Citation: Xiong WANG, Rui WANG, Qiao-Ling KANG, Dong-Yun LI, Yang XU, Hong-Liang GE, Feng GAO, Qing-Yi LU. Research Progress on Structural Design and Intrinsic Activity Modulation of Co-Based Oxides for Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(9): 1673-1689. doi: 10.11862/CJIC.2022.179
锂离子电池用钴基氧化物的结构设计及本征活性调控的研究进展
English
Research Progress on Structural Design and Intrinsic Activity Modulation of Co-Based Oxides for Lithium-Ion Batteries
-
Key words:
- lithium-ion battery
- / Co-based oxide
- / structural regulation
- / electronic regulation
- / anode material
-
0. 引言
移动电子产品和新能源汽车的快速发展,对锂离子电池的能量密度、功率密度和循环寿命等提出了越来越高的要求[1-2],作为核心组件之一,负极材料是影响锂离子电池整体性能的一个重要因素[3-6]。目前商业上广泛使用的基于嵌入储锂机理的石墨负极材料由于容量较低,不能满足当今社会对大功率设备的需求[7]。而基于转化机理的钴基氧化物拥有较高的比容量、灵活的组分结构可调节性、丰富的来源,在对电池能量密度要求较高的移动电子产品和新能源汽车等领域中颇具发展潜力[8-11]。图 1a、1b为近5年锂离子电池用钴基氧化物的发文量及引用次数,从图中可以看出相关研究呈现逐步上升的趋势,说明钴基氧化物作为新型锂电负极材料得到了越来越多关注。然而,钴基氧化物面临的充放电过程中体积膨胀效应明显、导电性与锂扩散能力不足和库仑效率较低等问题严重地阻碍其进一步的应用[12];为了加速其产业化应用的到来,国内外学者围绕克服钴基氧化物本征缺陷、提高电化学性能开展了大量的研究工作。
图 1
概括地说,钴基氧化物的结构设计和化学成分调节是提高电化学性能的关键[13-14]。本文分别从结构设计和化学成分调控2个方面结合本课题组近年来的研究及国内外重要文献,综述了钴基氧化物作为锂电负极材料的研究进展。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构、碳材料支撑结构以及异质结构来增加钴基氧化物的反应活性位点数量和提升材料的首次库仑效率;而在化学成分调控方面则通过引入无定型结构、非金属杂原子掺杂、金属杂原子掺杂、构筑高熵氧化物来提高钴基氧化物的本征活性,从而提高钴基氧化物的锂电性能。这项工作为开发高性能钴基氧化物锂离子电池负极材料提供了有价值的见解。
1. 结构调控
对钴基氧化物进行结构调控的目标:(1) 增加钴基氧化物材料的自由空间,以缓冲充放电过程中的体积膨胀/收缩,并增加结构框架的稳定性,抑制由于结构变化导致的电极粉化与脱落现象,增强循环稳定性与容量保持率,但过多的自由空间不利于振实密度;(2) 缩短离子/电子传输距离,提高动力学性能,弥补钴基氧化物的导电性不足,改善其倍率性能,然而过小的尺度会造成振实密度的下降;(3) 增加钴基氧化物材料的比表面积,可以扩大电极/电解液界面,从而增加储锂位点并实现快速脱嵌,获得改良的比容量与倍率性能,但过大的表面积会导致不可逆容量的增加;(4) 暴露更多的高活性晶面,有利于电化学活性特别是倍率性能。主要的结构调控手段包括构建一维结构、二维结构、三维结构、空心结构、碳材料支撑结构以及异质结构来增加钴基氧化物的反应活性位点数量。
1.1 一维钴基氧化物负极材料
一维纳米线或纳米管具有较大的长径比或内部有较多的空余空间,在锂离子嵌入过程中对体积膨胀的适应能力更强,可以缓解放电过程中体积膨胀引起的粉化现象。同时,一维纳米结构有利于加快Li+扩散动力学并缩短直流电路径从而提升电子传输速率[15]。此外,一维纳米结构往往具有较大的比表面积,可以为Li+的脱嵌提供大量活性位点[16]。
Wang等[17]首先采用溶剂热法获得一维CoZn的配位聚合物,然后采用高温煅烧的方式获得一维Co3O4@ZnCo2O4包覆氮掺杂的碳纳米线复合材料(Co3O4@ZnCo2O4/NC,图 2a~2c)。研究结果表明该材料具有良好的循环稳定性,在0.1 A·g-1的电流密度下循环50圈后其可逆比容量高达931 mAh·g-1且具有高达71.8% 的首次库仑效率,这主要是因为一维纳米线中的多孔通道有利于增加比表面积、改善电解质转移的反应活性位点、缩短Li+扩散距离(图 2d),另外,金属Zn的掺杂有利于促进电化学反应和提高材料的机械稳定性。然而,常见的一维纳米线负极材料往往含有黏结剂等非储锂活性成分,这大大降低了器件的储锂比容量,构筑不含黏结剂的一维纳米线负极材料可以有效提升器件的储锂比容量。例如,Wang等[18]首先在泡沫镍(NF)表面生长出CoO纳米线阵列,然后以此纳米线阵列为模板生长ZIF-67,最后经过高温碳化获得了自支撑一维CoO@N-C/NF阵列(图 2e~2i)。将该材料直接作为锂离子电池负极,发现一维CoO@N-C/NF阵列在1 A·g-1电流密度下循环100圈后具有1 884.1 mAh·g-1的可逆比容量且具有高达78.04%的首次库仑效率,这主要是因为纳米线均匀地生长在NF基底上形成自支撑电极,避免了非活性的黏结剂的使用,且纳米线和纳米线之间的间隔可以有效地缓解充放电过程中的体积膨胀,使得材料具有良好的活性和循环稳定性能。
图 2
1.2 二维钴基氧化物负极材料
二维层状氧化物纳米材料具有较大的比表面积和特殊的二维结构,有利于缩短碱金属离子嵌入/脱出的扩散路径[19]。然而,将二维纳米材料直接应用于锂离子电池时,由于光滑面的表面自由能大,易导致严重的团聚现象,减少活性位点,同时二维材料较小的层间距会阻碍离子的扩散[20]。基于此,研究者们通过在二维片层结构中构建多孔结构,使得Li+与电极表面发生快速的化学附着和分离,可以显著提高二维材料的储锂性能。
例如,Sun等[21]先通过水热法合成了六边形的Co(OH)2,经过高温煅烧形成Co3O4纳米片,然后在氨气气氛下煅烧得到含有大量空位的D-Co3O4。最后,在D-Co3O4表面包覆一层氮掺杂的碳形成D-Co3O4@NC(图 3a)。研究结果表明,具有多孔结构的纳米片为Li+提供了更多的反应活性位点,碳包覆可以有效地提高二维片层材料的电子电导率,同时N原子的掺杂引入了丰富的缺陷,六边形的二维纳米片和大量的多孔结构与氮掺杂的碳之间存在较好的协同作用,使得Co3O4@NC具有较好的电子和离子电导率、柔韧性、结构稳定性,将其用于锂离子电池负极材料时,在7 A·g-1的大电流密度下经历2 000圈的长循环后仍旧具有529 mAh·g-1的比容量,但其首次库仑效率表现不佳,这主要是由于较高的比表面积使得首次循环过程中形成了较多的固体电解质界面(SEI)膜。为获得高比容量、高首次库仑效率和循环性能优异的钴基负极材料,构筑合理结构的二维材料显得至关重要。除此之外,将二维纳米结构自组装成三维花状结构也可以提升二维材料的电化学性能。Duan等[22]采用溶剂热协同高温退火获得了介孔二维片层结构自组装的牡丹花状的Co3O4 (图 3b),该材料展现出了优异的首次库仑效率和良好的循环稳定性,在500 mA·g-1的电流密度下循环800圈后具有1 880 mAh·g-1的比容量且具有高达83% 的首次库仑效率。这主要是因为二维多孔纳米片组装成三维花状结构可以有效缓解体积膨胀,同时介孔结构和二维纳米片的合理结合,为材料提供了适宜的比表面积,实现了材料的高首次库仑效率[23]。
图 3
1.3 三维钴基氧化物负极材料
三维纳米材料具有超高的比表面积、较短的Li+扩散路径等优点[24]。此外,三维骨架结构可以为离子和电子传输提供三维通道,从而减少“死面”,三维孔道结构还能为电极材料和电解液提供较大的接触面积[25],同时可以缓解充放电循环过程中体积膨胀引起的应力[26]。
