Bi9P2O18Cl的相变及其可见光催化水产氢

操振宇 吴耘 高建华

引用本文: 操振宇, 吴耘, 高建华. Bi9P2O18Cl的相变及其可见光催化水产氢[J]. 无机化学学报, 2022, 38(5): 969-976. doi: 10.11862/CJIC.2022.099 shu
Citation:  Zhen-Yu CAO, Yun WU, Jian-Hua GAO. Bi9P2O18Cl: Phase Transition and Hydrogen Production by Photocatalytic Water-Splitting[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(5): 969-976. doi: 10.11862/CJIC.2022.099 shu

Bi9P2O18Cl的相变及其可见光催化水产氢

    通讯作者: 高建华,E-mail:gaojh@nwu.edu.cn
  • 基金项目:

    陕西省自然科学基础研究计划项目 2022JM-199

摘要: 采用高温熔盐法制备了Bi9P2O18Cl单晶。单晶X射线衍射分析表明Bi9P2O18Cl从室温到低温发生晶体到晶体的相变。室温下,该化合物(α相)属于单斜空间群P21/m(11),单胞参数:a=1.149 10(7) nm,b=0.540 64(4) nm,c=1.463 69(9) nm,β=93.741(6)°,V=0.907 38(10) nm3;而在100 K下,该化合物(β相)属于单斜空间群P21/n(14),单胞参数:a=1.790 56(4) nm,b=0.538 870(10) nm,c =1.915 57(4) nm,β=103.693(2)°,V=1.795 76(6) nm3。另外,采用高温固相反应法,合成了高纯的Bi9P2O18Cl粉末样品,该样品展示了较好的光催化产氢性能,产氢量可达33.69 μmol·g-1·h-1

English

  • Hydrogen energy is considered one of the most attractive clean energy sources due to its high energy capacity and environmental friendliness[1-3], but the development of stable hydrolysis catalysts for visible - light reactions is currently a huge technical challenge for the scientific community[4-5]. To make better use of the solar spectrum, mixed anionic compounds, such as oxynitrides[6], oxysulphides[7], and oxyhalides[8], are promising candidates because their band gaps are narrower than those of typical oxides. Recently, a series of Aurivillius - like layered bismuth oxyhalides with [Bi2O2]2+ layers have been found to have a high potential for visible - light water splitting. They usually have a high valence band maximum due to their highly dispersed O2p orbitals, which results in a very narrow band gap and also is structurally stable for photocatalytic water separation[5, 9-10]. The structure of the Aurivillius compound is composed of the fluorite - like layers [Bi2O2]2+ interspersed between perovskite - like layers [An-1BnO3n+1]2- (A=Na+, K+, Sr2+, Bi3+, Ba2+, etc. and B=Ti4+, Fe3+, Nb5+, W6+, etc.), where n is the layer number of the perovskite-like layers[11-12]. In this structure, the [An-1BnO3n+1]2- layer is sandwiched between the [Bi2O2]2+ layers, which will allow rapid separation of photoinduced electrons from holes, resulting in highly quantum -efficient photocatalysis[13-14]. And that layered metal oxide semiconductor particles produce hydrogen more readily than other compounds, due to the efficient movement of light - generated electron - hole pairs to the surface[15]. Moreover, the Aurivillius compounds have potential applications in photocatalysis and optical properties due to their unique layered crystal structure and ideal visible-light sensitivity[16-19].

    In 1997, Mentre and Abraham reported the structure of Bi9V2O18Cl for the first time[20]. In Bi9V 2O18Cl, the [Bi2O2]2+ layers, similar to those of Aurivillius compound, also can be found. In 2020, Ji et al. synthesized the phosphate-analogous compounds Bi9P2O18Cl via sol - gel - assisted solid - state reaction (SSR) and found that Bi9 P 2O18 Cl has a band gap of 2.58 eV and its potentials of the conduction and valence bands cover the reduction and oxidation potentials of the water. Additionally, Rietveld's refinement from powder X - ray diffraction (PXRD) data showed that Bi9P2O18Cl is isostructural with Bi9V2O18Cl and also contains [Bi2O 2]2+ layers, which will lead to a huge polarization to enhance the separation of the photoinduced charges[19]. These indicate that Bi9P2O18Cl is a suitable semiconductor for the visible-light-driven photocatalytic splitting of water. Therefore, the performance of hydrogen production of Bi9P2O18Cl from water-splitting raises concerns for us. However, the crystal structure of Bi9P2O18Cl remains dubious because there are several disordered O and Bi atoms. To figure out the structure, we grew the crystals and then revisited the structure

    through the single - crystal diffraction method. Interestingly, the structural results showed that Bi9P2 O18Cl experiences a crystal - to - crystal phase transition from room temperature to 100 K. Hereafter, the room - and low - temperature phases can be denoted as“α”and “β”, respectively. In addition, results from photocatalytic water - splitting also showed that Bi9P 2O18Cl was indeed active to produce H2.

    NH4H2PO4 (98%, Aladdin), BiCl3 (99%, Aladdin), Bi2O3 (99%, Aladdin) were purchased from a commercial provider and used without further purification. The powder sample of the title compound was synthesized by the conventional SSR method. In the reaction, Bi2O 3, BiCl3, and NH 4H2PO4 were mixed in a molar ratio of 13∶1∶6 and packed into a Platinum crucible. After that, the mixture was heated in a muffle furnace at 300 ℃ for 6 h, 500 ℃ for 6 h, and 700 ℃ for 10 h with several mid - grinding. Finally, a pale-yellow powder sample was obtained.

