基于超分子构筑模块和酰胺插入的螺旋配体的PCN类型金属有机骨架的结构和选择性吸附CO2

张明星 张培培 王素 姜国民 崔会会 汤艳峰

引用本文: 张明星, 张培培, 王素, 姜国民, 崔会会, 汤艳峰. 基于超分子构筑模块和酰胺插入的螺旋配体的PCN类型金属有机骨架的结构和选择性吸附CO2[J]. 无机化学学报, 2022, 38(3): 423-429. doi: 10.11862/CJIC.2022.061 shu
Citation:  Ming-Xing ZHANG, Pei-Pei ZHANG, Su WANG, Guo-Min JIANG, Hui-Hui CUI, Yan-Feng TANG. PCN-Type Metal-Organic Framework Based on Amide-Inserted Helical Ligand and Supramolecular Building Blocks: Structure and CO2 Selective Adsorption[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(3): 423-429. doi: 10.11862/CJIC.2022.061 shu

基于超分子构筑模块和酰胺插入的螺旋配体的PCN类型金属有机骨架的结构和选择性吸附CO2

    通讯作者: 王素, E-mail: wang.s@ntu.edu.cn; 汤艳峰, E-mail: tangyf@ntu.edu.cn
  • 基金项目:

    国家自然科学基金 21776140

    重庆市基础研究与前沿技术研究计划 cstc2019jcyjmsxm0911

摘要: 首次实现了窗口缩小的小斜方六面体超分子构筑模块(SBB)和酰胺功能化螺旋配体5,5'-(((1,1'-biphenyl)-2,2'-dicarbonyl)bis(azanediyl))diisophthalic acid (H4L)的链接,形成了一个pcu拓扑的微孔金属有机骨架[Cu2(L)(H2O)2]·DMF·6H2O(NTUniv-53),其在室温下展示了良好的二氧化碳吸附选择性。由于窗口缩小和酰胺的共同作用,该选择性基本不受温度变化的影响。

English

  • 金属有机骨架材料(MOFs),是指由金属离子或者金属簇通过配位键与多齿配体相连接构筑而成的孔性固体结晶材料[1-3]。与传统的沸石和活性炭等多孔材料相比,MOFs具有合成条件温和、结晶度高、便于分析结构和性能之间的关系等优势。在最近20年,因MOFs具有丰富多彩的拓扑结构[4-6]和可调节的吸附[7-8]、分离[9-13]、催化[14-21]、探测[22-25]、磁性[26]、储能[27]及载药[28-33]等性能,特别是MOFs超高的比表面积和孔体积等特点,引起了研究者的广泛兴趣[34]。MOFs也被认为是用于二氧化碳捕获和分离的最有希望的材料,有助于解决目前对人类威胁最大的气候变暖的难题[1, 3, 9]

    但是可控合成具有特定拓扑结构的MOFs依然是一个巨大的挑战,因为其合成是一个金属离子和配体的自组装过程,易受到包括溶剂、金属离子、配体的浓度、pH值、温度等的影响[35-37]。使用金属有机多面体(MOPs)作为超分子构筑模块(SBBs)构筑具有预定拓扑的MOFs是一个有效的策略,这是因为金属有机多面体本身具有空腔和高对称性,为实现可控合成具有特定拓扑的MOFs提供了可能[2, 38-39]

    由12个轮桨状正方形小分子(Cu2(O2CR)4 pad- dlewheel) 组合产生的小斜方六面体(small rhombi- hexahedron)具有Oh对称性,同时拥有8个尺寸固定的三角形和6个正方形窗口,其组成的MOFs最常见的为柔性配体构筑的六连接的pcu和刚性配体构筑的3,24连接的rht拓扑,这是被几个课题组研究得最广泛的多面体[40-41]。但是还没有文献报道控制小斜方六面体的8个尺寸固定的三角形和6个正方形窗口以提升此类MOFs材料的吸附选择性的方法。为此,我们设计、合成了酰胺插入的螺旋配体5,5'-(((1,1' - biphenyl) - 2, 2' - dicarbonyl)bis(azanediyl)) diisophthalic acid (H4L,Scheme 1) 构筑的MOF:[Cu2(L)(H2O)2]·DMF·6H2O(NTUniv-53),不仅引入了酰胺官能团识别小分子,而且还同时控制了小斜方六面体MOP的窗口尺寸。