例如,Yao等[27]采用自组装策略将金属氧化物复合在石墨烯气凝胶上构筑三维多孔CoOs/rGO-G材料(图 4),其在0.5 A·g-1的电流密度下循环100圈后具有1 142.8 mAh·g-1的比容量,即使将充放电电流升高至4 A·g-1,在循环800圈后也具有493.3 mAh·g-1的比容量,此外该材料首次库仑效率高达75.4%,且在循环5圈后库仑效率达到了99% 以上。研究结果表明,其优异的性能主要来源于三维材料内部高度连续的网络状结构,为锂离子的脱嵌提供了丰富的反应位点。同时,能够很好地缓解体积膨胀引起的材料粉化问题,三维共连续的结构还能促进Li+和电子的迁移,从而提升材料的倍率性能,降低其电化学阻抗[28]。
图 4
1.4 空心结构钴基氧化物负极材料
空心结构具有高比表面积、低密度、高承载能力等特点[29],应用于锂离子电池的电极材料具有多种优势:(1) 相比于实心结构,空心结构具有更大的比表面积,能够增加电极-电解质之间的接触面积[30];(2) 内部空腔提供了额外的自由体积,有利于缓解Li+嵌入/脱出过程中引起的应力应变[31];(3) 多壳层空心纳米结构不仅可以显著减少锂离子和电子的扩散路径,还可以提供更多的锂存储场所[32]。
基于此,Jian等[33]将ZIF-67在不同温度下煅烧,获得了不同结构的Co3O4纳米立方块,其中在350、450、550 ℃煅烧下分别获得了凹面立方块结构、中空核壳立方块结构、大孔立方块结构的Co3O4(图 5a)。将3种不同结构的立方块应用于锂离子电池负极,结果表明,中空核壳结构的Co3O4纳米立方块具有较大的比表面积,有利于离子和电子传输[34],其在200 mA·g-1的电流密度下循环200圈后具有1 148 mAh·g-1的比容量,但较高的表面积使得其首次循环过程中产生了大量的非活性锂,导致其首次库仑效率不佳(70.1%)。相比于中空核壳结构,多层中空结构更有利于减少离子和电子的扩散距离,提供更多的储锂位点[35]。本课题组[36]首先采用溶剂热法获得了Co配合物微球,然后通过在450 ℃空气氛围中改变升温速率获得了核壳结构、单层中空、双层中空、多层中空结构的Co3O4微球(MS-Co3O4),并将其应用于锂离子电池负极材料(图 5b)。研究结果表明,多层中空结构的Co3O4具有非常优异的性能,在1 A·g-1的电流密度下循环100圈后仍具有1 058 mAh·g-1的比容量,主要是因为多壳层之间较大的内部空腔有利于电解质的渗透,为锂离子的储存提供了丰富的活性位点[37];较薄的壳层结构缩短了Li+的扩散距离,改善了电荷转移速率[38]。此外,随着壳层数量的增加,首次不可逆储锂比容量逐渐上升,多层中空结构的Co3O4微球的不可逆比容量达到了较高的33.8%,这主要是由于高的比表面积形成了较多的SEI膜,因此,消耗了较多的活性锂。
图 5
1.5 碳支撑钴基氧化物负极材料
碳材料具有良好的化学稳定性、优异的电子导电性、较大的比表面积和良好的结构柔韧性[39]。将钴基氧化物与纳米碳材料进行复合可以有效地提高钴基氧化物材料的比表面积和导电性能[40]。
常见的碳基底包括石墨烯、碳纳米管、碳纳米纤维、生物质衍生碳以及Co-MOFs(MOFs为金属有机骨架)衍生的碳等[41](图 6)。其中,石墨烯具有较高的电子电导率,同时也是良好的储锂材料,且其在充放电过程中不会有显著的体积膨胀。因此将钴基氧化物负载在石墨烯上可以获得良好的储锂性能[42]。例如Park等[43]构筑出了由石墨烯包覆的Co3O4量子点材料GE-Co3O4,石墨烯包覆的量子点可以很好地缓解充放电过程中的体积膨胀,从而提升材料的储锂性能。实验结果表明GE-Co3O4展现出了良好的储锂性能,在1 000 mA·g-1的大电流密度下循环100圈后具有820 mAh·g-1的比容量,首次库仑效率也达到了69%。除此之外,采用杂原子掺杂的石墨烯负载钴基氧化物,其中杂原子掺杂为材料提供的丰富缺陷有利于提升复合材料的导电性。Gu等[44]以石墨氮化碳(g-C3N4)为模板,通过简单的水热和退火方法,成功地合成了一种新型的N掺杂类石墨烯碳纳米片(CNs)和碳纳米管包裹的Co3O4纳米材料(CN@Co-Co3O4/CNTs)。其中N掺杂类石墨烯碳纳米片具有大量的活性位点,直径为100 nm的碳纳米管不仅提高了碳纳米管的导电性,而且为Co3O4的聚集和体积膨胀提供了缓冲空间。因此,CN@Co-Co3O4/CNTs具有优异的储锂性能,其在5 000 mA·g-1的电流密度下循环300圈后仍具有460 mAh·g-1的比容量,但由于首圈循环过程中形成了较多的SEI膜导致其首次库仑效率(44%)表现不佳。
图 6
1.6 异质结构钴基氧化物负极材料
异质结构由具有相似晶体结构、相似原子间距和热膨胀系数不同的半导体组成,不同组分间的能带结构、载流子浓度差异和费米能级差异导致化学成分和电荷分布发生变化[45-47]。异质结构钴基氧化物具有以下优点:(1) 异质结构中不同相的协同作用可以增强结构稳定性,延长循环寿命[48];(2) 具有精细的能带结构,能提供优异的导电性[49];(3) 异质结构界面间引入内建电场可以加速离子扩散,降低离子扩散势垒[50];(4) 在异质结构的构建块中电荷再分配将产生更多用于储能的活性位点,从而提高电极的可逆容量[51]。如图 7a、7b所示,Chen等[52]采用静电纺丝结合溶剂热法在三维多孔氮掺杂碳纳米纤维上生长出一维CuOx -Co3O4异质结构纳米线阵列(CuOx-Co3O4@PNCNF)。研究结果表明,异质结构纳米线阵列不仅可以有效地增强离子和电子的传输效率,异质界面还可以提供一个屏障来缓冲不同氧化物之间的体积膨胀。因此当将其用作锂离子电池负极材料时,电池能够表现出较高比容量、出色的倍率性能、良好的长循环稳定性和较高的首次库仑效率(73.2%),在200 mA·g-1电流密度下循环100圈后放电容量仍然保持1 122 mAh·g-1,在高电流密度2 A·g-1下循环1 000圈后容量依然超过660 mAh· g-1。相比于一维纳米线,中空结构可以有效地适应锂离子脱嵌过程中的应变行为,并提供丰富的氧化还原位点以促进电解质的充分渗透,从而提高锂离子电池的性能[53]。Tu等[54]利用ZIF-67为种子在其表面生长Co(OH)2,然后再通过高温硫化的过程伴随Kirkendall效应的方法获得CoO@Co9S8 -rGO异质结中空纳米立方体(图 7c、7d)。将其应用于锂离子电池负极材料时表现出良好的储锂性能,在1 A·g-1的电流密度下循环500圈后具有600 mAh·g-1的比容量和高达74% 的首次库仑效率。这主要是因为中空结构提供了高效的锂离子脱嵌通道,丰富的异质结使得材料暴露出了更多的活性位点,片状的CoO为Co9S8和石墨烯之间的连接提供了桥梁,使得材料具有较高的电子传输效率,此外,CoO@Co9S8-rGO合理的比表面积(74 m2·g-1)减少了SEI膜的形成,降低了活性锂的消耗,促进了首次库仑效率的提升。
图 7
综上所述,构建不同结构钴基氧化物的主要目是增加其反应活性位点数量,其中构建一维结构、二维结构、三维结构、空心结构可以提高锂离子的扩散路径,增大电解液的接触面积以及增加储锂的活性位点数量;而采用碳材料支撑以及构建异质结构主要影响的是材料的电导率及离子和电荷传输速率。表 1是关于不同结构的钴基氧化物的特点及性能对比。
表 1
Categories Active role Material Specific capacity / (mAh·g-1) Specific current / (A·g-1) Cycle number Ref. 1D structure With strong tolerance, the 1D unique structure is beneficial to accelerating Li+ diffusion kinetics and shortening the direct current path to improve the electron transfer rate Co3O4@ZnCo2O4@NC 931 0.1 50 [17] CoO@N-C/NF 1 884.1 1 100 [18] 2D structure It is beneficial to shorten the diffusion path for the insertion/extraction of alkali metal ions due to the large specific surface area and special 2D structure D-Co3O4@NC 529 7 2 000 [21] Peony-like Co3O4 1 880 0.5 800 [22] 3D structure The 3D skeleton