3-((4,6-二甲基-2-嘧啶基)硫代)-丙酸和菲咯啉三元稀土配合物的晶体结构和发光性能
-
关键词:
- 菲咯啉
- / 3-((4,6-二甲基-2-嘧啶基)硫代)-丙酸
- / 稀土配合物
- / 单晶结构
- / 光致发光
English
Ternary lanthanide complexes of 3-((4, 6-dimethyl-2-pyrimidinyl)thio)-propanoic acid and 1, 10-phenanthroline: Crystal structure and photoluminescent property
-
Due to the forbidden nature of the 4f transitions and the lower molar absorption coefficients, lanthanide ions show very weak luminescence. Thus, the“ antenna”ligand is mandatory. The triplet energy level of the antenna should meet the energy level of the lanthanide ion[1-2]. Among the wide range of antenna ligands, carboxylate and 1, 10-phenanthroline (Phen) are proven to be the widely accepted antenna. Some ternary rare earth complexes based on carboxylate and Phen have been established. Here gives some carboxylate ligands: N-((benzoylamino)thioxomethyl)glycine, N -(p-acetami-dobenzenesulfonyl)glycine, malic acid, mandelic acid, N - ((4 - methylphenyl)sulfonyl)glycine, L - proline, 2, 4 - dinitro - benzoic acid, and α - naphthyl acetic acid[3-14]. Furthermore, the biological activity of some rare earth complexes based on 2 - ((4, 6 - dimethyl - 2 - pyrimidinyl) thio)-acetic acid has been reported[15-16].
In this work, considering the potential antenna property of carboxylate and Phen, the 3-((4, 6-dimethyl-2 - pyrimidinyl)thio) - propanoic acid (HL), as well as Phen, were introduced to react with lanthanide (Eu, Tb) ions giving the corresponding ternary lanthanide complexes. Meanwhile, we proved the prepared products are two isostructural lanthanide complexes. Importantly, some unique solid-state photoluminescent properties were found in this system.
1. Experimental
1.1 Material and methods
HL was prepared following the published literature[16]. All other chemicals were analytically pure from commercial sources and used without further purifica-tion. Elemental analyses on C, H, S, and N were performed on a German Elementary Vario EL Ⅲ instrument. The IR spectra were recorded on KBr disks using a Nicolet - Avatar 370 spectrometer between 400 and 4 000 cm-1. Thermogravimetric (TG) analyses were carried out on a NETZSCH STA 449 C unit at a heating rate of 10 ℃·min-1. Photoluminescence studies were performed on an Edinburgh FLS920 fluorescent spectrometer in a solid state.
1.2 Syntheses of complexes 1 and 2
A mixture of HL (0.641 g, 3.0 mmol) and Phen (0.198 g, 1.0 mmol) was dissolved in 50 mL ethanol. Then, the lanthanide nitrate hexahydrate (1.0 mmol) was added to the mixture. NH3·H2O was added dropwise until the pH value was 6.5. The mixture was kept stirring overnight at room temperature. A large amount of white precipitate was formed. After filtration and washing with water and ethanol, the white solid was obtained. Single crystals suitable for single-crystal X - ray diffraction were obtained from the filtrate after ca. 8 d.
Complex [Eu(L)3(Phen)]2·2H2O (1): white solid, Yield: 0.104 g, 54%. IR (ATR, cm-1): 3 442(m), 2 924 (w), 1 608(vs), 1 582(vs), 1 557(s), 1 478(w), 1 423(s), 1 393(s), 1 340(w), 1 269(s), 1 225(m), 1 176(w), 1 013 (w), 883(w), 764(m), 710(w), 545(w). Anal. Calcd. for C39H43EuN8O7S3(%): C, 47.61; H, 4.41; N, 11.39; S, 9.77. Found(%): C, 48.09; H, 4.48; N, 11.98; S, 10.39.
Complex [Tb(L)3(Phen)]2·2H2O (2): white solid, 0.114 g, 59%. IR (ATR, cm-1): 3 422(w), 3 050(w), 2 923(w), 1 604(vs), 1 580(vs), 1 551(s), 1 425(vs), 1 339(m), 1 304(m), 1 264(vs), 1 208(m), 1 139(m), 1 102(m), 1 004(w), 948(w), 845(m), 730(m), 690(m), 545(w). Anal. Calcd. for C39H43N8O7S3Tb(%): C, 47.27; H, 4.37; N, 11.31; S, 9.71. Found(%): C, 47.39; H, 4.61; N, 11.96; S, 10.00.