    Scheme 1

    Scheme 1.  H4L for construction of NTUniv-53

    市售试剂均直接使用。红外光谱采集于VECTOR TM 22,波长范围4 000~400 cm-11H NMR采集于Bruker DRX-500,采用四甲基硅烷作为内标。热重分析(TGA)使用2960 SDT热重分析仪,氮气氛围(100 mL·min-1),升温速率为5 ℃·min-1。粉末X射线衍射(PXRD)使用Bruker AXS D8(Cu λ=0.154 18 nm),工作电压和电流分别为40 kV和40 mA,2θ= 5°~40°。

    将(1,1'-biphenyl)-2,2'-dicarboxylic acid加入二氯亚砜和二氯甲烷的混合溶剂中,回流12 h后。蒸去多余的溶剂,将固体溶解于无水二甲基乙酰胺中,将此溶液逐滴加入到溶解有5-氨基间苯二甲酸的二甲基乙酰胺溶液中,反应24 h后将其倒入蒸馏水中,析出白色固体,烘干后得产品。1H NMR (DMSO-d6):δ 13.19(broad peak,COOH),10.77(s,2H,CONH),8.28(s,4H,ArH),8.12(s,2H,ArH),7.72(d,2H,J=10 Hz,ArH),7.54(quint,4H,ArH),7.28(s,2H,ArH)。元素分析按C30H20N2O10的计算值(%,括号内为实验值):C,63.38(63.42);H,3.55(3.63);N,4.93 (4.91)。

    将六水合硝酸铜(20 mg)、H4L(10 mg)、NN-二甲基甲酰胺(1 mL)、水(0.1 mL)、乙醇(0.1 mL)和浓硝酸(30 µL)放置于25 mL的耐高温高压的玻璃反应瓶中,室温下超声至澄清。随后,将该反应溶液放入75 ℃烘箱中静置24 h,之后将烘箱温度降至室温,用DMF洗涤多次,过滤,在氮气流中干燥,得到梭形蓝色晶体(8 mg,基于配体的产率约为40%)。IR (KBr,cm-1):3 650(br,s),3 120(br,s),1 674(br,s),1 552(s),1 425(m),1 372(s),1 288(m),774(m)(图S1,Supporting information)。元素分析按Cu2C33H39N3O19的计算值(%,括号内为实验值):C,43.62(43.48);H,4.33(4.58);N,4.62(4.58)。

    NTUniv-53的单晶结构测定利用Bruker APEX 2型单晶衍射仪进行,采用Mo 射线(λ=0.071 073 nm)作辐射源。单晶解析和精修使用了SHELXL软件,非氢原子利用直接法解析,用全矩阵最小二乘法对其坐标及各向异性热参数修正。所有非氢原子均进行了各向异性精修,并且利用PLATON中SQUEEZE命令将无序的溶剂分子去除。

    NTUniv-53单晶数据:空间群为I4/mMr=1 085.32,a=b=2.944 57(9) nm,c=3.748 39(11) nm,晶胞体积32.5 nm3,测试温度为300(2) K,Z=16,8 996个衍射点,5 625个独立衍射点(Rint=0.324),R1值为0.113 9,wR(F 2)值为0.374 3,GOF值为1.120。

    CCDC:2095677。

    计算比表面积和孔径分布所需要的低压气体的吸附-脱附等温线使用Micromeritics ASAP-2020分别在77和87 K下测定。

    测试前,样品经过甲醇溶剂置换,然后在Micromeritics ASAP - 2020脱气站上进行“脱气”处理,活化处理后的样品质量约为150 mg。77 K氦气吸附用于确定样品管及样品的自由体积(假定氦气在实验条件下不会被活化后的样品吸附)。为确保吸附点位置的相对压力(p/p0)的精确性,在整个测试过程中饱和蒸气压p0均由高精度的压力传感器实行动态监测。NTUniv-53的比表面积由氮气77 K下的吸附等温线数据,根据Brunauer-Emmett-Teller(BET)方程和Langmuir方程分别予以确定。