structure can provide 3D channels for ion and electron transport, thereby decreasing the “dead surface”, the 3D pore structure can also provide abundant contact areas for electrodes and electrolytes; Meanwhile, relieving the stress caused by volume expansion during charge-discharge cycles 3D CoOs/rGO-G 1 142.8 0.5 100 [27] Hollow structure The hollow structure can increase the contact area between the electrode and the electrolyte and provide additional free volume, which is beneficial to relieve the stress and strain caused during the Li+ intercalation/extraction process; The multi-shell hollow nanostructure can reduce the diffusion paths of lithium-ion and electron, and provide more lithium storage sites Co3O4-450 1 148 0.2 200 [33] MS-Co3O4 1 058 1 100 [36] Carbonsupported It can effectively improve the specific surface area and electrical conductivity of cobalt-based oxides, and reduce the volume expansion/contraction and aggregation of cobalt-based oxides GE-Co3O4 820 1 100 [43] CN@CoCo3O4/CNTs 460 5 300 [44] Hetero-structure It can combine the advantages of different phases to play a multicomponent synergistic enhancement; The interface of the heterostructure can accelerate ion diffusion and reduce the ion diffusion barrier; Charge redistribution will induce the formation of more active sites for Li+ storage CuOx-Co3O4 1 122 0.2 100 [52] CoO@Co9S8-rGO 600 1 500 [54] 2. 成分调控
2.1 无定形钴基氧化物负极材料
无定形材料是指短程有序、长程无序的一类材料,与晶体相比较,无序晶格和缺陷可以带来许多优于晶体的优点,包括促进离子扩散、增加离子存储位点、提高反应活性、缓解离子嵌入/脱出循环时的体积变化等[55-56]。
例如,Lu等[57]通过简单的静电纺丝策略结合退火反应,在多孔碳纳米纤维中可控地合成了非晶态/晶态的MnCo2Ox纳米颗粒(MCO@CNFs)。通过热还原/氧化可以很容易地实现从非晶态MnCo2Ox到晶态MnCo2O4.5转变(图 8a)。将该非晶相MnCo2Ox作为锂离子负极材料,在200 mA·g-1的电流密度下经过250圈的循环,MCO@CNFs仍然可以保持780.3 mAh·g-1的高稳定容量且具有51.5% 的首次库仑效率,这是由于独特的非晶结构和缺陷碳纳米纤维基体协同效应的作用,较高的首圈可逆容量的损失主要来自SEI膜的形成。其中,缺陷丰富的非晶态结构为Li+的扩散提供了更多的反应位点和途径,而碳杂化则充分提高了电极的电导率,缓冲了电极的体积变化。
图 8
相比于一维碳纤维负载的非晶态MnCo2Ox纳米材料,采用二维碳层结构负载的非晶态钴基氧化物电极材料可以更加有效地增强电极材料的导电性[58]。Wang等[59]采用化学沉积法结合模板法成功地设计和制备了具有互连纳米笼结构的氮掺杂的多孔碳二维纳米片,在此基础上通过简单的水热法结合退火策略获得了氮掺杂多孔碳载非晶态SnO2/Co3O4复合材料(图 8b~8d),研究结果表明,该复合材料具有良好的首次库仑效率(60.9%), 在200 mA·g-1电流密度下循环300圈后仍然具有1 450.3 mAh·g-1的高比容量。其主要原因为非晶态的SnO2和非晶态的Co3O4的协同增强效应不仅为锂离子的储存带来了额外的锂活性位点,还缩短了锂的扩散距离,降低了循环过程中的体积变化。同时,氮掺杂的二维碳纳米片作为导电基质,大大提高了电极的导电性并且有效地缓冲了Li+在嵌入/脱出过程中引起的体积变化[60]。
2.2 非金属杂原子掺杂钴基氧化物负极材料
非金属杂原子(N、S等)的掺杂可以显著地提升钴基氧化物材料的导电性和电化学活性,同时还有利于加速电子转移[61]。掺杂所引起的形态缺陷可以重新调整钴基氧化物的原子排布,从而提高Li+的储存性能[62-63]。
Hu等[64]利用水热法和可控硫化相结合的途径获得了封装在石墨烯网络中的CoOSx@G(图 9a),自组装的分级氧化钴纳米球由不规则的纳米颗粒组成,其中硫元素均匀地掺杂在纳米球中,并被石墨烯片紧密包裹。研究结果表明,当硫和钴的原子比为1∶10时,所获得的CoOS0.1@G在500 mA·g-1的电流密度下具有1 974 mAh·g-1的超高初始放电容量和良好的首次库仑效率,在经过400次循环后,仍然具有1 573 mAh·g-1的高比容量。这是迄今为止报道的CoOx碳复合材料中性能最为优异的锂离子电池负极材料。密度泛函理论(DFT)计算结果表明其性能的改善是由于S原子的掺杂对CoO的电子结构进行了调整,从而提高了导电性,同时锂化过程中产生的Li2S提高了S掺杂电极的结构稳定性[65]。
图 9
除了采用S原子掺杂以外,本课题组[66]采用水热结合上游气流磷化法获得了P掺杂的CoO核壳纳米球(图 9b)。研究结果表明所制备的材料具有优异的电化学性能,在1 A·g-1具有1 845 F·g-1的容量,这是因为P掺杂可以有效地提高CoO纳米球的电导率且核壳结构有利于提升材料的比表面积。
2.3 金属杂原子掺杂钴基氧化物负极材料
金属原子的掺杂可以显著地优化金属氧化物的内在属性,诱导晶格中氧空位的形成,同时可以引入金属原子空位[67]。存在的空位可以有效地促进Li+离子在晶格中扩散,为转化反应提供额外的活性位点[68],从而促进电极的电化学动力学[69]。空位还可以在不影响晶体稳定性的条件下一定程度上改善活性物质和增加电解液的接触面,有助于在材料内部形成原子级的导电网络,从而促进锂离子的脱嵌[70]。
Liang等[71]利用中空凹形磺化聚苯乙烯(HC-SPS) 为模板,通过低温沉淀法和高温退火获得了中空凹面Zn掺杂的Co3O4@C复合材料(图 10a、10b),这种中空凹面结构可以缩短离子传导和电子传输路径的长度,同时相互连接的纳米片可以构建一个导电网络来增强复合材料的导电性。最重要的是,Co3O4相中Zn掺杂产生的缺陷会影响Co3O4的电子结构,从而赋予Co3O4基复合材料更活跃的性能。将其用于Li+电池负极材料,在500 mA·g-1的电流密度下循环300圈后具有750 mAh·g-1的高比容量,在3.0 A·g-1的高电流密度下也具有723.5 mAh·g-1的高比容量和良好的首次库仑效率(60%)。在此基础上,Li等[72]采用Ostwald熟化法在无模板的条件下合成了类蒲公英的Mn/Ni双金属原子共掺杂CoO/C空心微球(CMNC-10)(图 10c)。研究结果表明Mn和Ni成功掺杂到了CoO中(图 10d),通过环形亮场(ABF)图像可以清晰地观察到掺杂引起的氧空位。DFT计算证实,氧空位中剩余2个电子的高度离域有效地提高了电导率(图 10e、10f)。其中,初级纳米颗粒表面的介电极化场可以促使锂离子插入纳米颗粒,从而增强电化学动力学。结合这些优点,CMNC-10h作为锂离子电池的负极材料具有良好的首次库仑效率(66%),在1 000次循环后,在1 A·g-1电流密度下显示出1 126 mAh·g-1的高容量。
