Polyoxometalate-directing calix[4]resorcinarene-based giant [Co8] coordination cage: Self-assembly and electrochemical performance

Ting-Ting GUO Yan-Yan AN Dan ZHAO Juan-Zhi YAN

Citation:  Ting-Ting GUO, Yan-Yan AN, Dan ZHAO, Juan-Zhi YAN. Polyoxometalate-directing calix[4]resorcinarene-based giant [Co8] coordination cage: Self-assembly and electrochemical performance[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(9): 1791-1799. doi: 10.11862/CJIC.2023.143 shu

多酸导向的间苯二酚杯[4]芳烃[Co8]配位笼的组装及电化学性质

    通讯作者: 郭婷婷, guott223@nenu.edu.cn
    闫娟枝, yanjuanzhi@tyu.edu.cn
  • 基金项目:

    山西省自然科学基金 202103021223002

    山西省高等学校科技创新项目 2021L578

摘要: 基于多金属氧酸盐(POM)的超分子配位笼的设计和组装引起了广泛的研究兴趣,但在合成过程中仍然存在挑战。本文中,我们报道了一例基于POM-杯芳烃的大型[Co8]配位笼[Co8(MTR4A)6Cl8](α-SiW12O402·30DMF·74EtOH(cage-1),该配位笼由6个碗状间苯二酚杯[4]芳烃(MTR4A)分子、8个Co(Ⅱ)阳离子、2个α-SiW12O404-抗衡阴离子和8个Cl-阴离子组装而成。值得注意的是,α-SiW12O404-阴离子通过氢键夹在层与层之间,形成一个三维超分子结构。此外,作为锂离子电池的负极材料,cage-1表现出良好的锂离子存储能力。cage-1也能够实现对亚硝酸盐(NO2-)的还原和抗坏血酸(AA)的氧化,是一种具有高活性的双功能催化剂。

English

  • Self-assembled supramolecular coordination cages have attracted considerable interest because of their prominent applications in gas storage, catalysis, and electrochemical sensing[1-6]. The coordination cages could be rationally assembled with directional bridging organic ligands and different types of metal ions[7-9]. From this perspective, calix[4]resorcinarene-based derivatives, possessing large inner cavities and controllable cavity environments, have been extensively utilized as building blocks for supramolecular self- assembly[10-13]. For instance, Pei et al. synthesized a giant coordination cage that was formed by the self- assembly of calix[4]resorcinarene, Zn(NO3)2·6H2O and 3,3′, 5,5′-azobenzene tetracarboxylic acid[14]. He et al. reported a huge cubic supramolecular nanocapsule bearing six calix[4]resorcinarene subunits[15]. The functionalized calix[4]resorcinarene cavitand is an essential building block for the controllable assembly of giant coordination cages[16-19].

    Polyoxometalates (POMs), one fascinating class of metal-oxo clusters, feature high-valent metal ions (e.g., V, Mo, W) and abundant redox active sites, which have been proven to be candidate anode materials used in lithium-ion batteries (LIBs)[20-23]. Nonetheless, POMs are easily soluble in electrolytes, limiting their wide application[24]. Therefore, the self-assembly of supramolecular coordination cages and POMs is a synthetic approach to take advantage of their structure features[25]. The POMs could act as inorganic building blocks and guest counter ions in the construction of inorganic-organic hybrid complexes[26-34]. Nevertheless, to our knowledge, POM-calixarene-based coordination cages have been rarely reported, since giant coordination cage self-assembly and the strategy of introducing POMs are still substantially challenging for crystal engineering in supramolecular chemistry[35].

    Based on the above consideration, we designed a new POM-calixarene-based [Co8] coordination cages, namely [Co8(MTR4A)6Cl8](α-SiW12O40)2·30DMF·74EtOH (cage-1), synthesized with a methyl imidazole functionalized resorcin[4]arene-based ligand (MTR4A), H4[SiO4(W3O9)4] and Co(Ⅱ) cations under solvothermal conditions (Scheme 1)[36]. Notably, cage-1 is a unique example of hexameric [Co8] cationic coordination cages surrounded by six MTR4A molecules with POMs counter anions. Importantly, cage-1 featured a satisfied lithium-ion storage capacity and stability. Moreover, cage-1 showed good electrochemical functions in reducing nitrite (NO2-) and oxidizing ascorbic acid (AA).

    Scheme 1

    Scheme 1.  Synthetic procedure for cage-1

    All materials were provided by pharmaceutical companies. FTIR spectroscopy was characterized using a Nicolet Magna 560 Fourier transform IR spectrometer in 4 000-400 cm-1. The VarioEL Ⅲ Elemental Analyzer was employed to collect elemental results on carbon, nitrogen, and hydrogen. The Rigaku SmartLab X-ray diffractometer was utilized to obtain powder X-ray diffraction (PXRD) patterns, under the graphite monochromatized Cu radiation (λ=0.154 nm, U=45 kV, I=40 mA, 2θ=2°-30°). An electrochemical workstation CHI660E was employed to record electrochemical behaviors. The LAND test system (LANHE CT2001A) was adopted for measuring the galvanostatic charge- discharge curves at 100 mA·g-1 and the potential of 0.01-3 V (vs Li/Li+).