    可以用 Clausius‐Clapeyron 方程计算 CO2(273、 298 K)的吸附热Qst(J·mol-1):

    $ {Q_{{\rm{st}}}} = \frac{{R{T_1}{T_2}}}{{{T_2} - {T_1}}}\ln \frac{{{{\left( {\frac{{N/{N_{{\rm{m}}, {T_1}}}}}{{{B_2} - {B_2}N/{N_{{\rm{m}}, {T_1}}}}}} \right)}^{{t_1}}}}}{{{{\left( {\frac{{N/{N_{{\rm{m}}, {T_2}}}}}{{{B_2} - {B_2}N/{N_{{\rm{m}}, {T_2}}}}}} \right)}^{{t_2}}}}} $

    (1)

    式中N为吸附量(mol·kg-1),Nm为饱和吸附量(mol· kg-1),T为温度(K),R为摩尔气体常数(8.314 J·mol-1· K-1),Bt分别为由Langmuir-Freundlich方程拟合气体吸附实验数据得到的与气体吸附性能有关的参数。

    如果用维里方程计算气体的吸附热,需要测定2个温度下的气体吸附等温线数据。首先运用维里方程对气体吸附数据进行拟合,得出维里系数。

    $ \ln p = \ln N + \frac{1}{T}\sum\limits_{i = 0}^m {{a_i}{N^i} + \sum\limits_{j = 0}^n {{b_j}{N^j} - 4.8903} } $

    (2)

    其中p为压力(Pa),N为气体的吸附量(mmol·g-1),T为温度(K),aibj为维里系数,mn代表能用维里方程准确描述气体吸附等温线的所需最少维里系数个数,并且维里系数a0am的绝对值是递减的,而其值正负交替。

    根据维里系数,即可求吸附热:

    $ {Q_{{\rm{st}}}} = - R\sum\limits_{i = 0}^m {{a_i}{N^i}} $

    (3)

    基于MOFs的单组分纯气体的等温吸附等温线数据,利用理想吸附溶液理论(ideal adsorption solution theory,IAST)能计算并预测MOFs对二组分等物质的量之比混合气体的吸附行为。在用IAST计算吸附选择性之前,需要对材料的单组分纯气体吸附等温线进行有效地拟合,IAST对其拟合模型的选择并无特别要求。在计算过程中,对整个研究压力范围内的吸附数据都要求其具有高的拟合精度。采用双参数L-F方程(dual-site Langmuir-Freundlich equation)对NTUniv-53材料的单组分纯气体吸附等温线进行拟合,拟合程度相关系数的平方R2 > 0.999 99。

    $ N = \frac{{{N_{{\rm{m}}1}}{b_1}{p^{\frac{1}{{{n_1}}}}}}}{{1 + {b_1}{p^{\frac{1}{{{n_1}}}}}}} + \frac{{{N_{{\rm{m}}2}}{b_2}{p^{\frac{1}{{{n_2}}}}}}}{{1 + {b_2}{p^{\frac{1}{{{n_2}}}}}}} $

    (4)

    其中p为吸附平衡时的气体压力(kPa),Nm1Nm2分别为假设的吸附位点1、2的饱和吸附量(mol·kg-1),b1b2分别为位点1和2的气体亲和系数(kPa-1),n1n2则代表吸附表面偏离理想表面的程度。多孔材料对A-B二组分混合气体的吸附选择性SA/B可按下式计算:SA/B=(xA/yA)/(xB/yB),式中xy分别代表吸附平衡时,组分A、B在吸附相和大量混合气相中的物质的量分数。