    Single crystals were obtained by the hightemperature molten salt method. 0.3 g Bi9P2O18 Cl and 1.0 g CsCl were ground sufficiently in the Ar - filled glovebox and then encapsulated into a quartz tube using a vacuum sealing device. After that, the mixture was melted at 850 ℃, held for 5 h, and then slowly cooled down at a rate of 3 ℃·h-1 to 550 ℃. Finally, the colorless transparent crystals were successfully obtained.

    The PXRD data were collected by a Bruker D8 advance diffractometer (tube voltage was 40 kV; tube current was 40 mA) using Cu radiation (λ=0.154 18 nm) with a step size of 0.02° at room temperature. The PXRD data were collected for phase purity checking and Rietveld refinement (5°≤2θ≤95°, 1.0 s·step-1).

    Single crystals were selected under an optical microscope and mounted on glass fibers for X-ray diffraction studies. The diffraction data of single-crystal samples were respectively collected at room temperature and low temperature on a Bruker Smart diffractometer equipped with a CCD area detector and Mo (λ= 0.071 073 nm) radiation source. Intensities were corrected for Lorenz and polarization effects. The structure was solved directly using the SHELEX - 97 program[21] and refined on F2 by least-squares, full - matrix techniques. The final results were tested using PLATON[22] and no additional symmetry elements were found. The main related crystallographic data are listed in Table 1 (The residual peaks show a little big because there are nine heavy-atoms Bi in one-unit cell and the quality of single crystals is not so good). The atomic coordinates and equivalent isotropic displacement parameters of the α - and β - phases are summarized in Table S1 and Table S2, and the selected bond lengths are given in Table 2 and Table 3.

    表 1

    表 1  Crystal data and structure refinement for Bi9P2O18Cl
    下载: 导出CSV
    Parameter β-phases Bi9P2O18Cl α-phases Bi9P2O18Cl
    Formula weight 2 266.21 2 266.21
    Temperature / K 100 300
    Space group P21/n (14) P21/m (11)
    a / nm 1.790 56(4) 1.149 10(7)
    b / nm 0.538870(10) 0.54064(4)
    c / nm 1.915 57(4) 1.463 69(9)
    β/(°) 103.693(2) 93.741(6)
    V / nm3 1.795 76(6) 0.907 38(10)
    Z 4 2
    Dc / (g·cm-3) 8.382 8.295
    Absorption coefficient / mm-1 88.271 87.347
    F(000) 3 752 1 876
    θ range for data collection / (°) 1.78-29.31 1.78-29.20
    Reflection collected, unique 21 094, 4 928 7 128, 2 240
    Rint 0.042 8 0.056 7
    Goodness-of-fit on F 2 1.141 1.044
    Final R indices [I > 2σ(I)] R1=0.036 6, wR1=0.095 6 R1=0.049 0, wR1=0.121 9
    R indices (all data) R2=0.042 6, wR2=0.097 3 R2=0.056 5, wR2=0.134 0
    Largest diff. peak and hole / (e·nm-3) 5 107 and -4 977 7 132 and -9 686

    表 2

    表 2  Selected bond lengths (nm) and bond angles (°) of α-phase Bi9P2O18Cl
    下载: 导出CSV
    Bi1—O2i 0.222 2(10) Bi4—O12ii 0.241(2) Bi9—O1ii 0.250 4(11)
    Bi1—O2 0.222 2(10) Bi5—O1 0.220 5(11) Bi9—O5 0.254 2(6)
    Bi1—O5 0.222 6(16) Bi5—O1i 0.220 5(11) Bi9—O2ii 0.269 3(10)
    Bi1—O3 0.251 7(11) Bi5—O2i 0.233 2(10) Bi9—O1vii 0.273 3(11)
    Bi1—O3i 0.251 7(11) Bi5—O2 0.233 2(10) P1—O10 0.152 2(19)
    Bi2—O2ii 0.220 3(10) Bi6—O3i 0.222 4(11) P1—O9 0.154(2)
    Bi2—O2 0.220 3(10) Bi6—O3 0.222 4(11) P1—O7ii 0.155 6(12)
    Bi2—O3iii 0.232 4(10) Bi6—O4i 0.223 6(10) P1—O7 0.155 6(12)
    Bi2—O3i 0.232 4(10) Bi6—O4 0.223 6(10) P2—O11ii 0.148(2)
    Bi2—O10 0.262 5(18) Bi7—O5vii 0.209 2(17) P2—O11 0.148(2)
    Bi3—O3i 0.224 4(11) Bi7—O1ii 0.216 7(11) P2—O13 0.152(2)
    Bi3—O3iii 0.224 4(10) Bi7—O1 0.216 7(11) P2—O13ii 0.152(2)
    Bi3—O4i 0.228 7(10) Bi7—O13vii 0.253 6(19) P2—O6 0.154(2)
    Bi3—O4iii 0.228 7(10) Bi7—O13viii 0.253 6(19) P2—O12 0.162(2)
    Bi3—O6 0.264 4(18) Bi8—O4iii 0.219 1(10) P2—O12ii 0.162(2)
    Bi4—O8 0.207 7(16) Bi8—O4ii 0.219 1(10) Cl—Bi2 0.326 05(39)
    Bi4—O11 0.234(2) Bi8—O8iii 0.226 9(16) Cl—Bi2iii 0.326 05(39)
    Bi4—O11i 0.234(2) Bi8—O4ix 0.256 1(10) Cl—Bi2xi 0.326 65(74)
    Bi4—O7v 0.236 7(12) Bi8—O4x 0.256 1(10) Cl—Bi5iii 0.339 55(74)
    Bi4—O7vi 0.236 7(12) Bi9—O1 0.213 4(11) Cl—Bi6xi 0.345 89(43)
    Bi4—O12iv 0.241(2) Bi9—O2 0.235 0(10) Cl—Bi6xii 0.345 89(43)
    O10—P1—O9 113.6(11) O11—P2—O13ii 132.0(13) O13—P2—O12 107.2(11)
    O10—P1—O7ii 108.3(6) O11ii—P2—O13ii 116.8(12) O13ii—P2—O12 75.0(10)
    O9—P1—O7ii 109.1(6) O13—P2—O13ii 32.5(14) O6—P2—O12 97.4(8)
    O10—P1—O7 108.3(6) O11ii—P2—O6 113.8(12) O11ii—P2—O12ii 105.5(13)
    O9—P1—O7 109.1(6) O11—P2—O6 113.8(12) O11—P2—O12ii 59.8(11)
    O7ii—P1—O7 108.3(9) O13—P2—O6 113.7(11) O13—P2—O12ii 75.0(10)
    O11ii—P2—O11 45.9(18) O13ii—P2—O6 113.7(11) O13ii—P2—O12ii 107.2(11)
    O11ii—P2—O13 132.0(13) O11ii—P2—O12 59.8(11) O6—P2—O12ii 97.4(8)
    O11—P2—O13 116.8(12) O11—P2—O12 105.5(13) O12—P2—O12ii 162.6(16)
    Symmetry codes: i x, -y+5/2, z; ii x, -y+3/2, z; iii x, y-1, z; iv x, y+1, z; v x-1, y, z; vi x-1, -y+5/2, z; vii -x+1, -y+2, -z; viii -x+1, y-1/2, -z; ix -x, -y+2, -z+1; x -x, y-3/2, -z+1; xi -x+1, -1/2+y, 1-z; xii -x+1, -3/2+y, 1-z.