1.3 X-ray crystallography
A suitable crystal was covered in mineral oil and mounted on a glass fiber and directly transferred to a Brucker D8 advance diffractometer equipped with a sealed Mo tube and a graphite monochromator using Mo Kα radiation (λ =0.071 073 nm). All structures were solved by the direct methods using SHELXS[17-18] and refined on F 2 with SHELXL and Olex2[19]. All nonhydrogen atoms were refined anisotropically and hydrogen atoms were determined with theoretical calculations. Multi-scan absorption correction was applied to the intensity data using the SADABS program[20]. SQUEEZE routine in PLATON was employed to remove the corresponding Q peaks, which may be identified as two water molecules[16, 21].
The crystal data and structure refinement parameters for the complexes are summarized in Table 1. Images of the crystal structures were generated by Diamond, version 3.2 (software copyright, Crystal Impact GbR).
Table 1
Parameter 1 2 Empirical formula C78H86Eu2N16O14S6 C78H86N16O14S6Tb2 Formula weight 1 967.93 1 981.85 Temperature / K 273.15 273.15 Crystal system Monoclinic Monoclinic Space group C2/c C2/c a / nm 2.901 7(5) 2.900 61(11) b / nm 1.269 8(3) 1.261 20(5) c / nm 2.937 5(8) 2.935 21(16) β/(°) 117.590(5) 117.507 0(10) Volume / nm3 9.592(4) 9.523 9(7) Z 4 4 μ / mm-1 1.486 1.665 F(000) 3 920.0 3 936.0 Crystal size / mm 0.497×0.129×0.07 0.499×0.078×0.053 2θ range for data collection / (°) 2.810-28.588 2.872-28.621 Index ranges -37 ≤ h ≤ 37, -16 ≤ k ≤ 16, -38 ≤ l ≤ 38 -37 ≤ h ≤ 37, -16 ≤ k ≤ 16, -38 ≤ l ≤ 38 Reflection collected 74 688 73 978 Independent reflection 11 070 (Rint=0.133 8) 11 012 (Rint=0.117 9) Data, restraint, parameter 11 071, 0, 520 11 012, 0, 520 Goodness-of-fit on F2 1.038 1.018 Final R indexes [I≥2σ(I)] R1=0.065 1, wR2=0.121 5 R1=0.060 5, wR2=0.110 9 Final R indexes (all data) R1=0.138 7, wR2=0.141 7 R1=0.124 1, wR2=0.127 6 Largest diff. peak and hole / (e·nm-3) 1 460, -785 1 153, -677 CCDC: 2129656, 1; 2129657, 2.
2. Results and discussion
2.1 Crystal structure
Complexes 1 and 2 are isostructural with monoclinic space group C2/c (Table 1). Selected bond lengths and bond angles are listed in Table 2 and Table 3, respectively. Both complexes feature the dimeric arrangement (Fig. 1). Two metal centers are bridged by four carboxylate ligands with Eu…Eu separation of 0.391 57(8) nm and Tb…Tb separation of 0.387 68(4) nm. The metal center is nine - coordinated with one Phen molecule (chelating η2 mode) and three L- ions, in which three coordination modes can be confirmed: μ3∶η2-η1, μ2∶η1 -η1, and η2. Thus, the coordination polyhedron of Ln is a distorted mono-capped square antiprism, which can be widely observed in the published lanthanide complexes. The Eu—O bond lengths ranging from 0.236 0(3) to 0.254 5(3) nm and Tb—O bond lengths ranging from 0.232 4(3) to 0.251 9(3) nm agree with the reported single bond values in the carboxylate lanthanide complexes[22-24]. As is apparent, the O—C —O bond angle of μ2∶η1-η1 mode (126.3(5)°) is larger than those of μ3∶η2 - η1 mode (120.6(5)°) and η2 mode (121.8(5)°). It should be noted that the molecular structures of complexes 1 and 2 are highly consistent with the published complexes [RE(L)3 (Phen)]2·nH2O (RE=Nd, Sm, and Y; for Sm and Nd: n= 2; for Y: n=0)[16].