    虽然IAST法能较好地预测孔性材料对二组分混合气体的选择性吸附行为,但需要找到一个能高精度拟合其单组分纯气体吸附等温线的模型。对于某些表现出动态吸附行为的孔性材料而言,很难找到一个合适的高精度拟合模型。在这种情况下,由于气体的吸附在低压区(相对压力p/p0 < 0.3),吸附曲线满足亨利定律。当孔性材料对气体的吸附行为在低压下满足亨利定律时,吸附量只与吸附剂和吸附质间的相互作用强弱有关,而与压力无关。故而拟合直线斜率之比可在一定程度上反映出材料对不同气体选择性吸附的能力,根据斜率之比得出不同温度下气体的选择性:S=K1/K2,其中K1K2分别代表不同气体低压区拟合直线得到的斜率值。

    水热合成的NTUniv-53的分子式为[Cu2(L)(H2O)2] ·DMF·6H2O,模拟的PXRD图和实验测得的PXRD数据吻合得较好(图S2),显示了大规模制备样品的较高纯度。TGA数据(图S3)显示在100 ℃时,大约16% 的重量损失对应于全部的水分子(理论值为15.9%),从100到300 ℃,又有大约8% 的重量损失,对应于沸点较高的DMF(理论值为8.07%)。

    X射线单晶衍射数据分析揭示NTUniv-53的空间群为I4/m,2个铜离子通过4个间苯二酸链接形成一个平面正方形的轮桨状的SBUs,其中Cu—Cu键长约为0.264 6 nm,Cu—O键长为0.196~0.198 nm(图 1a),与其他文献报道的数据相吻合[2, 41]。12个SBUs通过24个间苯二甲酸连接在一起,形成了小斜方六面体MOP,也称为纳米球[2, 41],其顶点被间苯二甲酸的苯环占据,SBUs则占据了12个正方形表面的中心位置(图 1b)。每个MOP通过6个正方形的窗口与其他6个MOP链接形成了一个多孔的pcu网络,其中小斜方六面体可视为一个八面节点。

    图 1

    图 1.  (a) 构筑NTUniv-53的配体; (b) 小斜方六面体超分子构筑模块(SBB); (c) 窗口变小的SBB; (d)组装SBBs获得NTUniv-53的图解
    Figure 1.  (a) Ligand for construction of NTUniv-53; (b) Small rhombihexahedron supramolecular building block (SBB); (c) SBB with contracted windows; (d) Schematic representation of NTUniv-53 from the assembly of SBBs

    从整体结构上看,这种链接策略使得NTUniv-53产生了3种不同类型的开孔配位笼。其中被12个配体分子和24个MBBs(metal-organic building blocks)限定的最大的配位笼带有一个方形(1 nm×1 nm)的开口,配位笼的内部直径约为2.78 nm。最大的配位笼被12个圆筒形的配位笼和8个纳米球包围。每个圆筒形的配位笼由8个MBBs和4个配体分子构筑(图 1d)。根据PLATON软件的分析结果,当MBBs上的配位溶剂分子和孔道内的溶剂分子均不考虑时,NTUniv - 53展示出的孔隙率大约为53.7%。值得注意的是,设计、合成的酰胺插入的螺旋配体使得小斜方六面体MOP的6个正方形窗口尺寸缩小到了0.45 nm,而原始的未加修饰的窗口为0.85 nm(图 1c);同时考虑到碱性的酰胺官能团对二氧化碳等小分子的识别作用[2, 35],这促使我们去测试NTUniv-53的吸附性能。

    为研究NTUniv-53的孔性,将超干甲醇交换过的样品在高真空、333 K下保持24 h后获得活化的样品。当样品活化后,样品从蓝色变为深紫色,这一现象和其他文献报道的类似[2, 42],说明样品通过活化产生了Cu2+活性位点。NTUniv-53在77 K展示了Ⅰ型吸附等温线,其N2吸附量为164 cm3·g-1, 相对应的BET比表面积和Langmuir比表面积分别约为672和693 m2·g-1

    NTUniv-53的气体吸附、分离能力是通过CO2、CH4和N2的吸附-脱附等温线计算、评估的。在相对较低的压力下(150 Pa),NTUniv-53表现出了较高的CO2吸附能力,与一些带有活性金属位点或者官能团的MOFs[43-44]性能相近。在1 kPa的情况下,其273和298 K的CO2吸附能力分别为71.6和49.0 cm3·g-1

