b), 15% C60-MoP-CFs (c), and 20% C60-MoP-CFs (d), respectively

    图 3  MoP-CFs、C60和10% C60-MoP-CFs的拉曼(a)和红外(b)谱图

    Figure 3  Raman (a) and FTIR (b) spectra of MoP-CFs, C60, and 10% C60-MoP-CFs

    图 4  MoP-CFs和10% C60-MoP-CFs的XPS谱图(a)及Mo3d (b)、P2p (c)和C1s (d)的高分辨XPS谱图

    Figure 4  XPS spectra (a) and high-resolution XPS spectra of the Mo3d (b), P2p (c), and C1s (d) for MoP-CFs and 10% C60-MoP-CFs, respectively

    图 5  Pt/C、MoP-CFs和C60-MoP-CFs在0.5 mol·L-1 H2SO4中的LSV极化曲线(a)和Tafel斜率图(b); Pt/C、MoP-CFs和C60-MoP-CFs在1.0 mol·L-1 KOH中的LSV极化曲线(c)和Tafel斜率图(d); 样品在酸性条件下的双电层电容图(e) 和对应ECSA归一化LSV极化曲线(f)

    Figure 5  LSV polarization curves (a) and Tafel slopes (b) of Pt/C, MoP-CFs, and C60-MoP-CFs in 0.5 mol·L-1 H2SO4; LSV polarization curves (c) and Tafel slopes (d) of Pt/C, MoP-CFs, and C60-MoP-CFs in 1.0 mol·L-1 KOH; Double layer capacitance under acidic conditions (e) and corresponding ECSA-normalized LSV curves (f) of the samples

    Δj = ja-jc.

    图 6  MoP-CFs和10% C60-MoP-CFs在0.5 mol·L-1 H2SO4溶液中不同测试电压下的EIS图(a、b)和Bode相位图(c、d)

    Figure 6  EIS plots (a, b) and Bode phase plots (c, d) of MoP-CFs and 10% C60-MoP-CFs at different applied potentials in 0.5 mol·L-1 H2SO4

    图 7  10% C60-MoP-CFs在(a) 0.5 mol·L-1 H2SO4和(b) 1.0 mol·L-1 KOH中3 000圈CV前后的LSV图; (c) 10% C60-MoP-CFs在0.5 mol·L-1 H2SO4和1.0 mol·L-1 KOH中的i-t图; (d) 3 000圈CV后的PXRD图(插图: 稳定性测试之后的SEM图)

    Figure 7  LSV curves before and after 3 000 cycles of CV for 10% C60-MoP-CFs in (a) 0.5 mol·L-1 H2SO4 and (b) 1.0 mol·L-1 KOH, respectively; (c) i-t plots of 10% C60-MoP-CFs in 0.5 mol·L-1 H2SO4 and 1.0 mol·L-1 KOH; (d) PXRD pattern after 3 000 cycles of CV (inset: the SEM image after stabilization test)

    图 8  稳定性测试前后10% C60-MoP-CFs的Mo3d (a)和P2p (b)高分辨XPS谱图

    Figure 8  High-resolution XPS spectra of the Mo3d (a) and P2p (b) of 10% C60-MoP-CFs before and after stabilization test

    表 1  类似催化剂在0.5 mol·L-1 H2SO4中的HER活性

    Table 1.  HER activities of similar catalysts in 0.5 mol·L-1 H2SO4

    Catalyst Working electrode η10/mV Tafel slope/(mV·dec-1) Ref.
    10% C60-MoP-CFs Glassy carbon 158 105 This work
    MoP-CFs Glassy carbon 213 146 This work
    MoP2 NPs/Mo Mo plate 194 80 [42]
    MoP-C Glassy carbon 169 70 [43]
    MoP-RGO Glassy carbon 150 66 [18]
    rGO-A-MoP Glassy carbon 162 57 [44]
    MoP-NC Glassy carbon 131 66 [45]
    MoP/rGO Glassy carbon 140 72 [46]
    MoP/N, P-CNTs Carbon paper 117 58 [47]
    下载: 导出CSV

    表 2  类似催化剂在1.0 mol·L-1 KOH中的HER活性

    Table 2.  HER activities of similar catalysts in 1.0 mol·L-1 KOH

    Catalyst Working electrode η10/mV Tafel slope/(mV·dec-1) Ref.
    10% C60-MoP-CFs Glassy carbon 157 101 This work
    MoP-CFs Glassy carbon 208 201 This work
    MoP/MoS2 Glassy carbon 101 56 [15]
    MoP/MoO2 Glassy carbon 173 58 [48]
    DR-MoP Glassy carbon 156 49 [49]
    MoP/Fe2P/RGO Glassy carbon 156 51 [50]
    Fe-MoP Glassy carbon 195 49 [51]
    MoP Glassy carbon 150 56 [52]
    MoP/NPCs Glassy carbon 205 71 [53]
    MoP nanoparticles Glassy carbon 246 60 [54]
    CoMoP Glassy carbon 215 50 [55]
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  219
  • HTML全文浏览量:  41
文章相关
  • 发布日期:  2024-04-10
  • 收稿日期:  2023-08-02
  • 修回日期:  2024-01-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章