图 10
2.4 高熵钴基氧化物负极材料
高熵钴基氧化物作为锂离子电池电极材料发展迅速,其由5种及以上氧化物以等物质的量之比或近等物质的量之比构成,打破了传统掺杂氧化物的设计理念[73]。据报道,高熵钴基氧化物的锂离子电导率大于10-3 S·cm-1。同时,大多数过渡金属高熵氧化物具有较高的理论比容量(> 1 000 mAh·g-1)[74]。此外,高熵钴基氧化物由于其较高的混乱度和多种金属原子之间的电子调控作用,从而具有大量的氧空位和三维锂离子运输通道,可以有效提高电极材料的循环稳定性[75]。基于这些优点,高熵钴基氧化物有望成为一种具有良好储锂性能的电极材料。
Wang等[76]利用表面活性剂辅助水热法结合高温空气热解法获得了高熵(CrMnFeCoNi)3O4,从图 11a可以看出,所获得的高熵(CrMnFeCoNi)3O4是典型的尖晶石结构。将其应用于锂离子电池负极中,研究结果表明高熵氧化物所有的金属元素都在Li+的嵌入与脱出过程中起到了活性作用,其具有51.5% 的首次库仑效率。在经过200圈的充放电测试后,在电流密度为500 mA·g-1时容量高达825 mAh·g-1,其容量保持率可以达到91%,说明其稳定性良好。这主要是因为高熵氧化物各元素之间可以相互调控电子结构,从而产生大量的氧空穴,有利于加快Li+的传输速率[77]。由于传统炉的热惯性大,加之加热和冷却速度有限(< 102 K·s-1),加热过程的瞬时可调性较差[78]。因此,传统的高熵氧化物微颗粒合成中的加热时间往往长达数小时。这很难对材料的尺寸及形貌进行控制,也为材料优化创造了筛选瓶颈[79]。
图 11
基于此,Dong等[80]报道了一种快速合成高熵金属氧化物的方法,用一个简单的焦耳加热的碳基反应器(图 11b),在高温条件下(例如1 500 K),将加热时间精确地调整到数十秒。采用该方法所制备的(MnFeCoNiZn)3O4-x在0.2C的速率下循环100次后锂离子电池显示了超过600 mAh·g-1的可逆容量和良好的首次库仑效率,且容量保持率可达90% 以上。该方法甚至能够合成含有高达10种金属元素以上的高熵化合物,以及相应高质量的材料,过程中没有相或元素偏析。此外,该技术可以在几秒钟内实现克级生产,并可能集成到连续生产和快速材料发现的卷对卷过程中。除了高熵氧化物之外,该方法还可以扩展到其他高熵微粒的快速合成,如合金、硫化物、磷化物、硼化物、硅化物等,为高熵微粒的高效合成开辟了广阔的空间。
综上所述,通过对钴基氧化物的成分调控主要是调控其内在的本征活性,其中,无定型结构中无序的晶格和缺陷有利于增加锂离子存储位点,提高反应活性;非金属杂原子、金属杂原子及高熵结构可以显著地提升钴基氧化物材料的导电性和电化学活性,有利于加速电子转移,优化金属氧化物的内在属性,诱导晶格中的氧空位的形成,同时可以引入金属原子空位,从而增加反应活性。表 2为不同成分调控方式及其性能对比。
表 2
Categories Active role Material Specific capacity / (mAh·g-1) Specific current / (A·g-1) Cycle Ref. Nnumber Amorphous Disordered lattices and defects are beneficial to promote ion diffusion, increase storage sites, improve reactivity, and alleviate volume changes during ion insertion/extraction MCO@CNFs 780.3 0.2 250 [57] SnO2/Co3O4@NC 1 450.3 0.2 300 [59] Non-metallic doping It can significantly improve the conductivity and electrochemical activity of cobalt-based oxide materials, and it is also beneficial to accelerate electron transfer CoOS0.1@G 1 974 0.5 400 [64] Metal doping The intrinsic properties of metal oxides can be significantly optimized to induce the formation of oxygen vacancies in the crystal lattice, while metal atomic vacancies can be introduced to increase reactive sites Co3O4@C 750 0.5 300 [71] CMNC-10h 1 126 1 1 000 [72] High entropy oxide The high degree of disorder and the mutual electronic regulation between various metal atoms endow it with a large number of oxygen vacancies and three-dimensional lithium-ion transport channels (CrMnFeCoNi)3O4 825 0.5 100 [76] (MnFeCoNiZn)3O4-x 600 C/5 100 [80] 3. 总结和展望
综上所述,钴基氧化物锂离子电池负极材料具有较高的理论比容量和较好的可逆储锂性能,已经成为当前锂离子电池负极材料的研究热点之一。但是钴基氧化物在锂离子脱嵌过程中体积膨胀容易引起材料粉化,且首次库仑效率较低。
基于此,本文在本课题组大量实验和理论报道的基础上,综述了从结构设计和成分调控两方面有效提高钴基氧化物的锂电性能的方法(图 12)。结构设计方面包括构建一维结构、二维结构、三维结构、空心结构、碳材料支撑结构及异质结构来增加钴基氧化物的反应活性位点数量;成分调控方面包括引入无定型结构、非金属杂原子掺杂、金属杂原子掺杂、高熵等概念来提高钴基氧化物的本征活性。这项工作为开发高性能钴基氧化物锂离子电池负极材料提供了重要的理论指导。
图 12
然而,钴基氧化物由于金属钴资源稀缺且具有一定毒性,因此距离产业化应用还有较远距离。作者认为钴基氧化物今后的发展将集中在以下几个方面:(1) 单原子化提高钴的利用率,实现高性能的同时减少钴的使用;(2) 采用其他低成本且环境友好的金属中心(比如铁和锰)来部分代替高成本的Co,可以减少Co的使用并显示出良好的协同作用;(3)开发新的、更加有效的制备方法和技术手段,如在反应条件温和、可控、环境友好的情况下制备质量高、结构好、粒径均一、生产成本低的钴基氧化物。
-
-
[1]
Dong C L, Dong W J, Lin X Y, Zhao Y T, Li R Z, Huang F Q. Recent Progress and Perspectives of Defective Oxide Anode Materials for Advanced Lithium Ion Battery[J]. EnergyChem, 2020, 2(6): 100045. doi: 10.1016/j.enchem.2020.100045
-
[2]
Geng P B, Wang L, Du M, Bai Y, Li W T, Liu Y F, Chen S Q, Braunstein P, Xu Q, Pang H. Mil-96-Al for Li-S Batteries: Shape or Size?[J]. Adv. Mater., 2022, 34(4): 2107836. doi: 10.1002/adma.202107836
-
[3]
Liu K Y, Meng X H, Yan L J, Fan M Q, Wu Y C, Li C, Ma T L. Sn/SnOx Core - Shell Structure Encapsulated in Nitrogen - Doped Porous Carbon Frameworks for Enhanced Lithium Storage[J]. J. Alloy. Compd., 2021, 896: 163009.