    在接近零载入时,CO2的吸附热为26.5 kJ· mol-1,这预示着CO2分子与MOF框架之间存在较强的作用力,这也与一些报道的数据接近。这个较强的作用可归因于较小的配位笼开口、密集修饰的酰胺以及大量的活性铜位点。与对CO2的吸附相比,NTUniv-53对甲烷的吸附热较小,在吸附过程中仅吸附了较少的CH4(1 kPa下298和273 K时分别为10.7和18.6 cm3·g-1)。这些结果揭示了NTUniv-53具有选择性吸附CO2的能力。

    为了说明NTUniv-53的选择性吸附能力,用斜率法来预测其在不同温度和压力下的CO2/N2和CO2/CH4选择性。对于CO2和N2的体积比为15∶85的气体混合物,NTUniv-53在2个温度下都展示了高的并且相似的CO2/N2选择性(S=32.8(273 K)、29.8(298 K),这个数据与报道的数据[45-47]接近。令人印象深刻的是,随着温度从273 K升高到298 K, 其CO2/N2选择性并没有随着温度的升高而迅速降低, 这在报道的MOFs中是罕见的。在1 kPa的条件下,预测的CO2/ CH4选择性在273和298 K下分别为6.55和7.06,随着温度的升高, 其选择性基本没有变化。NTUniv-53的CO2/N2和CO2/CH4选择性对温度的变化不敏感,可归因于碱性胺官能团和CO2分子间诱导的色散力、静电力以及缩小的配位笼窗口的协同作用。

    图 2

    图 2.  (a) 77 K下NTUniv-53的N2吸附-脱附等温线; (b) CO2的吸附热; 0~1 kPa的压力范围内NTUniv-53在(c) 298 K和(d) 273 K下的不同气体吸附-脱附等温线
    Figure 2.  (a) N2 adsorption-desorption isotherm of NTUniv-53 at 77 K; (b) Heat of adsorption of CO2 for NTUniv-53; Various gas adsorption-desorption isotherms of NTUniv-53 under pressure range of 0-1 kPa at (c) 298 K or (d) 273 K

    综上,我们成功地合成了一个基于酰胺功能化的螺旋配体和超分子构筑模块链接形成的pcu拓扑的金属有机骨架材料NTUniv-53,在室温下其展示出了良好的二氧化碳吸附选择性且对吸附温度的变化不敏感。NTUniv-53的合成不仅引入了酰胺官能团识别小分子,也是首次尝试控制小斜方六面体MOP的窗口尺寸,这为以后进一步优化MOP基的MOFs提供了一个重要的实验依据和方法。

    Supporting information is available at http://www.wjhxxb.cn


    1. [1]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013, 341:  1230444. doi: 10.1126/science.1230444

    2. [2]

      Zheng B S, Bai J F, Duan J G, Wojtas L, Zaworotko M J. Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups[J]. J. Am. Chem. Soc., 2011, 133:  748-751. doi: 10.1021/ja110042b

    3. [3]

      Song X H, Zhang M X, Chen C, Duan J G, Zhang W W, Pan Y, Bai J F. Pure-Supramolecular-Linker Approach to Highly Connected Metal-Organic Frameworks for CO2 Capture[J]. J. Am. Chem. Soc., 2019, 141:  14539-14543. doi: 10.1021/jacs.9b07422

    4. [4]

      Zhou Y, Yu F, Su J, Kurmoo M, Zuo J L. Tuning Electrical-and Photo-Conductivity by Cation Exchange within a Redox-Active Tetrathiaful-valene-Based Metal-Organic Framework[J]. Angew. Chem. Int. Ed., 2020, 59:  18763-18767. doi: 10.1002/anie.202008941

    5. [5]

      Su J, Xu N, Murase R, Yang Z M, D'Alessandro D M, Zuo J L, Zhu J. Persistent Radical Tetrathiafulvalene-Based 2D Metal-Organic Frameworks and Their Application in Efficient Photothermal Conversion[J]. Angew. Chem. Int. Ed., 2021, 60:  4789-4795. doi: 10.1002/anie.202013811