    Purple crystals of cage-1 (24 mg, 80% based on MTR4A) were achieved from the solvothermal reaction of MTR4A (11 mg, 10 mmol), CoCl2·6H2O (10 mg, 40 mmol) and H4[SiO4(W3O9)4] (14 mg, 5 mmol) in DMF/EtOH (8 mL, 1∶1, V/V) at 80 ℃ for 3 d. Anal. Calcd. for Co8C574H990N78O232S24Cl8Si2W24(%): C, 36.85; H, 5.30; N, 5.84. Found(%): C, 37.22; H, 5.12; N, 5.78. IR data (KBr, cm-1): 3 121 (w), 2 937 (w), 1 666 (s), 1 530 (w), 1 467 (m), 1 386 (m), 1 337 (w), 1 285 (w), 1 251 (m), 1 147 (m), 1 095 (m), 1 055 (w), 1 013 (m), 971 (s), 922 (s), 804 (s), 691 (w), 662 (w), 584 (w), 534 (w).

    The Bruker D8 VENTURE X-ray diffractometer was used to record crystallographic data under the Cu Kα radiation (λ=0.154 178 nm) for cage-1 at 173 K. The structure was improved onto F2 using the full-matrix least-squares by adopting SHELXTL-2018/3 in WINGX[37-39]. All hydrogen atoms were placed geometrically. The highly disordered solvents were removed by the SQUEEZE routine in PLATON[40]. Table S1 and Table S2 (Supporting information) list structure refinement parameters and crystallographic results.

    The calix[4]resorcinarene-based [Co8] cationic coordination cage was achieved by self-assembly of MTR4A, H4[SiO4(W3O9)4] and CoCl2·6H2O under solvothermal conditions. Single-crystal X-ray diffraction reveals that cage-1 crystallizes in space group P1 within a triclinic system. As shown in Fig. 1a, cage-1 is composed of six calix[4]resorciarene molecules, eight Co(Ⅱ) cations, two α-SiW12O404- counter anions, and eight Cl- anions. Each Co(Ⅱ) center adopts the four- coordinated mode by three nitrogen atoms from the three adjacent ligands, with Co—N distances of 0.197 5-0.205 5 nm, and one chlorine atom, with Co—Cl distances of 0.205 5-0.22 51 nm, featuring an elegant nanosized [Co8] coordination cage. The two free α-SiW12O404- anions act as counter ions to balance the negative charge. Noticeably, the α-SiW12O404- anions reveal two different connected modes through weak C—H…O hydrogen-bonding interactions. The related hydrogen bond data are listed in Table 1. They both are surrounded by three MTR4A ligands, the difference is that one α-SiW12O404- anion is surrounded by three cages from one direction, while the other from different directions to produce a 3D supramolecular structure (Fig. 1b and 1c). As far as we know, cage-1 represents the initial instance where six calix[4]resorcinarene molecules are linked together via metal cations to form a charming [Co8] cationic cage with two free α-SiW12O404- anions (Fig. 1d).

    Figure 1

    Figure 1.  (a) Structure of cage-1; (b) α-SiW12O404- cation with three cages from one direction by hydrogen bonding; (c) α-SiW12O404- cation with three cages from different directions by hydrogen bonding; (d) Hydrogen-bonding supramolecular structure of cage-1

    Table 1

    Table 1.  Hydrogen-bonding parameters for cage-1
    下载: 导出CSV
    D—H…A d(D—H) / nm d(H…A) / nm d(D…A) / nm ∠D—H…A / (°)
    C49—H49#3…O61 0.095 0.259 0.330(2) 132.4
    C105—H105#1…O37 0.095 0.225 0.310(3) 149.7
    C114—H114#2…O66 0.095 0.251 0.326(3) 136.2
    C115—H11B#2…O79 0.098 0.240 0.322(2) 141.6
    C162—H162#6…O68 0.095 0.230 0.317(2) 152.2
    C163—H16C#6…O47 0.098 0.256 0.330(17) 132.2
    C214—H21B#5…O33 0.098 0.251 0.323(3) 130.3
    C280—H28C#4…O39 0.098 0.259 0.321(3) 121.2
    C336—H33G#3…O45 0.098 0.246 0.301(3) 115.1
    Symmetry codes: #1: -x+1, -y+1, z; #2: -x+1, -y+1, -z+1; #3: -x+2, -y, -z+1; #4: x, y+1, z; #5: x+1, y+1, z; #6: x+1, y+1, z+2.