Table 2
1 Eu1…Eu1i 0.394 61(8) Eu1—O4 0.252 5(4) Eu1—O2 0.235 4(4) Eu1—O3 0.248 1(4) Eu1—O1i 0.260 3(4) Eu1—O5i 0.259 5(4) Eu1—N1 0.258 7(5) Eu1—N2 0.257 2(5) Eu1—O1 0.235 0(4) Eu1—O6i 0.234 9(4) 2 Tb1…Tb1i 0.390 88(5) Tb1—O4 0.246 5(3) Tb1—O2 0.230 7(3) Tb1—O3i 0.231 9(3) Tb1—O1 0.231 4(3) Tb1—O5i 0.257 3(4) Tb1—N1 0.255 2(5) Tb1—N2 0.255 9(4) Tb1—O1i 0.258 0(3) Tb1—O6 0.249 2(4) Symmetry codes: i 1/2-x, 1/2-y, 1-z for 1; i 1/2-x, 1/2-y, 1-z for 2. Table 3
1 O1—Eu1—Eu1i 39.47(9) O5i—Eu1—N1 72.31(13) O3—Eu1—Eu1i 123.37(9) O1i—Eu1—Eu1i 35.02(8) O5i—Eu1—N2 79.59(12) O3—Eu1—O1i 155.69(15) O1—Eu1—O1i 74.49(13) O6i—Eu1—Eu1i 68.32(8) O3—Eu1—O4 52.80(11) O1—Eu1—O3 88.35(13) O6i—Eu1—O1i 72.28(11) O3—Eu1—O5i 145.18(12) O1—Eu1—O4 74.37(11) O6i—Eu1—O3 83.13(12) O3—Eu1—N1 73.42(13) O1i—Eu1—O5i 50.96(11) O6i—Eu1—O4 124.92(11) O3—Eu1—N2 79.42(12) O1—Eu1—O5i 124.15(11) O6i—Eu1—O5i 95.11(12) O4—Eu1—Eu1i 109.34(9) O1—Eu1—O6i 73.41(12) O6i—Eu1—N1 77.12(13) O4—Eu1—O1i 137.35(12) O1—Eu1—N1 146.76(15) O6i—Eu1—N2 139.16(13) O4—Eu1—O5i 139.97(12) O1i—Eu1—N1 110.46(12) N1—Eu1—Eu1i 138.00(11) O4—Eu1—N1 110.10(14) O1—Eu1—N2 142.93(12) N2—Eu1—Eu1i 149.55(11) O4—Eu1—N2 70.05(14) O1i—Eu1—N2 126.72(12) N2—Eu1—N1 61.08(16) O5i—Eu1—Eu1i 85.99(8) O2—Eu1—Eu1i 69.87(9) O2—Eu1—O4 74.36(11) O2—Eu1—N2 80.65(13) O2—Eu1—O1i 67.72(13) O2—Eu1—O5i 75.85(12) O2—Eu1—N1 133.75(15) O2—Eu1—O1 79.39(14) O2—Eu1—O6i 136.43(13) O2—Eu1—O3 128.86(13) 2 O1—Tb1—Tb1i 39.41(9) O5i—Tb1—Tb1i 84.29(8) O2—Tb1—O5i 72.57(14) O1i—Tb1—Tb1i 34.70 (1) O5i—Tb1—N1 79.65(14) O2—Tb1—O6 129.40(13) O1—Tb1—O1i 74.11(13) O5i—Tb1—N2 72.58 (14) O2—Tb1—N1 81.13(13) O1—Tb1—O2 78.15(13) O6—Tb1—Tb1i 124.55(8) O2—Tb1—N2 133.64(15) O1—Tb1—O3i 74.91(13) O6—Tb1—O1i 152.44(11) O3i—Tb1—Tb1i 68.35(9) O1—Tb1—O4 74.15(14) O6—Tb1—O4 53.22(11) O3i—Tb1—O1i 73.69(12) O1—Tb1—O5i 123.31(12) O6—Tb1—O5i 144.61(11) O3i—Tb1—O4 122.23(13) O1i—Tb1—O5i 51.32(13) O6—Tb1—N1 79.56(13) O3i—Tb1—O5i 97.21(14) O1—Tb1—O6 88.71(13) O6—Tb1—N2 72.98(14) O3i—Tb1—O6 81.89(13) O1—Tb1—N1 142.76(13) N1—Tb1—Tb1i 149.39(9) O3i—Tb1—N1 139.36(14) O1i—Tb1—N1 146.82(13) N1—Tb1—N2 61.67(15) O3i—Tb1—N2 78.34(15) O1—Tb1—N2 147.27(12) N2—Tb1—Tb1i 137.48(11) O4—Tb1—Tb1i 109.37(9) O1i—Tb1—N2 111.48(13) O2—Tb1—O4 73.52(11) O4—Tb1—O1i 137.39(12) O2—Tb1—Tb1i 69.11(9) O4—Tb1—N2 110.52(14) O4—Tb1—O5i 140.56(13) O2—Tb1—O1i 67.97(12) O2—Tb1—O3i 137.39(12) O4—Tb1—N1 70.20(13) Symmetry codes: i 1/2-x, 1/2-y, 1-z for 1; i 1/2-x, 1/2-y, 1-z for 2. Figure 1
2.2 TG analysis
The TG properties of complexes 1 and 2 were measured from 25 to 1 000 ℃ (Fig. 2). They showcase almost identical TG curves. Thus, only complex 1 will be discussed in detail here. A slight weight loss can be observed before 225 ℃, which may indicate the removal of two water molecules (Obsd. 1.3%; Calcd. 1.8%) in the sample. These results agree with the single crystal X - ray diffraction analyses and the published isostructural complexes [RE(L)3(Phen)]2·2H2O (RE=Nd, Sm)[16]. Further weight loss can be observed at around 1 000 ℃.