-
[4]
Wang Q L, Zhang H R, Cui Z L, Zhou Q, Shangguan X H, Tian S W, Zhou X H, Cui G L. Siloxane - Based Polymer Electrolytes for Solid - State Lithium Batteries[J]. Energy Storage Mater., 2019, 23: 466-490. doi: 10.1016/j.ensm.2019.04.016
-
[5]
Liu G Z, Shi J M, Zhu M T, Weng W, Shen L, Yang J, Yao X Y. Ultra-Thin Free-Standing Sulfide Solid Electrolyte Film for Cell-Level High Energy Density All - Solid - State Lithium Batteries[J]. Energy Storage Mater., 2021, 38: 249-254. doi: 10.1016/j.ensm.2021.03.017
-
[6]
龚俊捷, 王建明. 光沉积制备pSi@CoOx高性能锂离子电池负极材料[J]. 无机化学学报, 2021,37,(10): 1773-1781. doi: 10.11862/CJIC.2021.199GONG J J, WANG J M. Photodeposition for Preparing Porous Si@ CoOx Composites as High - Performance Anode Material for Lithium - Ion Batteries[J]. Chinese J. Inorg. Chem., 2021, 37(10): 1773-1781. doi: 10.11862/CJIC.2021.199
-
[7]
Miura A, Rosero-navarro N C, Sakuda A, Tadanaga K, Phuc N H H, Matsuda A, Machida N, Hayashi A, Tatsumisago M. Liquid - Phase Syntheses of Sulfide Electrolytes for All-Solid-State Lithium Battery[J]. Nat. Rev. Chem., 2019, 3(3): 189-198. doi: 10.1038/s41570-019-0078-2
-
[8]
Huang Y, Fang Y, Lu X F, Luan D, Lou X W D. Co 3O4 Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage[J]. Angew. Chem. Int. Ed., 2020, 59(45): 19914-19918. doi: 10.1002/anie.202008987
-
[9]
Lu W, Shen J, Zhang P, Zhong Y, Hu Y, Lou X W D. Construction of CoO/Co-Cu-S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors[J]. Angew. Chem. Int. Ed., 2019, 58(43): 15441-15447. doi: 10.1002/anie.201907516
-
[10]
Li H S, Hu Z Q, Xia Q T, Zhang H, Li Z H, Wang H Z, Li X K, Zuo F K, Zhang F L, Wang X X, Ye W N, Li Q H, Long Y Z, Li Q, Yan S S, Liu X S, Zhang X G, Yu G H, Miao G X. Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium - Ion Batteries[J]. Adv. Mater., 2021, 33(12): 2006629. doi: 10.1002/adma.202006629
-
[11]
Zhao X, Xu H, Hui Z Y, Sun Y, Yu C Y, Xue J L, Zhou R C, Wang L M, Dai H H, Zhao Y, Yang J, Zhou J Y, Chen Q, Sun G Z, Huang W. Electrostatically Assembling 2D Nanosheets of MXene and MOF - Derivatives into 3D Hollow Frameworks for Enhanced Lithium Storage[J]. Small, 2019, 15(47): 1904255. doi: 10.1002/smll.201904255
-
[12]
He Z S, Huang L A, Guo J F, Pei S E, Shao H B, Wang J M. Novel Hierarchically Branched CoC2O4@CoO/Co Composite Arrays with Superior Lithium Storage Performance[J]. Energy Storage Mater., 2020, 24: 362-372. doi: 10.1016/j.ensm.2019.07.037
-
[13]
Liu K Y, Li C, Yan L J, Fan M Q, Wu Y C, Meng X H, Ma T L. MOFs and Their Derivatives as Sn-Based Anode Materials for Lithium/Sodium Ion Batteries[J]. J. Mater. Chem. A, 2021, 9(48): 27234-27251. doi: 10.1039/D1TA06996A
-
[14]
Geng H Y, Peng Y, Qu L T, Zhang H J, Wu M H. Structure Design and Composition Engineering of Carbon - Based Nanomaterials for Lithium Energy Storage[J]. Adv. Energy Mater., 2020, 10(10): 1903030. doi: 10.1002/aenm.201903030
-
[15]
李小强, 陈欣, 李洪波, 赵婷婷, 张亚梅, 向军, 张开银. 碳包覆CaSnO3纳米纤维作为高性能锂离子电池负极材料[J]. 无机化学学报, 2021,37,(4): 700-708. LI X Q, CHEN X, LI H B, ZHAO T T, ZHANG Y M, XIANG J, ZHANG K Y. Carbon - Coated CaSnO3 Nanofibers as High Performance Anode Materials for Lithium Ion Batteries[J]. Chinese J. Inorg. Chem., 2021, 37(4): 700-708.
-
[16]
Li Z T, Lian X, Wu M Z, Zheng F C, Gao Y H, Niu H L. A Novel Self - Assembled - Derived 1D MnO2@Co3O 4 Composite as a High - Performance Li-Ion Storage Anode Material[J]. Dalton Trans., 2020, 49(20): 6644-6650. doi: 10.1039/D0DT00980F
-
[17]
Wang H B, Zheng Y J, Peng Z L, Liu X L, Qu C, Huang Z Y, Cai Z L, Fan H S, Zhang Y F. Nanocavity -Enriched Co3O4@ZnCo2O4@NC Porous Nanowires Derived from 1D Metal Coordination Polymers for Fast Li+ Diffusion Kinetics and Super Li+ Storage[J]. Dalton Trans., 2021, 50(21): 7277-7283. doi: 10.1039/D1DT00475A
-
[18]
Wang D X, Yan B, Guo Y J, Chen L, Yu F, Wang G. N-Doped Carbon Coated CoO Nanowire Arrays Derived from Zeolitic Imidazolate Framework-67 as Binder-Free Anodes for High-Performance Lithium Storage[J]. Sci. Rep., 2019, 9(1): 5934. doi: 10.1038/s41598-019-42371-y
-
[19]
Jin Y, Dang L Y, Zhang H, Song C, Lu Q Y, Gao F. Synthesis of Unit-Cell-Thick α-Fe2 O3 Nanosheets and Their Transformation to γ-Fe2O3 Nanosheets with Enhanced LIB Performances[J]. Chem. Eng. J., 2017, 326: 292-297. doi: 10.1016/j.cej.2017.05.155
-
[20]
Li Y, Yang W, Tu Z Q, Tian X J, Hou L Q, Xiao Z H, Jiang B, Wu N, Li Q, Wang X, Li Y F. Water - Soluble Salt - Templated Strategy to Regulate Mesoporous Nanosheets-on -Network Structure with Active Mixed-Phase CoO/Co3O4 Nanosheets on Graphene for Superior Lithium Storage[J]. J. Alloy. Compd., 2021, 857: 157626. doi: 10.1016/j.jallcom.2020.157626
-
[21]
Sun B Y, Lou S F, Zheng W, Qian Z Y, Cui C, Zuo P J, Du C Y, Xie J Y, Wang J J, Yin G P. Synergistic Engineering of Defects and Architecture in Co3O 4@C Nanosheets toward Li/Na Ion Batteries with Enhanced Pseudocapacitances[J]. Nano Energy, 2020, 78: 105366. doi: 10.1016/j.nanoen.2020.105366
-
[22]
Duan H H, Du L, Zhang S K, Chen Z W, Wu S P. Superior Lithium-Storage Properties Derived from a High Pseudocapacitance Behavior for a Peony-like Holey Co3O4 Anode[J]. J. Mater. Chem. A, 2019, 7(14): 8327-8334. doi: 10.1039/C9TA00294D
-
[23]
Zhu K X, Zhu Z, Jin B, Li H, Jin E M, Jeong S M, Jiang Q. 3D Flower-like Co1-xS/MoS2 Composite for Long - Life and High - Rate Lithium Storage[J]. J. Energy Storage, 2020, 27: 101135. doi: 10.1016/j.est.2019.101135
-
[24]
Min X, Sun B, Chen S, Fang M H, Wu X W, Liu Y G, Abdelkader A, Huang Z H, Liu T, Xi K, Kumar R V. A Textile-Based SnO 2 Ultra-Flexible Electrode for Lithium-Ion Batteries[J]. Energy Storage Mater., 2019, 16: 597-606. doi: 10.1016/j.ensm.2018.08.002
-
[25]
Xiong T, Su H, Yang F, Tan Q, Appadurai P B S, Afuwape A A, Guo K, Huang Y, Wang Z, Balogun M S. Harmonizing Self - Supportive VN/MoS2 Pseudocapacitance Core-Shell Electrodes for Boosting the Areal Capacity of Lithium Storage[J]. Mater. Today Energy, 2020, 17: 100461. doi: 10.1016/j.mtener.2020.100461
-
[26]
Guo H L, Zhou J, Li Q Q, Li Y M, Zong W, Zhu J X, Xu J S, Zhang C, Liu T X. Emerging Dual - Channel Transition - Metal - Oxide Quasiaerogels by Self-Embedded Templating[J]. Adv. Funct. Mater., 2020, 30(15): 2000024. doi: 10.1002/adfm.202000024
-
[27]
Yao W, Zhang F, Qiu W J, Xu Z X, Xu J G, Wen Y C. General Synthesis of Uniform Three - Dimensional Metal Oxides/Reduced Graphene Oxide Aerogels by a Nucleation-Inducing Growth Strategy for High - Performance Lithium Storage[J]. ACS Sustainable Chem. Eng., 2019, 7(1): 847-857. doi: 10.1021/acssuschemeng.8b04467
-
[28]
Chi S S, Liu Y C, Zhao N, Guo X X, Nan C W, Fan L Z. Solid Polymer Electrolyte Soft Interface Layer with 3D Lithium Anode for All-Solid-State Lithium Batteries[J]. Energy Storage Mater., 2019, 17: 309-316. doi: 10.1016/j.ensm.2018.07.004
-
[29]
Lu Q Y, Gao F. Synthesis and Property Studies of Hollow Nanostructures[J]. CrystEngComm, 2016, 18(39): 7399-7409. doi: 10.1039/C6CE01036A
-
[30]
Yang F H, Goo H, Hao J N, Zhang S L, Li P, Liu Y Q, Chen J, Guo Z P. Yolk - Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithium -/Potassium - Ion Batteries[J]. Adv. Funct. Mater., 2019, 29(16): 1808291. doi: 10.1002/adfm.201808291