    Given the potential application of POM-based materials, the electrochemical properties of cage-1 as anode materials for LIBs were studied[41-43]. The storage performance of LIBs was analyzed through galvanostatic current charge-discharge experiments and cyclic voltammetry (CV). Fig. 2a presents CV curves for cage-1 from 0.01 to 3 V at a scan rate of 0.1 mV·s-1. One wide reduction peak could be observed near 1.48 V during the first anodic scan, which disappeared in subsequent cycles and was associated with solid electrolyte interface (SEI) generation. And another peak at 0.8 V is attributed to the Li+ ions insertion. In the first cathodic scan, the peak detected near 1.2 V could be caused by Li+ ions deintercalation[22, 44-46]. The electrochemical redox process mainly occurred on the W species in POMs and the probable reaction mechanism may be expressed as follows[47]:

    $ \begin{align} & \left[ \text{C}{{\text{o}}_{8}}{{(\text{MTR}4\text{A})}_{6}}\text{C}{{\text{l}}_{8}} \right]{{\left( \alpha -\text{Si}{{\text{W}}^{\text{VI}}}_{12}{{\text{O}}_{40}} \right)}_{2}}+24\text{L}{{\text{i}}^{+}}+24{{\text{e}}^{-}}\rightleftharpoons \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \text{C}{{\text{o}}_{8}}\text{L}{{\text{i}}_{24}}{{(\text{MTR}4\text{A})}_{6}}\text{C}{{\text{l}}_{8}} \right]{{\left[ \alpha -\text{Si}{{\text{W}}^{\text{V}}}_{12}{{\text{O}}_{40}} \right]}_{2}} \\ \end{align} $

    Figure 2

    Figure 2.  Electrochemical performance of cage-1: (a) CV curves at 0.1 mV·s-1; (b) galvanostatic discharge-charge profiles; (c) cycling performance for 1 000 cycles; (d) rate performance under diverse current densities from 0.1 to 5 A·g-1

    This similar reaction mechanism has been widely observed in the reported POM-calixarene-based complexes[22, 43]. In subsequent scans, the CV curves matched well, indicating that cage-1 has good electrochemical stability and reversibility.

    To explore the charge-discharge capability, galvanostatic current charge-discharge experiments with the current density of 100 mA·g-1 were studied. According to Fig. 2b, cage-1 had the original charge and discharge capacities of 394 and 1 081 mAh·g-1, respectively. Relative to commercial graphite, cage-1 exhibited a higher capacity. Discharge capacity in the second cycle was reduced to 428 mAh·g-1, mainly attributed to the irreversible consumption of Li during SEI film generation. Obviously, the storage capacity of cage-1 was higher than that of commercial graphite, which may be the contribution of the synergistic effect between POMs and the MTR4A ligand.

    Cycling stability is also a critical factor for evaluating the electrochemical performance of cage-1 as the LIBs anode material. Comprehensive long-term cycling performance at 100 mA·g-1 was further investigated. As shown in Fig. 2c, the original discharge capacity can be ignored due to SEI formation in the initial discharge process. The anodes delivered a 428 mAh·g-1 capacity in the second cycle, which remained 83% (356 mAh·g-1) following 100 cycles. Further, the cycling performance was detected under various current rates (Fig.S1), where the discharge capacity remained good. The relatively stable electrochemical performance suggests that cage-1 is an effective anode material for LIB.

    Normally, the rate performance of LIB is the important assessment criterion for commercialized applications. The rate capability of cage-1 was assessed under diverse current densities. According to Fig. 2d, the electrode showed capacities of 321, 281, 244, 203, 192, 149, 108, 92, 325, and 333 mAh·g-1 at 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 5, and 0.1 A·g-1, respectively. The 333 mAh·g-1 reversible capacity was resumed when the current density was lowered back to 0.1 A·g-1, demonstrating that cage-1 has good reversibility as the LIBs anode material. Moreover, the electrochemical performance comparison of cage-1 with those reported complexes-based anodes for LIBs is given in Table S3. Notably, the discharge capacity was comparable to the reported complexes. The Li+ ions storage mechanism of cage-1 may attribute to the synergistic effects of POMs and the MTR4A ligand. On the one hand, POMs in cage-1 contain rich O sites, which can bind with Li+. In addition, the valence of metal W can be changed from +6 to +5 to promote the storage of Li+[38]. On the other hand, the MTR4A ligand possesses uncoordinated N and S atoms, which can capture Li+ ions and participate in the insertion of Li, resulting in better electrochemical performance[43, 48].

    Additionally, POMs have been widely used in the field of electrocatalysis due to their good electron transfer and storage ability[49-53]. Some inorganic reagents and small biological molecules, such as nitrite (NO2-), bromine ion (BrO3-), H2O2, and ascorbic acid (AA), can be usually chosen to be the redox probes for electro-catalytic redox. Herein, NO2- and AA were selected to explore the electro-catalytic behaviors of cage-1 modified carbon paste electrode (cage-1/CPE). Firstly, CV curves for cage-1/CPE were measured at 50 mV·s-1 in an H2SO4-Na2SO4 solution. As illustrated in Fig. 3a, the midpoint potentials (Em) for Ⅰ-Ⅰ′, Ⅱ-Ⅱ′ and Ⅲ-Ⅲ′ redox couples have been calculated using the tangential method for cage-1/CPE. The observed values of 0.03, -0.35, and -0.63 V can be attributed to the electron redox process involving central metal W in α-SiW12O404-[54]. Moreover, the Em of cage-1/CPE at 0.44 V (Ⅳ-Ⅳ′) suggests the occurrence of an electron redox process associated with the Co(Ⅱ)/Co centers within the cage-1. Furthermore, the CV curves at different scan rates were determined in the same electrolyte. And with the increase of scan rates, the oxidation peak gradually moved towards the direction of higher potential, while the reduction peak moved in the opposite direction. Further, the scan rates were found to increase proportionally upon increasing the redox peak currents, which proves that cage-1/CPE adopts a surface-confined route (Fig. 3b)[55].