    表 3

    表 3  Selected bond lengths (nm) and bond angles (°) of β-phase Bi9P2O18Cl
    下载: 导出CSV
    Bi1—O10 0.215 2(8) Bi4—O14 0.267 0(9) Bi8—O13 0.221 7(9)
    Bi1—O5i 0.232 7(8) Bi4—O15iii 0.274 4(9) Bi8—O7 0.224 6(8)
    Bi1—O9 0.237 9(8) Bi5—O8 0.219 8(9) Bi9—O9 0.209 2(9)
    Bi1—O12i 0.242 9(8) Bi5—O5 0.221 2(8) Bi9—O12ii 0.212 1(8)
    Bi1—O8i 0.267 7(9) Bi5—O11i 0.228 7(8) Bi9—O10ix 0.222 0(8)
    Bi2—O12 0.215 8(8) Bi5—O13 0.235 5(9) Bi9—O17i 0.254 2(9)
    Bi2—O10 0.225 9(9) Bi5—O4 0.263 0(10) P1—O2viii 0.153 8(9)
    Bi2—O8 0.227 3(8) Bi6—O7 0.217 4(8) P1—O4 0.153 0(11)
    Bi2—O5i 0.241 1(8) Bi6—O6 0.222 3(8) P1—O3 0.154 4(10)
    Bi2—O1 0.267 2(8) Bi6—O15iii 0.227 2(9) P1—O1 0.158 1(9)
    Bi3—O8 0.217 6(8) Bi6—O6iv 0.252 3(8) P2—O17 0.153 3(9)
    Bi3—O5i 0.221 6(8) Bi6—O7v 0.258 6(8) P2—O16 0.155 6(9)
    Bi3—O9 0.222 8(9) Bi6—O3iii 0.263 4(9) P2—O14 0.153 9(10)
    Bi3—O13i 0.247 9(9) Bi7—O15 0.207 3(10) P2—O18 0.153 6(9)
    Bi3—O11i 0.255 2(9) Bi7—O18vi 0.227 0(9) Cl—Bi2x 0.338 89(39)
    Bi3—O14i 0.271 4(9) Bi7—O1 0.228 8(8) Cl—Bi5 0.324 10(39)
    Bi4—O13 0.223 4(9) Bi7—O16vii 0.243 5(8) Cl—Bi5x 0.327 91(30)
    Bi4—O7 0.223 8(8) Bi7—O2 0.244 0(9) Cl—Bi5xi 0.320 44(30)
    Bi4—O11i 0.226 2(8) Bi8—O11 0.219 1(8) Cl—Bi8 0.352 02(30)
    Bi4—O6i 0.229 6(8) Bi8—O6 0.222 2(8) Cl—Bi8i 0.337 50(31)
    O4—P1—O2viii 110.9(5) O2viii—P1—O1 109.4(5) O18—P2—O14 109.5(5)
    O4—P1—O3 113.3(6) O3—P1—O1 108.3(5) O17—P2—O16 109.3(5)
    O2viii—P1—O3 109.0(5) O17—P2—O18 112.6(5) O18—P2—O16 108.4(5)
    O4—P1—O1 105.8(5) O17—P2—O14 109.3(5) O14—P2—O16 107.6(5)
    Symmetry codes: i x, y+1, z; ii -x+3/2, y+1/2, -z+1/2; iii x+1/2, -y+1/2, z+1/2; iv -x+3/2, y+1/2, -z+3/2; v -x+3/2, y-1/2, -z+3/2; vi x-1/2, -y+1/2, z-1/2; vii x-1/2, -y+3/2, z-1/2; viii x, y-1, z; ix -x+3/2, y-1/2, -z+1/2; x -x+1, -y+1, -z+1; xi -x+1, -y, -z+1.