-
[31]
Wang B, Cheng Y F, Su H, Cheng M, Li Y, Geng H B, Dai Z F. Boosting Transport Kinetics of Cobalt Sulfides Yolk - Shell Spheres by Anion Doping for Advanced Lithium and Sodium Storage[J]. ChemSusChem, 2020, 13(16): 4078-4085. doi: 10.1002/cssc.202001261
-
[32]
Xu J Y, Zhang H, Wang R F, Xu P B, Tong Y L, Lu Q Y, Gao F. Delicate Control of Multishelled Zn - Mn - O Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries[J]. Langmuir, 2018, 34(4): 1242-1248. doi: 10.1021/acs.langmuir.7b02632
-
[33]
Jian S J, Ma X F, Wang Q M, Wu J L, Wang Y F, Jiang S H, Xu W H, Yang W S. Hierarchical Porous Co3O4 Nanocages with Elaborate Microstructures Derived from ZIF-67 toward Lithium Storage[J]. Vacuum, 2021, 184: 109879. doi: 10.1016/j.vacuum.2020.109879
-
[34]
Wu D B, Wang C, Wu H J, Wang S, Wang F Q, Chen Z, Zhao T B, Zhang Z Y, Zhang L Y, Li C M. Synthesis of Hollow Co3O4 Nanocrystals In Situ Anchored on Holey Graphene for High Rate Lithium-Ion Batteries[J]. Carbon, 2020, 163: 137-144. doi: 10.1016/j.carbon.2020.03.007
-
[35]
Jiang J H, Liu S N, Wang Y Y, Liu Y, Fan J, Lou X D, Wang X B, Zhang H, Yang L. Auto - Adjustment of Structure and SnO2 Content of SnO2/TiO2 Microspheres for Lithium-Ion Batteries[J]. Chem. Eng. J., 2019, 359: 746-754. doi: 10.1016/j.cej.2018.11.190
-
[36]
Yin J Z, Zhang Y, Lu Q Y, Wu X L, Jiang Z J, Dang L Y, Ma H F, Guo Y Y, Gao F, Yan Q Y. Tunable Co 3O4 Hollow Structures (From Yolk-Shell to Multi-Shell) and Their Li Storage Properties[J]. J. Mater. Chem. A, 2017, 5(25): 12757-12761. doi: 10.1039/C7TA03929H
-
[37]
Ren H, Yu R B, Qi J, Zhang L J, Jin Q, Wang D. Hollow Multishelled Heterostructured Anatase/TiO2 (B) with Superior Rate Capability and Cycling Performance[J]. Adv. Mater., 2019, 31(10): 1805754. doi: 10.1002/adma.201805754
-
[38]
Zhao J L, Wang J Y, Bi R Y, Yang M, Wan J W, Jiang H Y, Gu L, Wang D. General Synthesis of Multiple-Cores@Multiple-Shells Hollow Composites and Their Application to Lithium - Ion Batteries[J]. Angew. Chem. Int. Ed., 2021, 60(49): 25719-25722. doi: 10.1002/anie.202110982
-
[39]
Li J F, Han L, Zhang X L, Sun H C, Liu X J, Lu T, Yao Y F, Pan L K. Multi-Role TiO2 Layer Coated Carbon@Few-Layered MoS2 Nanotubes for Durable Lithium Storage[J]. Chem. Eng. J., 2021, 406: 126873. doi: 10.1016/j.cej.2020.126873
-
[40]
Guo D Y, Pan L, Hao J M, Han L M, Yi D, Wang Y J, Yang Y J, Yoshio B, Wang X. Nanosheets - in - Nanotube Co3O 4 - Carbon Array Design Enables Stable Li-Ion Storage[J]. Carbon, 2019, 147: 501-509. doi: 10.1016/j.carbon.2019.03.012
-
[41]
Zheng S S, Li Q, Xue H G, Pang H, Xu Q. A Highly Alkaline-Stable Metal Oxide@Metal-Organic Framework Composite for High-Performance Electrochemical Energy Storage[J]. Natl. Sci. Rev., 2020, 7(2): 305-314. doi: 10.1093/nsr/nwz137
-
[42]
Zhu T Y, Wang Y, Li Y, Cai R, Zhang J F, Yu C P, Wu J J, Cui J W, Zhang Y, Ajayan P M, Wu Y C. CoO Quantum Dots Anchored on Reduced Graphene Oxide Aerogels for Lithium - Ion Storage[J]. ACS Appl. Nano Mater., 2020, 3(10): 10369-10379. doi: 10.1021/acsanm.0c02290
-
[43]
Park Y J, Lee K S, Shim J, Lee J H, Kim Y, Son D I. Suppression of Volume Expansion by Graphene Encapsulated Co3O4 Quantum Dots for Boosting Lithium Storage[J]. J. Ind. Eng. Chem., 2021, 95: 333-339. doi: 10.1016/j.jiec.2021.01.004
-
[44]
Gu F L, Liu W B, Huang R, Song Y H, Jia J B, Wang L. A g-C3N4 Self - Templated Preparation of N - Doped Carbon Nanosheets@Co - Co3O 4/Carbon Nanotubes as High - Rate Lithium - Ion Batteries' Anode Materials[J]. J. Colloid Interface Sci., 2021, 597: 1-8. doi: 10.1016/j.jcis.2021.03.163
-
[45]
Mei J, Zhang Y W, Liao T, Peng X M, Ayoko G A, Sun Z Q. Black Phosphorus Nanosheets Promoted 2D - TiO2-2D Heterostructured Anode for High-Performance Lithium Storage[J]. Energy Storage Mater., 2019, 19: 424-431. doi: 10.1016/j.ensm.2019.03.010
-
[46]
Yang S, Zhang Y Q, Wang S L, Shi J, Liu X, Li L. Rational Construction of MoS2 /Mo 2N/C Hierarchical Porous Tubular Nanostructures for Enhanced Lithium Storage[J]. J. Mater. Chem. A, 2019, 7(41): 23886-23894. doi: 10.1039/C9TA04516C
-
[47]
LIang Y, Xiong X, Xu Z, Xia Q, Wan L, Liu R, Chen G, Chou S L. Ultrathin 2D Mesoporous TiO2/rGO Heterostructure for High-Performance Lithium Storage[J]. Small, 2020, 16(26): 2000030. doi: 10.1002/smll.202000030
-
[48]
Zhong H Y, Lu X, Zhong Y, Zhao Y, Liu X M, Cheng D H, Huang X Y, Du K Z, Wu X H. Lithium Storage Performance Boosted via Delocalizing Charge in ZnxCo1-xPS3/CoS2 of 2D/3D Heterostructure[J]. Small, 2022, 18(2): 2104295. doi: 10.1002/smll.202104295
-
[49]
Zhang Y Y, Chen P, Wang Q Y, Wang Q, Zhu K, Ye K, Wang G L, Cao D X, Yan J, Zhang Q. High-Capacity and Kinetically Accelerated Lithium Storage in MoO3 Enabled by Oxygen Vacancies and Heterostructure[J]. Adv. Energy Mater., 2021, 11(31): 2101712. doi: 10.1002/aenm.202101712
-
[50]
Zhang Y, Wang Z Y, Hu K, Ren J H, Yu N F, Liu X, Wu G L, Liu N. Anchoring Silicon on the Basal Plane of Graphite via a Three-Phase Heterostructure for Highly Reversible Lithium Storage[J]. Energy Storage Mater., 2021, 34: 311-319. doi: 10.1016/j.ensm.2020.10.002
-
[51]
Li Y, Zhang J W, Chen Q G, Xia X H, Chen M H. Emerging of Heterostructure Materials in Energy Storage: A Review[J]. Adv. Mater., 2021, 33(27): 2100855. doi: 10.1002/adma.202100855
-
[52]
Chen H H, He J, Li Y L, Luo S, Sun L N, Ren X Z, Deng L B, Zhang P X, Gao Y, Liu J H. Hierarchical CuOx - Co3O4 Heterostructure Nanowires Decorated on 3D Porous Nitrogen-Doped Carbon Nanofibers as Flexible and Free - Standing Anodes for High - Performance Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2019, 7(13): 7691-7700. doi: 10.1039/C9TA00275H
-
[53]
Hu W H, Zheng M B, Xu B Y, Wei Y, Zhu W, Li Q, Pang H. Design of Hollow Carbon - Based Materials Derived from Metal - Organic Frameworks for Electrocatalysis and Electrochemical Energy Storage[J]. J. Mater. Chem. A, 2021, 9(7): 3880-3917. doi: 10.1039/D0TA10666F
-
[54]
Tu C B, Peng A P, Zhang Z, Qi X T, Zhang D K, Wang M J, Huang Y N, Yang Z Y. Surface-Seeding Secondary Growth for CoO@Co9S8 P - N Heterojunction Hollow Nanocube Encapsulated into Graphene as Superior Anode toward Lithium Ion Storage[J]. Chem. Eng. J., 2021, 425: 130648. doi: 10.1016/j.cej.2021.130648
-
[55]
Xie X F, Hu Y, Fang G Z, Cao X X, Yin B, Wang Y P, Liang S Q, Cao G Z, Pan A Q. Towards a Durable High Performance Anode Material for Lithium Storage: Stabilizing N-Doped Carbon Encapsulated FeS Nanosheets with Amorphous TiO2[J]. J. Mater. Chem. A, 2019, 7(27): 16541-16552. doi: 10.1039/C9TA03196K
-
[56]
Chen H H, Ke G X, Wu X C, Li W Q, Li Y L, Mi H W, Sun L N, Zhang Q L, He C X, Ren X Z. Amorphous MoS3 Decoration on 2D Functionalized MXene as a Bifunctional Electrode for Stable and Robust Lithium Storage[J]. Chem. Eng. J., 2021, 406: 126775. doi: 10.1016/j.cej.2020.126775
-
[57]
Lu H Y, Qian R F, Zhu L, Yao T H, Li C, Li L, Wang H K. Phase Structure Engineering of MnCo2Ox within Electrospun Carbon Nanofibers towards High - Performance Lithium - Ion Batteries[J]. J. Colloid Interface Sci., 2022, 607(Pt 1): 171-180.