    Figure 3

    Figure 3.  CV curves of cage-1/CPE in H2SO4-Na2SO4 solutions: (a) at the 50 mV·s-1 scan rate; (b) at diverse scan rates of 50-500 mV·s-1 (Inset: linear relationships of the anode and the cathode peak current of Ⅲ-Ⅲ' vs scan rate); (c) with different AA concentrations (Scan rate: 50 mV·s-1; Inset: linear relationship of Ip vs cAA); (d) with different NO2- concentrations (Scan rate: 50 mV·s-1; Inset: linear relationship of Ip vs cNO2-)

    The CV responses for cage-1/CPE were analyzed with NO2- and AA at a current density of 50 mA·g-1 within the H2SO4-Na2SO4 aqueous solutions. As shown in Fig. 3c, oxidation peak currents for cage-1/CPE changed as AA concentration elevated (from 0 to 20 mmol·L-1). The AA oxidation is catalyzed by electron transfer via redox couple of Co(Ⅱ)/Co. Furthermore, as shown in Fig. 3d, the reduction peak currents continued to increase with adding NaNO2 (from 0 to 20 mmol·L-1), demonstrating the occurrence of the reduction of NO2-. And the proposed redox mechanism is defined as shown in equations[56]:

    $ \begin{array}{l} {\rm{Si}}{{\rm{W}}^{\rm{V}}}_{12 - n}{{\rm{W}}^{\rm{V}}}_n{{\rm{O}}_{40}}^{(4 + n) - } + {\rm{NO}}_2^ - + x{{\rm{H}}^ + } \to \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{Si}}{{\rm{W}}^{{\rm{VI}}}}_{12}{{\rm{O}}_{40}}^{4 - } + {\rm{products }} \end{array} $

    $ \begin{array}{l} {\rm{Si}}{{\rm{W}}^{{\rm{VI}}}}_{12 - n}{{\rm{W}}^{\rm{V}}}_n{{\rm{O}}_{40}}^{(4 + n) - } + {\rm{NO}} + y{{\rm{H}}^ + } \to \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{Si}}{{\rm{W}}^{{\rm{VI}}}}_{12}{{\rm{O}}_{40}}^{4 - } + {\rm{products }} \end{array} $

    Co2+ + C6H8O6 → Co + C6H6O6

    The electrocatalytic efficiency (ηCAT) of cage-1/CPE was calculated to be 77.68%, 134.04%, 209.70%, and 285.66% for AA, and ηCAT of NO2- was calculated to be 63.03%, 110.33%, 163.79%, and 187.58% (Fig. 4 and Table S4)[57-58]. According to the results, cage-1/CPE shows better performance for the oxidation of AA than the reduction of NO2-.

    Figure 4

    Figure 4.  Histogram graph of ηCAT vs concentration of AA (red) and NO2- (blue) for cage-1/CPE

    To conclude, we present a polyoxometalate- directing calix[4]resorcinarene-based giant [Co8] coordination cage (cage-1). The cage is determined to be a nanoscale coordination cage constructed from six bowl-shaped calix[4]resorcinarene molecules, eight Co(Ⅱ) cations, two α-SiW12O404- counter anions, and eight Cl- anions. The successful assembly of cage-1 demonstrates that the introduction of POM is conducive to constructing multifunctional coordination cages. Markedly, cage-1 features active POMs and Co(Ⅰ) sites, showing good lithium-ion storage capacity. And cage-1 could reduce NO2- and oxidize AA, making it a bifunctional catalyst with high activity. This work provides a feasible way to synthesize and design functionalized POM-calixarene-based coordination cages.


    Acknowledgments: The current work was supported by the Natural Science Foundation of Shanxi Province (Grant No.202103021223002), the Scientific and Technological Innovation Programs of the Higher Education Institutions of Shanxi (Grant No.2021L578), and the Doctoral Starting Research Foundation of Taiyuan University. Conflicts of interest: All authors claimed no competing interest.
    Supporting information is available at http://www.wjhxxb.cn
    1. [1]

      Sun Y, Chen C, Liu J, Stang P J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination[J]. Chem. Soc. Rev., 2020, 49:  3889-3919. doi: 10.1039/D0CS00038H

    2. [2]

      Pullen S, Clever G H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds-a comparison[J]. Acc. Chem. Res., 2018, 51:  3052-3064. doi: 10.1021/acs.accounts.8b00415

    3. [3]

      Shi W J, Liu D, Li X, Bai S, Wang Y Y, Han Y F. Supramolecular coordination cages based on N-heterocyclic carbene-gold(Ⅰ) ligands and their precursors: Self-assembly, structural transformation, and guest-binding properties[J]. Chem. Eur. J., 2021, 27(29):  7853-7861. doi: 10.1002/chem.202100710