    CCDC: 2128785, α - phase Bi9P2O18Cl; 2145491, β-phase Bi9P2O18Cl.

    A PerkinElmer Lambda 950 UV-Vis-NIR spectrophotometer was performed to collect the optical diffuse reflectance data in the range of 200-1 200 nm.

    The DFT (density functional theory) calculation was given by using the Vienna ab initio Simulation Package (VASP) [23] with the projector-augmented wave (PAW) pseudopotentials[24]. The Perdew - Burke - Ernzerhof (PBE) of the generalized gradient approximation (GGA)[25] was applied in the exchange and correlation potentials. Gamma grids of 2×5×2 and 5×1×1 were applied for the room-temperature and low-temperature bulk cell, respectively.

    To investigate the photocatalytic hydrogen production performance of Bi9P2O18 Cl, a 300 W xenon lamp was used as a light source to imitate sunlight, and photocatalytic hydrogen production experiments were carried out at ambient temperature and pressure. The production of H2 was achieved by dispersing 20 mg of catalyst into an aqueous solution containing Na2S/ Na2SO3 (Na2S 0.1 mol·L-1, Na2SO3 0.1 mol·L-1). The reaction vessel was evacuated and purged by Ar for about 20 min to completely remove air before irradiation. The photocatalytic reaction was typically performed for 4 h. To detect the amount of H2, 1 mL gas component was extracted from the vessel and then injected into a gas chromatograph (GC 7900, Tianmei, TCD, detector, Shanghai, nitrogen carrier gas) equipped with a TCD (thermal conductivity detector) detector.

    The title compound can be synthesized using the SSR method. And its single crystals can be obtained in the CsCl molten media. To refine the structure and check the phase purity of Bi9P2O 18Cl, the Rietveld method was performed to the PXRD data by using the TOPAS software. The starting structural model was constructed using the crystallographic data obtained from our single - crystal diffraction. The final refinement converged to small reliability factors (Rwp=15.55%, Rp=9.61%, GOF=6.58). As shown in Fig. 1, the experimental PXRD pattern is in good agreement with the pattern calculated on the base of single-crystal diffraction data of Bi9P2O18Cl, indicating that the high pure samples were synthesized.

    图 1

    图 1.  Rietveld refinement XRD pattern of Bi9P2O18Cl
    2.2.1   Room-temperature structure (α-phase)

    Bi9P2O 18Cl at room temperature crystallizes in the monoclinic space group P21/m (11) with unit cell parameters a=1.149 10(7) nm, b=0.540 64(4) nm, c= 1.463 69(9) nm, β=93.741(6)°, and V=0.907 38(10) nm3. The α - phase structure from our single-crystal diffraction data is almost the same as that of Bi9V2O18Cl[20] and Bi9P2O18Cl from PXRD data[19]. Therefore, herein we don't discuss the detailed α - phase structure anymore, but the atomic coordinates, selected bond lengths, and bond angles are still given in Table S1 (Supporting information) and Table 2. It is worth mentioning that in the process of solving the α - phase structure from our single-crystal diffraction data, many attempts to remove the disordered O and Bi atoms were made, but failed, indicating the disordered O and Bi atoms exist indeed in the α-phase structure of Bi9P2O18Cl.

    2.2.2   Low-temperature structure (β-phase)

    When the temperature decreases, the singlecrystal X-ray diffraction analyses reveal that Bi9P2O18Cl undergoes a crystal- to- crystal phase transition. At 100 K, Bi9P2O 18Cl crystallizes in the monoclinic space group P21/n (14) with unit cell parameters a=1.790 56(4) nm, b=0.538 870(10) nm, c=1.915 57(4) nm, β =103.693(2)°, and V=1.795 76(6) nm3. The asymmetric unit includes nine independent Bi atoms, two P atoms, eighteen O atoms, and one Cl atom, which all occupy fully at 4e positions and no disorder appears (Table S2). As listed in Table 3, the bond length of Bi— O ranges from 0.207 3(10) to 0.274 4(9) nm, and the bond length of Bi—Cl ranges from 0.320 44(30) to 0.352 02(30) nm, which don't show a big difference from the Bi—O and B—Cl bond lengths of the α - phase structure and Bi9V 2O 18Cl. But the P —O bond lengths and coordination environment of P are different between α - and β - phase structures. In the α-phase, P1 is four-coordinated to O atoms with reasonable P—O band distances (Fig. 2a). While P2 atom is linked with the disordered O11, O12, and O13 to form a configuration as shown in Fig. 2b. Because the site occupancy of O11, O12, and O13 is 0.5, the configuration is still considered as a PO4 tetrahedron. A long (0.162(2) nm) and short (0.148(2) nm) P—O bond lengths appear in the PO4 tetrahedron. By contrast, in the β - phase, P1 and P2 atoms are respectively coordinated with four oxygen atoms to form normal PO 4 tetrahedra with reasonable P—O bond lengths and angles (Fig. 2c, 2d). Fig. 3 shows the projected views of α - and β - phases along b - direction. As can be seen, the two frameworks, constructed by [Bi2O2]2+ layers stacking along [101] direction, look very similar. The main difference lies in the change of unit cells. The unit cell of the β -phase is almost twice that of the α - phase. The reason may be that when the temperature decrease, the atom vibrations become not drastic so that the disorder of O and Bi atoms disappear and the symmetry reduces, which makes the unit cell of α-phase enlarge.