Figure 2
2.3 Photoluminescent property
The solid-state photoluminescent property of complexes 1 and 2 was measured and the emission spectra are shown in Fig. 3. After excited at 347 nm, three emission bands could be confirmed in the emission spectra of complex 1: 593 and 595 nm (5D0→7F1 transition); 616, 619, and 621 nm (5D0→7F2 transition); 689, 694, and 699 nm (5D0→7F4 transition). The most intense bands at 616, 619, and 621 nm corresponds to the 5D0→7F2 transition. The intensity ratio between 5D0→7F1 and 5D0→7F2 transition indicates that the Eu is not located on the centrosymmetric site in the solid state, which agrees with the single crystal diffraction analysis. The luminescent lifetime for complex 1 was 1.5 ms. The quantum yield was 87.3%. Due to the isostructural feature, the emission pattern of complex 2 was excited at 347 nm as well. Four characteristic emission bands were observed. Three weak bands at 490 nm (5D4→7F6 transition), 584 nm (5D4→7F4 transition), and 622 nm (5D4→7F3 transition) could be observed. The most intense band at 545 nm corresponds to the 5D4→7F5 transition. The luminescent lifetime of complex 2 (1.3 ms) was almost identical to complex 1. However, the quantum yield (60.4%) was lower than complex 1.
Figure 3
3. Conclusions
Two ternary lanthanide complexes of 3 - ((4, 6 - dimethyl-2-pyrimidinyl)thio)-propanoic acid (HL) and Phen, [Ln(L)3(Phen)]2·2H2O (Ln=Eu (1), Tb (2)), were prepared and the molecular structures were established by single crystal X - ray diffraction analysis. Both complexes feature a dimeric arrangement, in which two lanthanide metal ions are bridged by four carboxylate ligands. Solid-state photoluminescent measurement reveals that complexes 1 and 2 manifest the characteristic emission bands of the metal center. Complex 1 possessed a high quantum yield of 87.3%.
Conflicts of interest: There are no conflicts to declare.
-
-
[1]
Moore E G, Samuel A P S, Raymond K N. From antenna to assay: Lessons learned in lanthanide luminescence[J]. Acc. Chem. Res., 2009, 42(4): 542-552. doi: 10.1021/ar800211j
-
[2]
Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, Tondello E. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials[J]. Coord. Chem. Rev., 2010, 254(5/6): 487-505.
-
[3]
Cao X J, Chen N, Guo X F, Li G, Lu H J. Synthesis, crystal structure, and magnetic properties of a Gd(Ⅲ) dimer bearing thiourea-based carboxylate ligand[J]. Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 2011, 41(4): 363-368. doi: 10.1080/15533174.2011.555870
-
[4]
Gao R M, Wang F, Zhu Y C, Li G. A luminescent dimer as a turn-off sensor for both nitrite anion and ferric cation[J]. Supramol. Chem., 2016, 28(3/4): 204-211.