    4. [4]

      Jiang W L, Shen J C, Peng Z, Wu G Y, Yin G Q, Shi X, Yang H B. Controllable synthesis of ultrasmall Pd nanocatalysts templated by supramolecular coordination cages for highly efficient reductive dehalogenation[J]. J. Mater. Chem. A, 2020, 8:  12097-12105. doi: 10.1039/D0TA02725A

    5. [5]

      Fang Y, Powell J A, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou H C. Catalytic reactions within the cavity of coordination cages[J]. Chem. Soc. Rev., 2019, 48:  4707-4730. doi: 10.1039/C9CS00091G

    6. [6]

      Sánchez-González E, Tsang M Y, Troyano J, Craig G A, Furukawa S. Assembling metal-organic cages as porous materials[J]. Chem. Soc. Rev., 2022, 51:  4876-4889. doi: 10.1039/D1CS00759A

    7. [7]

      Schneider M L, Linder-Patton O M, Bloch W M. A covalent deprotection strategy for assembling supramolecular coordination polymers from metal-organic cages[J]. Chem. Commun., 2020, 56:  12969-12972. doi: 10.1039/D0CC05349J

    8. [8]

      Lin H, Xiao Z, Le K N, Yan T H, Cai P, Yang Y, Day G S, Drake H F, Xie H, Bose R, Ryan C A, Hendon C H, Zhou H C. Assembling phenothiazine into a porous coordination cage to improve its photocatalytic efficiency for organic transformations[J]. Angew. Chem. Int. Ed., 2022, 61:  e202214055. doi: 10.1002/anie.202214055

    9. [9]

      Lorzing G R, Gosselin A J, Lindner B S, Bhattacharjee R, Yap G P A, Caratzoulasc S, Bloch E D. Design and synthesis of capped-paddlewheel-based porous coordination cages[J]. Chem. Commun., 2019, 55:  9527-9530. doi: 10.1039/C9CC05002G

    10. [10]

      Pei W Y, Xu G H, Yang J, Wu H, Chen B L, Zhou W, Ma J F. Versatile assembly of metal-coordinated calix[4]resorcinarene cavitands and cages through ancillary linker tuning[J]. J. Am. Chem. Soc., 2017, 139:  7648-7656. doi: 10.1021/jacs.7b03169

    11. [11]

      Guo T T, Cheng D M, Yang J, Xu X X, Ma J F. Calix[4]resorcinarene-based[Co16]coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction[J]. Chem. Commun., 2019, 55:  6277-6280. doi: 10.1039/C9CC01828J

    12. [12]

      Wang S T, Gao X H, Hang X X, Zhu X F, Han H T, Li X K, Liao W P, Chen W. Calixarene-based {Ni18} coordination wheel: High efficient electrocatalyst for the glucose oxidation and template for the homogenous cluster fabrication[J]. J. Am. Chem. Soc., 2018, 140:  6271-6277. doi: 10.1021/jacs.7b13193

    13. [13]

      姚玉峰, 袁嘉怡, 沈明, 杜彬, 邢蓉. 两亲型杯芳烃诱导ZnO微纳结构的合成及光催化性能[J]. 无机化学学报, 2022,38,(2): 261-273. YAO Y F, YUAN J Y, SHEN M, DU B, XING R. Synthesis and photocatalytic performance of ZnO micro/nano materials induced by amphiphilic calixarene[J]. Chinese J. Inorg. Chem., 2022, 38(2):  261-273.

    14. [14]

      Pei W Y, Yang J, Wu H, Zhou W, Yang Y W, Ma J F. A calix[4] resorcinarene-based giant coordination cage: Controlled assembly and iodine uptake[J]. Chem. Commun., 2020, 56:  2491-2494. doi: 10.1039/D0CC00157K

    15. [15]

      He L P, Wang S C, Lin L T, Cai J Y, Li L J, Tu T H, Chan Y T. Multicomponent metallo-supramolecular nanocapsules assembled from calix[4]resorcinarene-based terpyridine ligands[J]. J. Am. Chem. Soc., 2020, 142:  7134-7144. doi: 10.1021/jacs.0c01482

    16. [16]

      Guo T T, Su X F, Xu X, Yang J, Yan L, Ma J F. A calix[4]resorcinarene-based[Co12]coordination cage for highly efficient cycloaddition of CO2 to epoxides[J]. Inorg. Chem., 2019, 58(24):  16518-16523. doi: 10.1021/acs.inorgchem.9b02473

    17. [17]

      Pei W Y, Lu B B, Yang J, Wang T, Ma J F. Two new calix[4]resorcinarene-based coordination cages adjusted by metal ions for the Knoevenagel condensation reaction[J]. Dalton Trans., 2021, 50:  9942-9948. doi: 10.1039/D1DT01139A

    18. [18]

      Lee J, Brewster J T, Song B, Lynch V M, Hwang I, Li X, Sessler J L. Uranyl dication mediated photoswitching of a calix[4]pyrrole-based metal coordination cage[J]. Chem. Commun., 2018, 54:  9422-9425. doi: 10.1039/C8CC05160G