-
[58]
Wang D, Zhou J S, Li J K, Jiang X Y, Wang Y Z, Gao F M. Cobalt-Boron Nanoparticles Anchored on Graphene as Anode of Lithium Ion Batteries[J]. Chem. Eng. J., 2019, 360: 271-279. doi: 10.1016/j.cej.2018.11.238
-
[59]
Wang J K, Wang H K, Yao T H, Liu T, Tian Y P, Li C, Li F, Meng L J, Cheng Y H. Porous N - Doped Carbon Nanoflakes Supported Hybridized SnO2/Co3O4 Nanocomposites as High - Performance Anode for Lithium-Ion Batteries[J]. J. Colloid Interface Sci., 2020, 560: 546-554. doi: 10.1016/j.jcis.2019.10.096
-
[60]
Wang D D, Liu H X, Shan Z Q, Xia D W, Na R, liu H D, Wang B H, Tian J H. Nitrogen, Sulfur Co - Doped Porous Graphene Boosting Li4Ti 5O 12 Anode Performance for High-Rate and Long-Life Lithium Ion Batteries[J]. Energy Storage Mater., 2020, 27: 387-395. doi: 10.1016/j.ensm.2020.02.019
-
[61]
Shan Y Y, Li Y, Pang H. Applications of Tin Sulfide-Based Materials in Lithium - Ion Batteries and Sodium - Ion Batteries[J]. Adv. Funct. Mater., 2020, 30(23): 2001298. doi: 10.1002/adfm.202001298
-
[62]
Peng C, Mercer M P, Skylaris C K, Kramer D. Lithium Intercalation Edge Effects and Doping Implications for Graphite Anodes[J]. J. Mater. Chem. A, 2020, 8(16): 7947-7955. doi: 10.1039/C9TA13862E
-
[63]
Jin J, Wang Z, Wang R, Wang J, Huang Z, Ma Y, Li H, Wei S H, Huang X, Yan J, Li S, Huang W. Achieving High Volumetric Lithium Storage Capacity in Compact Carbon Materials with Controllable Nitrogen Doping[J]. Adv. Funct. Mater., 2019, 29(12): 1807441. doi: 10.1002/adfm.201807441
-
[64]
Hu Y F, Li Z C, Hu Z C, Wang L, Ma R G, Wang J C. Engineering Hierarchical CoO Nanospheres Wrapped by Graphene via Controllable Sulfur Doping for Superior Li Ion Storage[J]. Small, 2020, 16(42): 2003643. doi: 10.1002/smll.202003643
-
[65]
Hu Q R, Meng Y S, Zhang H S, Zhao G X, Hu J, Zhu F L, Zhang Y. Encapsulated Ni3S2 Nanoparticles with N, S Dual - Doped Carbon Nanotubes: A Robust Structure for Lithium Storage[J]. J. Electroanal. Chem., 2020, 873: 114383. doi: 10.1016/j.jelechem.2020.114383
-
[66]
Lai D W, Wang Z R, Wang Z H, Gao F, Lu Q Y. Phosphorus -Doped Cobaltous Oxide Core@Shell Microspheres with Enhanced Performances in Energy Conversion and Storage[J]. J. Power Sources, 2021, 483: 229137. doi: 10.1016/j.jpowsour.2020.229137
-
[67]
Li Q, Feng Y Z, Wang P, Che R C. Superior-Capacity Binder-Free Anode Electrode for Lithium -Ion Batteries: CoxMnyNizO Nanosheets with Metal/Oxygen Vacancies Directly Formed on Cu Foil[J]. Nanoscale, 2019, 11(11): 5080-5093. doi: 10.1039/C8NR09706B
-
[68]
Li W T, Guo X T, Geng P B, Du M, Jing Q L, Chen X D, Zhang G X, Li H P, Xu Q, Braunstein P, Pang H. Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li - S Battery[J]. Adv. Mater., 2021, 33(45): 2105163. doi: 10.1002/adma.202105163
-
[69]
Fan Y C, Chen X H, Zhang K, Rong J, Yu X H. A Coordinated Regulation Strategy to Improve Electronic Conductivity and Li-Ion Transport for TiO2 Lithium Battery Anode Materials[J]. J. Alloy. Compd., 2021, 860: 158282. doi: 10.1016/j.jallcom.2020.158282
-
[70]
Yuan Y Q, Liang S J, Liu W P, Zhao Q, Peng P G, Ding R, Gao P, Sun X J, Liu E H. Al-Doped Fe2O3 Nanoparticles: Advanced Anode Materials for High Capacity Lithium Ion Batteries[J]. Dalton Trans., 2021, 50(15): 5115-5119. doi: 10.1039/D0DT04423G
-
[71]
Liang J, Kong J, Zhang J. Hollow Concave Zinc - Doped Co3O4 Nanosheets/Carbon Composites as Ultrahigh Capacity Anode Materials for Lithium - Ion Batteries[J]. ChemElectroChem, 2021, 8(1): 172-178. doi: 10.1002/celc.202001416
-
[72]
Li Q, Zhao Y H, Liu H D, Xu P D, Yang L T, Pei K, Zeng Q W, Feng Y Z, Wang P, Che R C. Dandelion - like Mn/Ni Co - Doped CoO/C Hollow Microspheres with Oxygen Vacancies for Advanced Lithium Storage[J]. ACS Nano, 2019, 13(10): 11921-11934. doi: 10.1021/acsnano.9b06005
-
[73]
Patra J, Nguyen T X, Tsai C C, Clemens O, Li J, Pal P, Chan W K, Lee C H, Chen H Y T, Ting J M, Chang J K. Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co - Free High - Entropy Spinel Oxide Anodes for Lithium - Ion Batteries[J]. Adv. Funct. Mater., 2022, 32(17): 2110992. doi: 10.1002/adfm.202110992
-
[74]
Wang Q S, Sarkar A, Wang D, Velasco L, Azmi R, Bhattacharya S S, Bergfeldt T, Duvel A, Heitjans P, Brezesinski T, Hahn H, Breitung B. Multi - Anionic and - Cationic Compounds: New High Entropy Materials for Advanced Li-Ion Batteries[J]. Energy Environ. Sci., 2019, 12(8): 2433-2442. doi: 10.1039/C9EE00368A
-
[75]
Wei J L, Rong K, Li X L, Wang Y C, Qiao Z A, Fang Y X, Dong S J. Deep Eutectic Solvent Assisted Facile Synthesis of Low-Dimensional Hierarchical Porous High - Entropy Oxides[J]. Nano Res., 2022, 15(3): 2756-2763. doi: 10.1007/s12274-021-3860-7
-
[76]
Wang S Y, Chen T Y, Kuo C H, Lin C C, Huang S C, Lin M H, Wang C C, Chen H Y. Operando Synchrotron Transmission X-ray Microscopy Study on (Mg, Co, Ni, Cu, Zn)O High - Entropy Oxide Anodes for Lithium-Ion Batteries[J]. Mater. Chem. Phys., 2021, 274: 125105. doi: 10.1016/j.matchemphys.2021.125105
-
[77]
Huang C Y, Huang C W, Wu M C, Patra J, Nguyen T X, Chang M T, Clemens O, Ting J M, Li J, Chang J K, Wu W W. Atomic - Scale Investigation of Lithiation/Delithiation Mechanism in High - Entropy Spinel Oxide with Superior Electrochemical Performance[J]. Chem. Eng. J., 2021, 420: 129838. doi: 10.1016/j.cej.2021.129838
-
[78]
Mccormack S J, Navrotsky A. Thermodynamics of High Entropy Oxides[J]. Acta Mater., 2021, 202: 1-21. doi: 10.1016/j.actamat.2020.10.043
-
[79]
Ma Y J, Ma Y, Wang Q S, Schweidler S, Botros M, Fu T T, Hahn H, Brezesinski T, Breitung B. High - Entropy Energy Materials: Challenges and New Opportunities[J]. Energy Environ. Sci., 2021, 14(5): 2883-2905. doi: 10.1039/D1EE00505G