    图 2

    图 2.  P—O bond lengths (nm) and coordination environment of P in α- and β-phase structures

    图 3

    图 3.  Projection view of the crystal structures of α- and β-phase Bi9P2O18Cl along the b-direction

    The Kubelka- Munk equation was applied to calculate the energy of band gap from the following equation: αhνn= A( -Eg), where n=2 for direct transitions and 1/2 for indirect transitions, and α, h, ν, A, and Eg are the optical absorption coefficient, Planck constant, light frequency, constant, and band gap respectively. According to the band structure calculated through the first-principle theory, an indirect optical gap was determined. So, the value of 1/2 is adopted to n. As shown in Fig. 4, the extrapolation of the linear part intercept at 2.62 eV in the axis of photon energy. This is in general agreement with the experimental results obtained by Ji (2.58 eV)[19].

    图 4

    图 4.  UV-Vis-NIR absorption spectrum of Bi9P2O18Cl

    Inset: Tauc plot from indirect transitions

    The DFT calculation was applied to further understand the band structure of Bi9P2O18Cl. As shown in Fig. 5, the band gaps of α - and β- phases are 2.64 and 2.62 eV, respectively, which are accordant with the experimental results of 2.62 eV. It can be seen that the electronic structure of α- and β-phases are almost identical. The valance band mostly originates from O2p orbital. The Bi6s, Bi6p, Cl3p, and P3p also make some contribution to the formation of the top of the valance band. The conduction band mostly consists of O2p and Bi6p orbitals.

    图 5

    图 5.  PDOS (partial density of state) of α- and β-phases Bi9P2O18Cl

    The photocatalytic hydrogen production activity of Bi9P2O18Cl was investigated under simulated sunlight conditions. As shown in Fig.S1, the results demonstrated that Bi9P2O18Cl had a good photocatalytic performance with a hydrogen production rate of 33.69 μmol· g-1·h-1. It is well known that heterojunction engineering usually will enhance the photocatalytic performance, so the junctions of Bi9P2O18Cl with metals or other semiconductors may show amazing photocatalytic performance.

    In summary, we have prepared Bi9P2O18Cl using SSR and its single crystals were grown through the molten salt method. Single - crystal X - ray diffraction data analyses demonstrated that Bi9P2O 18Cl undergoes a crystal-to-crystal phase transition from room temperature to 100 K. The room -temperature phase (α -phase) and low - temperature phase (β - phase) have a similar configuration of atom arrangement. The big difference is that in the α-phase there exist the disorders of O and Bi atoms, but in the β-phase, the disordered O and Bi atoms disappear due to the reduction of symmetry with the decrease of temperature. The DFT calculations reveal that the valance band and conduction band of α- and β-phase Bi9P2O18Cl mostly originates from O2p and Bi2p orbitals, respectively. The calculated band gaps are in good agreement with the experimental value of 2.62 eV. In photocatalytic hydrogen production experiments, Bi9P2O18Cl showed excellent photocatalytic performance with an H2 production rate of 33.69 μmol· g-1·h-1.

    Supporting information is available at http://www.wjhxxb.cn


    1. [1]

      王强, 徐睿, 王旭生, 刘思得, 黄远标, 曹荣. 铂纳米颗粒修饰的多孔卟啉基金属-有机框架化合物高效光催化产氢[J]. 无机化学学报, 2017,33,(11): 2038-2044. doi: 10.11862/CJIC.2017.240WANG Q, XU R, WANG X S, LIU S D, HUANG Y B, CAO R. Plati-num Nanoparticle-Decorated Porous Porphyrin-Based Metal -Organic Framework for Photocatalytic Hydrogen Production[J]. Chinese J. Inorg. Chem., 2017, 33(11):  2038-2044. doi: 10.11862/CJIC.2017.240

    2. [2]

      陆杨, 上官莉, 张慧, 王岩, 谭宇烨, 孙建华, 刘光祥. 碳自掺杂石墨相氮化碳纳米片的制备及其在可见光照射下的光解水产氢性能[J]. 无机化学学报, 2021,37,(4): 668-674. LU Y, SHANG G L, ZHANG H, WANG Y, TAN Y Y, SUN J H, LIU G X. Preparation of Carbon Self-Doping Graphic Carbon Nitride Nanosheets for Photocatalytic H2 Evolution Performance under Visible-Light Irradiation[J]. Chinese J. Inorg. Chem., 2021, 37(4):  668-674.