    19. [19]

      Kashapov R, Razuvayeva Y, Ziganshina A, Sergeeva T, Kashapova N, Sapunova A, Voloshina A, Nizameev I, Salnikov V, Zakharova L. Supramolecular assembly of calix[4]resorcinarenes and chitosan for the design of drug nanocontainers with selective effects on diseased cells[J]. New J. Chem., 2020, 44:  17854-17863. doi: 10.1039/D0NJ02163F

    20. [20]

      Sun K, Li H Q, Ye H J, Jiang F Q, Zhu H, Yin J. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2018, 10:  18657-18664. doi: 10.1021/acsami.8b03071

    21. [21]

      Ilbeygi H, Kim I Y, Kim M G, Cha W, Kumar P S M, Park D H, Vinu A. Highly crystalline mesoporous phosphotungstic acid: A high performance electrode material for energy storage applications[J]. Angew. Chem. Int. Ed., 2019, 58:  10849-10854. doi: 10.1002/anie.201901224

    22. [22]

      Liu J H, Yu M Y, Yang J, Liu Y Y, Ma J F. Polyoxometalate-based complex/graphene for high-rate lithium-ion batteries[J]. Microporous Mesoporous Mater., 2021, 310:  110666. doi: 10.1016/j.micromeso.2020.110666

    23. [23]

      Chen X X, Wang Z, Zhang R R, Xu L Q, Sun D. A novel polyoxometalate-based hybrid containing a 2D[CoMo8O26] structure as the anode for lithium-ion batteries[J]. Chem. Commun., 2017, 53:  10560-10563. doi: 10.1039/C7CC05741E

    24. [24]

      Liu W J, Yu G, Zhang M, Li R H, Dong L Z, Zhao H S, Chen Y J, Xin Z F, Li S L, Lan Y Q. Investigation of the enhanced lithium battery storage in a polyoxometalate model: from solid spheres to hollow balls[J]. Small Methods, 2018, 2:  1800154. doi: 10.1002/smtd.201800154

    25. [25]

      Wang M Y, Yuan Y Y, Qi Z Q, Chen J Y, Jiang Z G, Zhan C H. Two pseudo-T polyoxometalate-organic cages with the Td-Keggin template[J]. Chem. Mater., 2022, 34:  10501-10508. doi: 10.1021/acs.chemmater.2c02560

    26. [26]

      Taleghani S, Mirzaei M, Eshtiagh-Hosseini H, Frontera A. Tuning the topology of hybrid inorganic-organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective[J]. Coord. Chem. Rev., 2016, 309:  84-106.

    27. [27]

      Gao Y, Choudhari M, Such G K, Ritchie C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials[J]. Chem. Sci., 2022, 13:  2510-2527.

    28. [28]

      Cameron J M, Guillemot G, Galambos T, Amin S S, Hampson E, Haidaraly K M, Newton G N, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials[J]. Chem. Soc. Rev., 2022, 51:  293-328. doi: 10.1039/D1CS00832C

    29. [29]

      Centellas M S, Piot M, Salles R, Proust A, Tortech L, Brouri D, Hupin S, Abécassis B, Landy D, Bo C, Izzet G. Exploring the self-assembly of dumbbell-shaped polyoxometalate hybrids, from molecular building units to nanostructured soft materials[J]. Chem. Sci., 2020, 11:  11072-11080. doi: 10.1039/D0SC03243C

    30. [30]

      付玉, 刘宇航, 曲小姝, 刘树萍, 杨艳艳. Preyssler型多酸/TiO2纳米线复合修饰电极的制备及电催化性能研究[J]. 东北师大学报(自然科学版), 2022,54,95-99. FU Y, LIU Y H, QU X S, LIU S P, YANG Y Y. The study of modified electrode based on Preyssler type POMs/TiO2 nanowire composite: Fabrication and electrocatalytic properties[J]. Journal of Northeast Normal University (Natural Science Edition), 2022, 54:  95-99.

    31. [31]

      Liu J J, Fu J J, Liu T, Cheng F X. Photochromic polyoxometalate/naphthalenediimide hybrid structure with visible-light-driven dye degradation[J]. J. Solid State Chem., 2022, 312:  123236. doi: 10.1016/j.jssc.2022.123236

    32. [32]

      赵婕, 郭晴晴, 郑玉国, 龙巍然, 田红霞, 王真玉, 史振雨. 2,6-二甲基-3,5-二(吡唑-3-基)吡啶/铜构筑的一维链状Keggin型杂多酸盐的合成、结构及电化学性质研究[J]. 人工晶体学报, 2020,49,(3): 500-510. doi: 10.3969/j.issn.1000-985X.2020.03.020ZHAO J, GUO Q Q, ZHENG Y G, LONG W R, TIAN H X, WANG Z Y, SHI Z Y. Synthesis, structure and electrochemical properties of a 1D chain-like Keggin-based hybrid constructed by 2,6-dimethyl-3,5-bis (pyrazole-3-yl)pyridine and copper[J]. J. Synth. Cryst., 2020, 49(3):  500-510. doi: 10.3969/j.issn.1000-985X.2020.03.020