    6. [6]

      Yuan S, Huang L, Huang Z H, Sun D F, Qin J S, Feng L, Li J L, Zou X D, Cagin T, Zhou H C. Continuous Variation of Lattice Dimensions and Pore Sizes in Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2020, 142:  4732-4738. doi: 10.1021/jacs.9b13072

    7. [7]

      Guo X Q, Wang M, Meng F, Tang Y F, Tian S, Yang H L, Jiang G Q, Zhu J L. Rational Design and Synthesis of an Amino-Functionalized Hydrogen-Bonded Network with an ACO Zeolite-like Topology for Gas Storage[J]. CrystEngComm, 2016, 18:  5616-5619. doi: 10.1039/C6CE01164K

    8. [8]

      Chen S S, Chen M, Takamizawa S, Chen M S, Su Z, Sun W Y. Temperature Dependent Selective Gas Sorption of the Microporous Metal-Imidazolate Framework [Cu(L)] [H2L=1, 4-Di(1H-imidazol-4-yl) benzene][J]. Chem. Commun., 2011, 47:  752-754. doi: 10.1039/C0CC04085A

    9. [9]

      Gao Y J, Zhang M X, Chen C, Zhang Y, Gu Y M, Wang Q, Zhang W W, Pan Y, Ma J, Bai J F. A Low Symmetry Cluster Meets a Low Symmetry Ligand to Sharply Boost MOF Thermal Stability[J]. Chem. Commun., 2020, 56:  11985-11988. doi: 10.1039/D0CC04543H

    10. [10]

      Dong J, Zhao D, Lu Y, Sun W Y. Photoluminescent Metal-Organic Frameworks and Their Application for Sensing Biomolecules[J]. J. Mater. Chem. A, 2019, 7:  22744-22767. doi: 10.1039/C9TA07022B

    11. [11]

      Jiang Z Z, Zou Y, Xu T T, Fan L H, Zhou P, He Y B. A Hydrostable Cage-Based MOF with Open Metal Sites and Lewis Basic Sites Immobilized in the Pore Surface for Efficient Separation and Purification of Natural Gas and C2H2[J]. Dalton Trans., 2020, 49:  3553-3561. doi: 10.1039/D0DT00402B

    12. [12]

      Xu T T, Fan L, Jiang Z Z, Zhou P, Li Z R, Lu H Y, He Y B. Immobilization of N-Oxide Functionality into Nbo-Type MOFs for Significantly Enhanced C2H2/CH4 and CO2/CH4 Separations[J]. Dalton Trans., 2020, 49:  7174-7181. doi: 10.1039/D0DT01081B

    13. [13]

      Xu T T, Jiang Z Z, Liu P X, Chen H N, Lan X S, Chen D L, Li L B, He Y B. Immobilization of Oxygen Atoms in the Pores of Microporous Metal-Organic Frameworks for C2H2 Separation and Purification[J]. ACS Appl. Nano Mater., 2020, 3:  2911-2919. doi: 10.1021/acsanm.0c00162

    14. [14]

      Liu L Z, Sun J T, Ding J D, Zhang Y, Jia J P, Sun T H. Catalytic Oxidation of VOCs over SmMnO3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene[J]. Inorg. Chem., 2019, 58:  14275-14283. doi: 10.1021/acs.inorgchem.9b02518

    15. [15]

      Ding J J, Liu X, Wang M, Liu Q, Sun T M, Jiang G Q, Tang Y F. Controlled Synthesis of CeVO4 Hierarchical Hollow Microspheres with Tunable Hollowness and Their Efficient Photocatalytic Activity[J]. CrystEngComm, 2018, 20:  4499-4505. doi: 10.1039/C8CE00695D

    16. [16]