-
[5]
Lu H J, Zhu Y Y, Chen N, Gao Y C, Guo X F, Li G, Tang M S. Ligand-directed assembly of a series of complexes bearing thiourea-based carboxylates[J]. Cryst. Growth Des., 2011, 11(12): 5241-5252. doi: 10.1021/cg200564d
-
[6]
Mu C Y, Tao Z X, Wang H W, Xue M, Wang Q X, Li G. Water-assisted proton conductivity of two lanthanide-based supramolecules[J]. New J. Chem., 2021, 45(27): 12213-12218. doi: 10.1039/D1NJ02397G
-
[7]
杨文峰. 一个双核镨配合物的合成、晶体结构和热性能[J]. 山东化工, 2016,45,(11): 24-25. YANG W F. Synthesis, crystal structure and thermal property of dinuclear Pr(Ⅲ) coordination compound[J]. Shandong Chemical Industry, 2016, 45(11): 24-25.
-
[8]
Zhang M B, Hu R X, Liang F P, Ma L F, Zhou Z Y. Synthesis and structures of lanthanide complexes of N-p-tolylsulfonylglycinate and 1, 10-phenanthroline[J]. Chin. J. Chem., 2005, 23(9): 1139-1142. doi: 10.1002/cjoc.200591139
-
[9]
Ma L F, Chen S H, Wang L Y, Hou H W. Syntheses, structures and properties of two new neodymium complexes with N-p-acetamidoben-zenesulfonyl-glycine acid[J]. Struct. Chem., 2008, 19(4): 603-608. doi: 10.1007/s11224-008-9330-y
-
[10]
Qin J H, Wang J G. Crystal structure of monoaqua-hexakis(N-p-acet-amidobenzene-sulfonylglycinato)-bis (2, 2'-bipyridine)dieuropium(Ⅲ) tetrahydrate, [Eu2(C10H11N2O5S)6(C10H8N2)2(H2O)2] ·4H2O[J]. Z. Krist. - New Cryst. Struct., 2009, 224(3): 56-58.
-
[11]
Zhang L P, Huang L, Qu L B, Peng H, Zhao Y F. Two novel R-and S-malato-bridged coordination polymers by reacting lanthanide chloride and maleic anhydride, 1, 10-phenanthroline at hydrothermal condition[J]. J. Mol. Struct., 2006, 787(1/2/3): 14-17.
-
[12]
于美慧, 胡明, 冯占宇, 薛丰. 以1, 4-二硝基苯甲酸及邻菲咯啉为配位的镧系金属配位聚合物的合成、结构及性质研究[J]. 无机化学学报, 2014,30,(6): 1261-1266. YU M H, HU M, FENG Z Y, XUE F. Syntheses, crystal structures and properties of lanthanide coordination polymers based on 2, 4 -dinitro -benzoic acid and 1, 10-phenanthroline[J]. Chinese J. Inorg. Chem., 2014, 30(6): 1261-1266.
-
[13]
Xia H T, Liu Y F, Lu G J, Wang D Q. Crystal structure and interaction with bovine serum albumin of rare earth complex[Nd(α-C10H 7 CH2COO)3(C 12H8N2)] 2[J]. Synth. React. Inorg. Met.-Org. Nano ⁃ Metal Chem., 2012, 42(2): 145-153. doi: 10.1080/15533174.2011.609509
-
[14]
Ren Y P, Yan G L, Zhang L, Yu K Y, Wang L F, Wu J G. Study of the synthesis and properties of the ternary complexes of rare earths with mandelic acid and 1, 10-phenanthroline[J]. Synth. React. Inorg. Met.⁃Org. Nano-Metal Chem., 1996, 26(2): 293-303. doi: 10.1080/00945719608004265
-
[15]
曲建强, 王流芳, 刘瑛琦, 宋玉民, 王印月, 贾晓飞. 4, 6-二甲基嘧啶-2-硫代乙酸稀土配合物的合成、表征及抗肿瘤活性研究[J]. 中国稀土学报, 2006,24,(1): 98-102. QU J Q, WANG L F, LIU Y Q, SONG Y M, WANG Y Y, JIA X F. Syntheses, characterization and antitumor activities of rare earth metal(Ⅲ) complexes with[(4, 6-dimethyl-2-pyrimidinyl)thio]-acetic acid[J]. Journal of the Chinese Society of Rare Earths, 2006, 24(1): 98-102.
-
[16]
Chen X, Qu J Q. Three ternary rare earth(Ⅲ) complexes based on 3-[(4, 6-dimethyl-2-pyrimidinyl)thio]-propanoic acid and 1, 10-phenan-throline: synthesis, crystal structure and antioxidant activity[J]. Z. Anorg. Allg. Chem., 2015, 641(7): 1301-1306. doi: 10.1002/zaac.201500018
-
[17]
Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008, A64(1): 112-122.