-
[80]
Dong Q, Hong M, Gao J L, Li T Y, Cui M J, Li S K, Qiao H Y, Brozena A H, Yao Y G, Wang X Z, Chen G, Luo J, Hu L B. Rapid Synthesis of High-Entropy Oxide Microparticles[J]. Small, 2022, 18(11): 2104761. doi: 10.1002/smll.202104761
-
[1]
-
图 1 以关键词“Co-based oxide lithium anode”在Web of Science中的检索结果分析图: (a)出版物的数量随着出版年份的变化; (b) 引用次数随着出版年份的变化
Figure 1 Analysis of search results in Web of Science with the keyword "Co-based oxide lithium anode": (a) number of publications changes with the publication year; (b) number of citations changes with the publication year
图 2 Co3O4@ZnCo2O4@NC纳米线的(a) 制备流程示意图、(b、c) TEM照片和(d) Li+传输示意图[17]; 一维CoO@N-C/NF阵列的(e) 合成示意图、(f、g) SEM照片、(h) TEM照片及(i) HRTEM照片[18]
Figure 2 (a) Schematic of preparation process, (b, c) TEM images, and (d) Li+ transport diagram of Co3O4@ZnCo2O4@NC nanowires[17]; (e) Synthesis schematic, (f, g) SEM images, (h) TEM image, and (h) HRTEM image of one-dimensional CoO@NC/NF array[18]
图 7 CuOx-Co3O4异质结纳米线的(a) 制备流程示意图和(b) HRTEM图[52]; CoO@Co9S8异质结中空纳米立方块的(c) 制备流程示意图和(d) SEM图[54]
Figure 7 (a) Schematic of the preparation process and (b) HRTEM image of CuOx-Co3O4 heterojunction nanowires[52]; (c) Schematic of the preparation process and (d) SEM image of CoO@Co9S8 heterojunction hollow nanocubes[54]
图 8 (a) 一维碳载无定形纳米MnCo2Ox制备流程图[57]; (b) 二维碳载无定形SnO2/Co3O4@NC的制备流程图; SnO2/Co3O4@NC的(c) SEM图及(d) TEM图[59]
Figure 8 (a) Schematic of the preparation of carbon-supported amorphous nano-MnCo2Ox[57]; (b) Schematic of the preparation of 2D carbon-supported amorphous SnO2/Co3O4@NC; (c) SEM image and (d) TEM image of SnO2/Co3O4@NC[59]
图 10 (a) Zn掺杂的Co3O4@C空心凹陷纳米颗粒制备流程示意图; (b) Zn掺杂的Co3O4@C的元素分析图[71]; (c) Mn/Ni双金属原子共掺杂CoO/C空心微球制备流程示意图; (d) Mn/Ni共掺杂的Co3O4及元素分析图; (e、f) Mn/Ni共掺杂的Co3O4的ABF图[72]
Figure 10 (a) Schematic of the preparation process of Zn-doped Co3O4@C hollow recessed nanoparticles; (b) Elemental analysis pattern of Zn-doped Co3O4@C[71]; (c) Schematic of the preparation process of Mn/Ni bimetallic co-doped CoO/C hollow microspheres; (d) Mn/Ni co-doped Co3O4 and elemental analysis image; (e, f) ABF diagram of Mn/Ni co-doped Co3O4[72]
表 1 不同结构的钴基氧化物材料的优点及性能对比
Table 1. Advantages and properties comparisons of different structural Co-based oxide materials
Categories Active role Material Specific capacity / (mAh·g-1) Specific current / (A·g-1) Cycle number Ref. 1D structure With strong tolerance, the 1D unique structure is beneficial to accelerating Li+ diffusion kinetics and shortening the direct current path to improve the electron transfer rate Co3O4@ZnCo2O4@NC 931 0.1 50 [17] CoO@N-C/NF 1 884.1 1 100 [18] 2D structure It is beneficial to shorten the diffusion path for the insertion/extraction of alkali metal ions due to the large specific surface area and special 2D structure D-Co3O4@NC 529 7 2 000 [21] Peony-like Co3O4 1 880 0.5 800 [22] 3D structure The 3D skeleton structure can provide 3D channels for ion and electron transport, thereby decreasing the “dead surface”, the 3D pore structure can also provide abundant contact areas for electrodes and electrolytes; Meanwhile, relieving the stress caused by volume expansion during charge-discharge cycles 3D CoOs/rGO-G 1 142.8 0.5 100 [27] Hollow structure The hollow structure can increase the contact area between the electrode and the electrolyte and provide additional free volume, which is beneficial to relieve the stress and strain caused during the Li+ intercalation/extraction process; The multi-shell hollow nanostructure can reduce the diffusion paths of lithium-ion and electron, and provide more lithium storage sites Co3O4-450 1 148 0.2 200 [33] MS-Co3O4 1 058 1 100 [36] Carbonsupported It can effectively improve the specific surface area and electrical conductivity of cobalt-based oxides, and reduce the volume expansion/contraction and aggregation of cobalt-based oxides GE-Co3O4 820 1 100 [43] CN@CoCo3O4/CNTs 460 5 300 [44] Hetero-structure It can combine the advantages of different phases to play a multicomponent synergistic enhancement; The interface of the heterostructure can accelerate ion diffusion and reduce the ion diffusion barrier; Charge redistribution will induce the formation of more active sites for Li+ storage CuOx-Co3O4 1 122 0.2 100 [52] CoO@Co9S8-rGO 600 1 500 [54] 表 2 不同成分的钴基氧化物材料的优点及性能对比
Table 2. Advantages and properties comparisons of different componential Co-based oxide materials
Categories Active role Material Specific capacity / (mAh·g-1) Specific current / (A·g-1) Cycle Ref. Nnumber Amorphous Disordered lattices and defects are beneficial to promote ion diffusion, increase storage sites, improve reactivity, and alleviate volume changes during ion insertion/extraction MCO@CNFs 780.3 0.2 250 [57] SnO2/Co3O4@NC 1 450.3 0.2 300 [59] Non-metallic doping It can significantly improve the conductivity and electrochemical activity of cobalt-based oxide materials, and it is also beneficial to accelerate electron transfer CoOS0.1@G 1 974 0.5 400 [64] Metal doping The intrinsic properties of metal oxides can be significantly optimized to induce the formation of oxygen vacancies in the crystal lattice, while metal atomic vacancies can be introduced to increase reactive sites Co3O4@C 750 0.5 300 [71] CMNC-10h 1 126 1 1 000 [72] High entropy oxide The high degree of disorder and the mutual electronic regulation between various metal atoms endow it with a large number of oxygen vacancies and three-dimensional lithium-ion transport channels (CrMnFeCoNi)3O4 825 0.5 100 [76] (MnFeCoNiZn)3O4-x 600 C/5 100 [80]
计量
- PDF下载量: 38
- 文章访问数: 1695
- HTML全文浏览量: 388