    33. [33]

      滕达, 王庆, 李娜, 赵海燕, 黄如丹. 基于多酸的超分子化合物的合成与电化学性质[J]. 分子科学学报, 2019,35,(2): 148-154. doi: 10.13563/j.cnki.jmolsci.2019.02.010TENG D, WANG Q, LI N, ZHAO H Y, HUANG R D. Synthesis and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science, 2019, 35(2):  148-154. doi: 10.13563/j.cnki.jmolsci.2019.02.010

    34. [34]

      田爱香, 李婷婷, 刘佳妮, 田妍, 应俊. 单一配体与混合配体协同构筑的一系列多酸基化合物: 结构、电化学及选择性光催化性能研究[J]. 中国科学: 化学, 2019,49,(2): 319-337. TIAN A X, LI T T, LIU J N, TIAN Y, YING J. A series of POM-based compounds constructed by mono-and mixed ligands synergetically: Structures, electrochemical and selective photocatalytic properties[J]. Scientia Sinica Chimica, 2019, 49(2):  319-337.

    35. [35]

      Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation[J]. Science, 2010, 328:  1144-1147. doi: 10.1126/science.1188605

    36. [36]

      Zhai Q Y, Su J, Guo T T, Yang J, Ma J F, Chen J S. Two porous polyoxometalate-resorcin[4]arene-based supramolecular complexes: Selective adsorption of organic dyes and electrochemical properties[J]. Cryst. Growth Des., 2018, 18:  6046-6053. doi: 10.1021/acs.cgd.8b00891

    37. [37]

      Sheldrick G M. SHELXS-2018, Program for the crystal structure solution. University of Göttingen, Germany, 2018.

    38. [38]

      Sheldrick G M. SHELXL-2018, Program for the crystal structure refinement. University of Göttingen, Germany, 2018.

    39. [39]

      Farrugia L J. WINGX: A Windows program for crystal structure analysis. University of Glasgow: Glasgow, UK, 1988.

    40. [40]

      Spek A L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Crystallogr., 2003, 36:  7-13. doi: 10.1107/S0021889802022112

    41. [41]

      Wang J X, Liu Y B, Sha Q, Cao D W, Hu H B, Shen T Y, He L, Song Y F. Electronic structure reconfiguration of self-supported polyoxometalate-based lithium-ion battery anodes for efficient lithium storage[J]. ACS Appl. Mater. Interfaces, 2022, 14(1):  1169-1176. doi: 10.1021/acsami.1c21461

    42. [42]

      Yang X L, Ye Y S, Wang Z M, Zhang Z H, Zhao Y L, Yang F, Zhu Z Y, Wei T. POM-based MOF-derived Co3O4/CoMoO4 nanohybrids as anodes for high-performance lithium-ion batteries[J]. ACS Omega, 2020, 5(40):  26230-26236. doi: 10.1021/acsomega.0c03929

    43. [43]

      Yu M Y, Liu J H, Yang J, Ma J F. A family of polyoxometalate-resorcin[4]arene-based metal-organic materials: Assemblies, structures and lithium ion battery properties[J]. J. Alloy. Compd., 2021, 868(5):  159009.

    44. [44]

      Ge D H, Peng J, Qu G L, Geng H B, Deng Y Y, Wu J J, Cao X Q, Zheng J W, Gu H W. Nanostructured Co(Ⅱ)-based MOFs as promising anodes for advanced lithium storage[J]. New J. Chem., 2016, 40:  9238-9244. doi: 10.1039/C6NJ02568D

    45. [45]

      Dong C F, Xu L Q. Cobalt-and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9:  7160-7168. doi: 10.1021/acsami.6b15757

    46. [46]

      Liu J H, Shen Q T, Yang J, Yu M Y, Ma J F. Polyoxometalate-templated cobalt-resorcin[4]arene frameworks: Tunable structure and lithium-ion battery performance[J]. Inorg. Chem., 2021, 60:  3729-3740. doi: 10.1021/acs.inorgchem.0c03511

    47. [47]

      Song Y D, Yu L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries[J]. Inorg. Chem., 2017, 56(19):  11603-11609. doi: 10.1021/acs.inorgchem.7b01441

    48. [48]

      Huang Q, Wei T, Zhang M, Dong L Z, Zhang A M, Li S L, Liu W J, Liu J, Lan Y Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance[J]. J. Mater. Chem. A, 2017, 5:  8477-8483. doi: 10.1039/C7TA00900C

    49. [49]

      Wang Z H, Wang X F, Tan Z, Song X Z. Polyoxometalate/metal-organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis[J]. Mater. Today, 2021, 19:  100618.

    50. [50]

      Zeb Z, Huang Y C, Chen L L, Zhou W B, Liao M H, Jiang Y Y, Li H T, Wang L M, Wang L, Wang H, Wei T, Zang D J, Fan Z J, Wei Y G. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction[J]. Chem. Soc. Rev., 2023, 482:  215058.