    3. [3]

      Chu J Y, Han X J, Yu Z, Du Y C, Song B, Xu P. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu7S4/g-C3N4 Ternary Heterostructures[J]. ACS Appl. Mater. Interfaces, 2018, 10(24):  20404-20411. doi: 10.1021/acsami.8b02984

    4. [4]

      Abe R. Recent Progress on Photocatalytic and Photoelectrochemical Water Splitting under Visible Light Irradiation[J]. J. Photochem. Photobiol. C, 2010, 11(4):  179-209. doi: 10.1016/j.jphotochemrev.2011.02.003

    5. [5]

      Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C C, Nakano K, Abe R, Kageyama H. Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analy-sis[J]. J. Am. Chem. Soc., 2017, 139(51):  18725-18731. doi: 10.1021/jacs.7b11497

    6. [6]

      Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M. Zinc Germanium Oxynitride as a Photocat-alyst for Overall Water Splitting under Visible Light[J]. J. Phys. Chem. C, 2007, 111(2):  1042-1048. doi: 10.1021/jp0656532

    7. [7]

      Wang Q, Nakabayashi M, Hisatomi T, Sun S, Akiyama S, Wang Z, Pan Z H, Xiao X, Watanabe T, Yamada T, Shibata N, Takata T, Domen K. Oxysulfide Photocatalyst for Visible-Light-Driven Overall Water Splitting[J]. Nat. Mater., 2019, 18(8):  827-832. doi: 10.1038/s41563-019-0399-z

    8. [8]

      Li J, Li H, Zhan G M, Zhang L Z. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides[J]. Acc. Chem. Res., 2017, 50(1):  112-121. doi: 10.1021/acs.accounts.6b00523

    9. [9]

      Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R. Layered Perovskite Oxychloride Bi4 NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting[J]. J. Am. Chem. Soc., 2016, 138(7):  2082-2085. doi: 10.1021/jacs.5b11191

    10. [10]

      Zhong C C, Kato D, Ogawa K, Tassel C, Izumi F, Suzuki H, Kawaguchi S, Saito T, Saeki A, Abe R, Kageyama H. Bi4AO6Cl2 (A=Ba, Sr, Ca) with Double and Triple Fluorite Layers for Visible-Light Water Split-ting[J]. Inorg. Chem., 2021, 60(20):  15667-15674. doi: 10.1021/acs.inorgchem.1c02344

    11. [11]

      Kumar J P, Sekhar K S K R C, Rao T D, Babu P D, Tirupathi P. Effect of Sintering Temperature on Structural, Dielectric, and Elec-trical Property Studies of Bi4NdTi3FeO15 Aurivillius Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2021, 32(7):  9675-9684. doi: 10.1007/s10854-021-05628-9

    12. [12]

      Kusainova A M, Zhou W Z, Irvine J T S, Lightfoot P. Layered Inter-growth Phases Bi4MO 8X (X=Cl, M=Ta and X=Br, M=Ta or Nb): Structural and Electrophysical Characterization[J]. J. Solid State Chem., 2002, 166(1):  148-157. doi: 10.1006/jssc.2002.9572

    13. [13]

      Shivani V, Harish S, Archana J, Navaneethan M, Ponnusamy S, Hayakawa Y. Highly Efficient 3-D Hierarchical Bi2WO6 Catalyst for Environmental Remediation[J]. Appl. Surf. Sci., 2019, 488:  696-706. doi: 10.1016/j.apsusc.2019.05.072

    14. [14]

      Li W Q, Ding X G, Wu H T, Yang H. Bi2MoxW1-xO6 Solid Solutions with Tunable Band Structure and Enhanced Visible-Light Photocata-lytic Activities[J]. Appl. Surf. Sci., 2018, 447:  636-647. doi: 10.1016/j.apsusc.2018.04.039

    15. [15]

      Wei Z, Zhu Y F. Synthesis and Performance Enhancement for Bi2WO6 as High-Activity Visible -Light -Driven Photocatalysts//Yamashita H, Li H X[J]. Nanostructured Photocatalysts: Advanced Functional Materials. Switzerland: Springer, 2016, :  359-389.

    16. [16]

      Jiang L, Ni S, Liu G, Xu X X. Photocatalytic Hydrogen Production over Aurivillius Compound Bi3TiNbO9 and Its Modifications by Cr/Nb Co-Doping[J]. Appl. Catal. B, 2017, 217:  342-352. doi: 10.1016/j.apcatb.2017.06.012

    17. [17]

      Lu Y T, Pu Y F, Wang J, Qin C X, Chen C L, Seo H J. On Structure and Methylene Blue Degradation Activity of an Aurivillius -Type Photocatalyst of Bi4V 2O11 Nanoparticles[J]. Appl. Surf. Sci., 2015, 347:  719-726. doi: 10.1016/j.apsusc.2015.04.164

    18. [18]

      Xu L, Wan Y P, Xie H D, Huang Y L, Qiao X B, Qin L, Seo H J. On Structure, Optical Properties and Photodegradated Ability of Aurivillius-Type Bi3TiNbO9 Nanoparticles[J]. J. Am. Ceram. Soc., 2016, 99(12):  3964-3972. doi: 10.1111/jace.14423

    19. [19]

      Ji X H, Wang Q, Lu J F, Zhang D. Optical and Photochemical Char-acteristics of Aurivillius -like Semiconductor Bi9P2O18Cl Synthe-sized via Sol-Gel-Assisted Solid-Sate Reaction[J]. Ceram. Int., 2020, 46(16):  25766-25774. doi: 10.1016/j.ceramint.2020.07.055

    20. [20]

      Mentre O, Abraham F. Synthesis, Crystal Structure, Infrared Charac-terization, and Electrical Properties of the New Bi9(V1-xPx)2ClO18 Series (0 ≤ x ≤ 1)[J]. J. Solid State Chem., 1998, 136(1):  34-45. doi: 10.1006/jssc.1997.7644

    21. [21]

      Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008, A64(1):  112-122.