      Yun R R, Zhang B B, Qiu C, Ma Z W, Zhan F Y, Sheng T, Zheng B S. Encapsulating Cobalt into N-Doping Hollow Frameworks for Efficient Cascade Catalysis[J]. Inorg. Chem., 2021, 60:  9757-9761. doi: 10.1021/acs.inorgchem.1c01063

    17. [17]

      Yun R R, Zhan F Y, Wang X J, Zhang B B, Sheng T, Xin Z F, Mao J J, Liu S J, Zheng B S. Design of Binary Cu-Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO2 Electroreduction[J]. Small, 2021, 17:  2006951. doi: 10.1002/smll.202006951

    18. [18]

      Yun R R, Zhan F Y, Li N, Zhang B B, Ma W J, Hong L R, Sheng T, Du L T, Zheng B S, Liu S J. Fe Single Atoms and Fe2O3 Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions[J]. ACS Appl. Mater. Interfaces, 2020, 12:  34122-34129. doi: 10.1021/acsami.0c09124

    19. [19]

      Yun R R, Zhang S, Ma W J, Lv X, Liu S J, Sheng T, Wang S N. Fe/Fe3C Encapsulated in N-Doped Carbon Tubes: A Recyclable Catalyst for Hydrogenation with High Selectivity[J]. Inorg. Chem., 2019, 58:  9469-9475. doi: 10.1021/acs.inorgchem.9b01332

    20. [20]

      Yun R R, Hong L R, Ma W J, Jia W G, Liu S J, Zheng B S. Fe/Fe2O3@N-Dopped Porous Carbon: A High-Performance Catalyst for Selective Hydrogenation of Nitro Compounds[J]. ChemCatChem, 2019, 11:  724-728. doi: 10.1002/cctc.201801626

    21. [21]

      Yun R R, Hong L R, Ma W J, Zhang R Y, Zhan F Y, Duan J G, Zheng B S, Wang S N. Co Nanoparticles Encapsulated in Nitrogen Doped Carbon Tubes for Efficient Hydrogenation of Quinoline under Mild Conditions[J]. ChemCatChem, 2020, 12:  129-134. doi: 10.1002/cctc.201901641

    22. [22]

      Gu X F, She Z, Ma T X, Tian S, Kraatz H B. Electrochemical Detection of Carcinoembryonic Antigen[J]. Biosens. Bioelectron., 2018, 102:  610-616. doi: 10.1016/j.bios.2017.12.014

    23. [23]

      Tang Y F, Huang Y, Chen Y H, Lu L X, Wang C, Sun T M, Wang M M, Zhu G H, Yang Y, Zhang L, Zhu J L. A Coumarin Derivative as a "Turn-On"Fluorescence Probe toward Cd2+ in Live Cells[J]. Spectrochim. Acta Part A, 2019, 218:  359-365. doi: 10.1016/j.saa.2019.03.104

    24. [24]

      Guo X Q, Wang M, Gu X F, Zhu J L, Tang Y F, Jiang G Q, Bai J F. Synthesis, Structures, and Luminescence of Two 2-D Microporous Metal-Organic Frameworks in the Zinc (Cadmium)-Dicarboxylate-Imidazolate System[J]. J. Coord. Chem., 2016, 69:  1819-1827. doi: 10.1080/00958972.2016.1172070

    25. [25]

      Wang J, Lu L X, Wang C, Wang M M, Ju J F, Zhu J L, Sun T M. An AIE and PET Fluorescent Probe for Effective Zn (Ⅱ) Detection and Imaging in Living Cells[J]. New J. Chem., 2020, 44:  15426-15431. doi: 10.1039/D0NJ03667F

    26. [26]

      Cui H H, Sun T M, Wang M, Chen L, Tang Y F. Bulky Anion Supported a Five-Coordinate Spin-Crossover Cobalt (Ⅱ) Complex with Slow Magnetic Relaxation[J]. J. Solid State Chem., 2020, 289:  121535. doi: 10.1016/j.jssc.2020.121535

    27. [27]

      Li Q, Zhu H, Tang Y F, Zhu P, Ma H Y, Ge C W, Yan F. Chemically Grafting Nanoscale UIO-66 onto Polypyrrole Nanotubes for Long-Life Lithium-Sulfur Batteries[J]. Chem. Commun., 2019, 55:  12108-12111. doi: 10.1039/C9CC06362E