-
[18]
Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. A, 2015, A71(1): 3-8.
-
[19]
Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2:A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallorg., 2009, 42(2): 339-341. doi: 10.1107/S0021889808042726
-
[20]
Sheldrick G M. SADABS: Empirical adsorption correction program for area detector data. University of Göttingen, Germany, 1996.
-
[21]
Spek A L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors[J]. Acta Crystallogr. Sect. C, 2015, C71(1): 9-18.
-
[22]
Barja B, Baggio R, Garland M T, Aramendia P F, Pena O, Perec M. Crystal structures and luminescent properties of terbium(Ⅲ) carboxylates[J]. Inorg. Chim. Acta, 2003, 346(25): 187-196.
-
[23]
Regulacio M D, Pablico M H, Acay V J, Myers P N, Gentry S, Prushan M, Tam-Chang S W, Stoll S L. Luminescence of Ln(Ⅲ) dithiocarbamate complexes (Ln=La, Pr, Sm, Eu, Gd, Tb, Dy)[J]. Inorg. Chem., 2008, 47(5): 1512-1523. doi: 10.1021/ic701974q
-
[24]
Yang Y Q, Kuang Y F, Zhu X M. Synthesis and fluorescent and magnetic properties of a new europium complex Eu(C20H14O3N)3(2, 2'-bipy)(H2O)·H2O[J]. Chin. J. Struct. Chem., 2021, 40(4): 507-511.
-
[1]
-
Table 1. Crystallographic data of complexes 1 and 2
Parameter 1 2 Empirical formula C78H86Eu2N16O14S6 C78H86N16O14S6Tb2 Formula weight 1 967.93 1 981.85 Temperature / K 273.15 273.15 Crystal system Monoclinic Monoclinic Space group C2/c C2/c a / nm 2.901 7(5) 2.900 61(11) b / nm 1.269 8(3) 1.261 20(5) c / nm 2.937 5(8) 2.935 21(16) β/(°) 117.590(5) 117.507 0(10) Volume / nm3 9.592(4) 9.523 9(7) Z 4 4 μ / mm-1 1.486 1.665 F(000) 3 920.0 3 936.0 Crystal size / mm 0.497×0.129×0.07 0.499×0.078×0.053 2θ range for data collection / (°) 2.810-28.588 2.872-28.621 Index ranges -37 ≤ h ≤ 37, -16 ≤ k ≤ 16, -38 ≤ l ≤ 38 -37 ≤ h ≤ 37, -16 ≤ k ≤ 16, -38 ≤ l ≤ 38 Reflection collected 74 688 73 978 Independent reflection 11 070 (Rint=0.133 8) 11 012 (Rint=0.117 9) Data, restraint, parameter 11 071, 0, 520 11 012, 0, 520 Goodness-of-fit on F2 1.038 1.018 Final R indexes [I≥2σ(I)] R1=0.065 1, wR2=0.121 5 R1=0.060 5, wR2=0.110 9 Final R indexes (all data) R1=0.138 7, wR2=0.141 7 R1=0.124 1, wR2=0.127 6 Largest diff. peak and hole / (e·nm-3) 1 460, -785 1 153, -677 Table 2. Selected bond lengths of complexes 1 and 2