    22. [22]

      Spek A L. Single-Crystal Structure Validation with the Program PLATON[J]. J. Appl. Crystallogr., 2003, 36:  7-13. doi: 10.1107/S0021889802022112

    23. [23]

      Kresse G, Furthmüller J. Efficiency of AbInitio Total Energy Calcu-lations for Metals and Semiconductors Using a Plane Wave Basis Set[J]. Comput. Mater. Sci., 1996, 6(1):  15-50. doi: 10.1016/0927-0256(96)00008-0

    24. [24]

      Blöchl P E. Projector Augmented-Wave Method[J]. Phys. Rev. B, 1994, 50(24):  17953-17979. doi: 10.1103/PhysRevB.50.17953

    25. [25]

      Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approxi-mation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18):  3865-3868. doi: 10.1103/PhysRevLett.77.3865

  • 图 1  Rietveld refinement XRD pattern of Bi9P2O18Cl

    图 2  P—O bond lengths (nm) and coordination environment of P in α- and β-phase structures

    图 3  Projection view of the crystal structures of α- and β-phase Bi9P2O18Cl along the b-direction

    图 4  UV-Vis-NIR absorption spectrum of Bi9P2O18Cl

    Inset: Tauc plot from indirect transitions

    图 5  PDOS (partial density of state) of α- and β-phases Bi9P2O18Cl

    表 1  Crystal data and structure refinement for Bi9P2O18Cl

    Parameter β-phases Bi9P2O18Cl α-phases Bi9P2O18Cl
    Formula weight 2 266.21 2 266.21
    Temperature / K 100 300
    Space group P21/n (14) P21/m (11)
    a / nm 1.790 56(4) 1.149 10(7)
    b / nm 0.538870(10) 0.54064(4)
    c / nm 1.915 57(4) 1.463 69(9)
    β/(°) 103.693(2) 93.741(6)
    V / nm3 1.795 76(6) 0.907 38(10)
    Z 4 2
    Dc / (g·cm-3) 8.382 8.295
    Absorption coefficient / mm-1 88.271 87.347
    F(000) 3 752 1 876
    θ range for data collection / (°) 1.78-29.31 1.78-29.20
    Reflection collected, unique 21 094, 4 928 7 128, 2 240
    Rint 0.042 8 0.056 7
    Goodness-of-fit on F 2 1.141 1.044
    Final R indices [I > 2σ(I)] R1=0.036 6, wR1=0.095 6 R1=0.049 0, wR1=0.121 9
    R indices (all data) R2=0.042 6, wR2=0.097 3 R2=0.056 5, wR2=0.134 0
    Largest diff. peak and hole / (e·nm-3) 5 107 and -4 977 7 132 and -9 686
    下载: 导出CSV

    表 2  Selected bond lengths (nm) and bond angles (°) of α-phase Bi9P2O18Cl

    Bi1—O2i 0.222 2(10) Bi4—O12ii 0.241(2) Bi9—O1ii 0.250 4(11)
    Bi1—O2 0.222 2(10) Bi5—O1 0.220 5(11) Bi9—O5 0.254 2(6)
    Bi1—O5 0.222 6(16) Bi5—O1i 0.220 5(11) Bi9—O2ii 0.269 3(10)
    Bi1—O3 0.251 7(11) Bi5—O2i 0.233 2(10) Bi9—O1vii 0.273 3(11)
    Bi1—O3i 0.251 7(11) Bi5—O2 0.233 2(10) P1—O10 0.152 2(19)
    Bi2—O2ii 0.220 3(10) Bi6—O3i 0.222 4(11) P1—O9 0.154(2)
    Bi2—O2 0.220 3(10) Bi6—O3 0.222 4(11) P1—O7ii 0.155 6(12)
    Bi2—O3iii 0.232 4(10) Bi6—O4i 0.223 6(10) P1—O7 0.155 6(12)
    Bi2—O3i 0.232 4(10) Bi6—O4 0.223 6(10) P2—O11ii 0.148(2)
    Bi2—O10 0.262 5(18) Bi7—O5vii 0.209 2(17) P2—O11 0.148(2)
    Bi3—O3i 0.224 4(11) Bi7—O1ii 0.216 7(11) P2—O13 0.152(2)
    Bi3—O3iii 0.224 4(10) Bi7—O1 0.216 7(11) P2—O13ii 0.152(2)
    Bi3—O4i 0.228 7(10) Bi7—O13vii 0.253 6(19) P2—O6 0.154(2)
    Bi3—O4iii 0.228 7(10) Bi7—O13viii 0.253 6(19) P2—O12 0.162(2)
    Bi3—O6 0.264 4(18) Bi8—O4iii 0.219 1(10) P2—O12ii 0.162(2)
    Bi4—O8 0.207 7(16) Bi8—O4ii 0.219 1(10) Cl—Bi2 0.326 05(39)
    Bi4—O11 0.234(2) Bi8—O8iii 0.226 9(16) Cl—Bi2iii 0.326 05(39)
    Bi4—O11i 0.234(2) Bi8—O4ix 0.256 1(10) Cl—Bi2xi 0.326 65(74)
    Bi4—O7v 0.236 7(12) Bi8—O4x 0.256 1(10) Cl—Bi5iii 0.339 55(74)
    Bi4—O7vi 0.236 7(12) Bi9—O1 0.213 4(11) Cl—Bi6xi 0.345 89(43)
    Bi4—O12iv 0.241(2) Bi9—O2 0.235 0(10) Cl—Bi6xii 0.345 89(43)
    O10—P1—O9 113.6(11) O11—P2—O13ii 132.0(13) O13—P2—O12 107.2(11)
    O10—P1—O7ii 108.3(6) O11ii—P2—O13ii 116.8(12) O13ii—P2—O12 75.0(10)
    O9—P1—O7ii 109.1(6) O13—P2—O13ii 32.5(14) O6—P2—O12 97.4(8)
    O10—P1—O7 108.3(6) O11ii—P2—O6 113.8(12) O11ii—P2—O12ii 105.5(13)
    O9—P1—O7 109.1(6) O11—P2—O6 113.8(12) O11—P2—O12ii 59.8(11)
    O7ii—P1—O7 108.3(9) O13—P2—O6 113.7(11) O13—P2—O12ii 75.0(10)
    O11ii—P2—O11 45.9(18) O13ii—P2—O6 113.7(11) O13ii—P2—O12ii 107.2(11)
    O11ii—P2—O13 132.0(13) O11ii—P2—O12 59.8(11) O6—P2—O12ii 97.4(8)
    O11—P2—O13 116.8(12) O11—P2—O12 105.5(13) O12—P2—O12ii 162.6(16)
    Symmetry codes: i x, -y+5/2, z; ii x, -y+3/2, z; iii x, y-1, z; iv x, y+1, z; v x-1, y, z; vi x-1, -y+5/2, z; vii -x+1, -y+2, -z; viii -x+1, y-1/2, -z; ix -x, -y+2, -z+1; x -x, y-3/2, -z+1; xi -x+1, -1/2+y, 1-z; xii -x+1, -3/2+y, 1-z.
    下载: 导出CSV