    51. [51]

      Fabre B, Falaise C, Cadot E. Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: Recent advances and prospects[J]. ACS Catal., 2022, 12(19):  12055-12091. doi: 10.1021/acscatal.2c01847

    52. [52]

      王玉, 谢有权, 王焕, 黄正, 柯德港, 陈伟洲, 伍平凡, 肖滋成. 六钒酸烷氧衍生物的电化学性质研究[J]. 分析科学学报, 2019,35,(5): 577-581. doi: 10.13526/j.issn.1006-6144.2019.05.009WANG Y, XIE Y Q, WANG H, HUANG Z, KE D G, CHEN W Z, WU P F, XIAO Z C. Electrochemical studies of tris(alkoxo)-derived hexavanadate[J]. Journal of Analytical Science, 2019, 35(5):  577-581. doi: 10.13526/j.issn.1006-6144.2019.05.009

    53. [53]

      周欣, 叶晶, 王志花, 靳素荣. 两个基于多金属氧簇和咪唑类化合物的有机-无机杂化物的合成及性质[J]. 无机化学学报, 2019,35,(1): 43-47. ZHOU X, YE J, WANG Z H, JIN S R. Two inorganic-organic hybrid crystals based on polyoxometallates and imidazole compounds: Syntheses and properties[J]. Chinese J. Inorg. Chem., 2019, 35(1):  43-47.

    54. [54]

      Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem. Rev., 1998, 98:  219-238. doi: 10.1021/cr960403a

    55. [55]

      Gao G G, Xu L, Wang W J, Qu X S, Liu H, Yang Y Y. Cobalt(Ⅱ)/nickel(Ⅱ)-centered keggin-type heteropolymolybdates: Syntheses, crystal structures, magnetic and electrochemical properties[J]. Inorg. Chem., 2008, 47:  2325-2333. doi: 10.1021/ic700797v

    56. [56]

      Antonio M R, Chiang M H. Stabilization of plutonium(Ⅲ) in the Preyssler polyoxometalate[J]. Inorg. Chem., 2008, 47:  8278-8285. doi: 10.1021/ic8008893

    57. [57]

      Zhou W L, Zheng Y P, Yuan G, Peng J. Three polyoxometalates-based organic-inorganic hybrids decorated with Cu-terpyridine complexes exhibiting dual functional electro-catalytic behaviors[J]. Dalton Trans., 2019, 48:  2598-2605. doi: 10.1039/C8DT04945A

    58. [58]

      Keita B, Belhouari A, Nadjo L, Contant R. Electrocatalysis by polyoxometalate/vbpolymer systems: Reduction of nitrite and nitric oxide[J]. J. Electroanal. Chem., 1995, 381:  243-250. doi: 10.1016/0022-0728(94)03710-K

  • Scheme 1  Synthetic procedure for cage-1

    Figure 1  (a) Structure of cage-1; (b) α-SiW12O404- cation with three cages from one direction by hydrogen bonding; (c) α-SiW12O404- cation with three cages from different directions by hydrogen bonding; (d) Hydrogen-bonding supramolecular structure of cage-1

    Figure 2  Electrochemical performance of cage-1: (a) CV curves at 0.1 mV·s-1; (b) galvanostatic discharge-charge profiles; (c) cycling performance for 1 000 cycles; (d) rate performance under diverse current densities from 0.1 to 5 A·g-1

    Figure 3  CV curves of cage-1/CPE in H2SO4-Na2SO4 solutions: (a) at the 50 mV·s-1 scan rate; (b) at diverse scan rates of 50-500 mV·s-1 (Inset: linear relationships of the anode and the cathode peak current of Ⅲ-Ⅲ' vs scan rate); (c) with different AA concentrations (Scan rate: 50 mV·s-1; Inset: linear relationship of Ip vs cAA); (d) with different NO2- concentrations (Scan rate: 50 mV·s-1; Inset: linear relationship of Ip vs cNO2-)

    Figure 4  Histogram graph of ηCAT vs concentration of AA (red) and NO2- (blue) for cage-1/CPE

    Table 1.  Hydrogen-bonding parameters for cage-1

    D—H…A d(D—H) / nm d(H…A) / nm d(D…A) / nm ∠D—H…A / (°)
    C49—H49#3…O61 0.095 0.259 0.330(2) 132.4
    C105—H105#1…O37 0.095 0.225 0.310(3) 149.7
    C114—H114#2…O66 0.095 0.251 0.326(3) 136.2
    C115—H11B#2…O79 0.098 0.240 0.322(2) 141.6
    C162—H162#6…O68 0.095 0.230 0.317(2) 152.2
    C163—H16C#6…O47 0.098 0.256 0.330(17) 132.2
    C214—H21B#5…O33 0.098 0.251 0.323(3) 130.3
    C280—H28C#4…O39 0.098 0.259 0.321(3) 121.2
    C336—H33G#3…O45 0.098 0.246 0.301(3) 115.1
    Symmetry codes: #1: -x+1, -y+1, z; #2: -x+1, -y+1, -z+1; #3: -x+2, -y, -z+1; #4: x, y+1, z; #5: x+1, y+1, z; #6: x+1, y+1, z+2.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  946
  • HTML全文浏览量:  60
文章相关
  • 发布日期:  2023-09-10
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-07-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章