1 Eu1…Eu1i 0.394 61(8) Eu1—O4 0.252 5(4) Eu1—O2 0.235 4(4) Eu1—O3 0.248 1(4) Eu1—O1i 0.260 3(4) Eu1—O5i 0.259 5(4) Eu1—N1 0.258 7(5) Eu1—N2 0.257 2(5) Eu1—O1 0.235 0(4) Eu1—O6i 0.234 9(4) 2 Tb1…Tb1i 0.390 88(5) Tb1—O4 0.246 5(3) Tb1—O2 0.230 7(3) Tb1—O3i 0.231 9(3) Tb1—O1 0.231 4(3) Tb1—O5i 0.257 3(4) Tb1—N1 0.255 2(5) Tb1—N2 0.255 9(4) Tb1—O1i 0.258 0(3) Tb1—O6 0.249 2(4) Symmetry codes: i 1/2-x, 1/2-y, 1-z for 1; i 1/2-x, 1/2-y, 1-z for 2. Table 3. Selected bond angles of complexes 1 and 2
1 O1—Eu1—Eu1i 39.47(9) O5i—Eu1—N1 72.31(13) O3—Eu1—Eu1i 123.37(9) O1i—Eu1—Eu1i 35.02(8) O5i—Eu1—N2 79.59(12) O3—Eu1—O1i 155.69(15) O1—Eu1—O1i 74.49(13) O6i—Eu1—Eu1i 68.32(8) O3—Eu1—O4 52.80(11) O1—Eu1—O3 88.35(13) O6i—Eu1—O1i 72.28(11) O3—Eu1—O5i 145.18(12) O1—Eu1—O4 74.37(11) O6i—Eu1—O3 83.13(12) O3—Eu1—N1 73.42(13) O1i—Eu1—O5i 50.96(11) O6i—Eu1—O4 124.92(11) O3—Eu1—N2 79.42(12) O1—Eu1—O5i 124.15(11) O6i—Eu1—O5i 95.11(12) O4—Eu1—Eu1i 109.34(9) O1—Eu1—O6i 73.41(12) O6i—Eu1—N1 77.12(13) O4—Eu1—O1i 137.35(12) O1—Eu1—N1 146.76(15) O6i—Eu1—N2 139.16(13) O4—Eu1—O5i 139.97(12) O1i—Eu1—N1 110.46(12) N1—Eu1—Eu1i 138.00(11) O4—Eu1—N1 110.10(14) O1—Eu1—N2 142.93(12) N2—Eu1—Eu1i 149.55(11) O4—Eu1—N2 70.05(14) O1i—Eu1—N2 126.72(12) N2—Eu1—N1 61.08(16) O5i—Eu1—Eu1i 85.99(8) O2—Eu1—Eu1i 69.87(9) O2—Eu1—O4 74.36(11) O2—Eu1—N2 80.65(13) O2—Eu1—O1i 67.72(13) O2—Eu1—O5i 75.85(12) O2—Eu1—N1 133.75(15) O2—Eu1—O1 79.39(14) O2—Eu1—O6i 136.43(13) O2—Eu1—O3 128.86(13) 2 O1—Tb1—Tb1i 39.41(9) O5i—Tb1—Tb1i 84.29(8) O2—Tb1—O5i 72.57(14) O1i—Tb1—Tb1i 34.70 (1) O5i—Tb1—N1 79.65(14) O2—Tb1—O6 129.40(13) O1—Tb1—O1i 74.11(13) O5i—Tb1—N2 72.58 (14) O2—Tb1—N1 81.13(13) O1—Tb1—O2 78.15(13) O6—Tb1—Tb1i 124.55(8) O2—Tb1—N2 133.64(15) O1—Tb1—O3i 74.91(13) O6—Tb1—O1i 152.44(11) O3i—Tb1—Tb1i 68.35(9) O1—Tb1—O4 74.15(14) O6—Tb1—O4 53.22(11) O3i—Tb1—O1i 73.69(12) O1—Tb1—O5i 123.31(12) O6—Tb1—O5i 144.61(11) O3i—Tb1—O4 122.23(13) O1i—Tb1—O5i 51.32(13) O6—Tb1—N1 79.56(13) O3i—Tb1—O5i 97.21(14) O1—Tb1—O6 88.71(13) O6—Tb1—N2 72.98(14) O3i—Tb1—O6 81.89(13) O1—Tb1—N1 142.76(13) N1—Tb1—Tb1i 149.39(9) O3i—Tb1—N1 139.36(14) O1i—Tb1—N1 146.82(13) N1—Tb1—N2 61.67(15) O3i—Tb1—N2 78.34(15) O1—Tb1—N2 147.27(12) N2—Tb1—Tb1i 137.48(11) O4—Tb1—Tb1i 109.37(9) O1i—Tb1—N2 111.48(13) O2—Tb1—O4 73.52(11) O4—Tb1—O1i 137.39(12) O2—Tb1—Tb1i 69.11(9) O4—Tb1—N2 110.52(14) O4—Tb1—O5i 140.56(13) O2—Tb1—O1i 67.97(12) O2—Tb1—O3i 137.39(12) O4—Tb1—N1 70.20(13) Symmetry codes: i 1/2-x, 1/2-y, 1-z for 1; i 1/2-x, 1/2-y, 1-z for 2.
计量
- PDF下载量: 3
- 文章访问数: 732
- HTML全文浏览量: 119