    表 3  Selected bond lengths (nm) and bond angles (°) of β-phase Bi9P2O18Cl

    Bi1—O10 0.215 2(8) Bi4—O14 0.267 0(9) Bi8—O13 0.221 7(9)
    Bi1—O5i 0.232 7(8) Bi4—O15iii 0.274 4(9) Bi8—O7 0.224 6(8)
    Bi1—O9 0.237 9(8) Bi5—O8 0.219 8(9) Bi9—O9 0.209 2(9)
    Bi1—O12i 0.242 9(8) Bi5—O5 0.221 2(8) Bi9—O12ii 0.212 1(8)
    Bi1—O8i 0.267 7(9) Bi5—O11i 0.228 7(8) Bi9—O10ix 0.222 0(8)
    Bi2—O12 0.215 8(8) Bi5—O13 0.235 5(9) Bi9—O17i 0.254 2(9)
    Bi2—O10 0.225 9(9) Bi5—O4 0.263 0(10) P1—O2viii 0.153 8(9)
    Bi2—O8 0.227 3(8) Bi6—O7 0.217 4(8) P1—O4 0.153 0(11)
    Bi2—O5i 0.241 1(8) Bi6—O6 0.222 3(8) P1—O3 0.154 4(10)
    Bi2—O1 0.267 2(8) Bi6—O15iii 0.227 2(9) P1—O1 0.158 1(9)
    Bi3—O8 0.217 6(8) Bi6—O6iv 0.252 3(8) P2—O17 0.153 3(9)
    Bi3—O5i 0.221 6(8) Bi6—O7v 0.258 6(8) P2—O16 0.155 6(9)
    Bi3—O9 0.222 8(9) Bi6—O3iii 0.263 4(9) P2—O14 0.153 9(10)
    Bi3—O13i 0.247 9(9) Bi7—O15 0.207 3(10) P2—O18 0.153 6(9)
    Bi3—O11i 0.255 2(9) Bi7—O18vi 0.227 0(9) Cl—Bi2x 0.338 89(39)
    Bi3—O14i 0.271 4(9) Bi7—O1 0.228 8(8) Cl—Bi5 0.324 10(39)
    Bi4—O13 0.223 4(9) Bi7—O16vii 0.243 5(8) Cl—Bi5x 0.327 91(30)
    Bi4—O7 0.223 8(8) Bi7—O2 0.244 0(9) Cl—Bi5xi 0.320 44(30)
    Bi4—O11i 0.226 2(8) Bi8—O11 0.219 1(8) Cl—Bi8 0.352 02(30)
    Bi4—O6i 0.229 6(8) Bi8—O6 0.222 2(8) Cl—Bi8i 0.337 50(31)
    O4—P1—O2viii 110.9(5) O2viii—P1—O1 109.4(5) O18—P2—O14 109.5(5)
    O4—P1—O3 113.3(6) O3—P1—O1 108.3(5) O17—P2—O16 109.3(5)
    O2viii—P1—O3 109.0(5) O17—P2—O18 112.6(5) O18—P2—O16 108.4(5)
    O4—P1—O1 105.8(5) O17—P2—O14 109.3(5) O14—P2—O16 107.6(5)
    Symmetry codes: i x, y+1, z; ii -x+3/2, y+1/2, -z+1/2; iii x+1/2, -y+1/2, z+1/2; iv -x+3/2, y+1/2, -z+3/2; v -x+3/2, y-1/2, -z+3/2; vi x-1/2, -y+1/2, z-1/2; vii x-1/2, -y+3/2, z-1/2; viii x, y-1, z; ix -x+3/2, y-1/2, -z+1/2; x -x+1, -y+1, -z+1; xi -x+1, -y, -z+1.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  793
  • HTML全文浏览量:  130
文章相关
  • 发布日期:  2022-05-10
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-03-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章