    28. [28]

      Chen J, Wang Y, Wang C W, Long R H, Chen T T, Yao Y. Functionalization of inorganic Nanomaterials with Pillar[n] arenes[J]. Chem. Commun., 2019, 55:  6817-6826. doi: 10.1039/C9CC03165K

    29. [29]

      Sun S Y, Geng M, Huang L, Chen Y M, Cen M P, Lu D, Wang A W, Wang Y, Shi Y J, Yao Y. A New Amphiphilic Pillar[5] arene: Synthesis and Controllable Self-Assembly in Water and Application in White-Light-Emitting Systems[J]. Chem. Commun., 2018, 54:  13006-13009. doi: 10.1039/C8CC07658H

    30. [30]

      Wang Y, Cai Y, Cao L Y, Cen M P, Chen Y M, Zhang R M, Chen T T, Dai H, Hu L P, Yao Y. An Amphiphilic Metallaclip with Enhanced Fluorescence Emission in Water: Synthesis and Controllable Self-Assembly into Multi-Dimensional Micro-structures[J]. Chem. Commun., 2019, 55:  10132-10134. doi: 10.1039/C9CC04809J

    31. [31]

      Wang Y, Wang C W, Long H R, Cao Y F, Fan D L, Cen M P, Cao LY, Chen Y M, Yao Y. Synthesis and Controllable Self-Assembly of 3D Amphiphilic Organoplatinum(Ⅱ) Metallacages in Water[J]. Chem. Commun., 2019, 55:  5167-5170. doi: 10.1039/C9CC02173F

    32. [32]

      Sun S Y, Lu D, Huang Q, Liu Q, Yao Y, Shi Y J. Reversible Surface Activity and Self-Assembly Behavior and Transformation of Amphiphilic Ionic Liquids in Water Induced by a Pillar[5] arene-Based Host-Guest Interaction[J]. J. Colloid Interface Sci., 2019, 533:  42-46. doi: 10.1016/j.jcis.2018.08.051

    33. [33]

      Yao Y, Wei X J, Chen J, dai H, Shi Y J. Amphiphilic Pillar[n] arenes[J]. Supramol. Chem., 2018, 30:  610-618.

    34. [34]

      Yun R R, Lu Z Y, Pan Y, You X Z, Bai J F. Formation of a Metal-Organic Framework with High Surface Area and Gas Uptake by Breaking Edges Off Truncated Cuboctahedral Cages[J]. Angew. Chem. Int. Ed., 2013, 52:  11282-11285. doi: 10.1002/anie.201302715

    35. [35]

      Chen C, Zhang W W, Zhang M X, Bai J F. Solvents-Dependent For-mation of Three MOFs from the Fe3O Cluster and 3, 3', 5, 5'-Diphenyl-tetracarboxylic Acid and Their Selective CO2 Adsorption[J]. Inorg. Chem., 2019, 58:  13836-13842. doi: 10.1021/acs.inorgchem.9b01697

    36. [36]

      Sanii R, Hua C, Patyk-Kaźmierczak E, Zaworotko M J. Solvent-Directed Control over the Topology of Entanglement in Square Lattice (sql) Coordination Networks[J]. Chem. Commun., 2019, 55:  1454-1457. doi: 10.1039/C8CC09152H

    37. [37]

      Zheng B, Dong H, Bai J F, Li Y Z, Li S H, Scheer M. Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand to Construct Coordination Assemblies: Experimental and Theoretical Studies[J]. J. Am. Chem. Soc., 2008, 130:  7778-7779. doi: 10.1021/ja800439p

    38. [38]

      Perry , Kravtsov V C, McManus G J, Zaworotko M J. Bottom up Synthesis that does not Start at the Bottom: Quadruple Covalent Cross-Linking of Nanoscale Faceted Polyhedra[J]. J. Am. Chem. Soc., 2007, 129:  10076-10077. doi: 10.1021/ja0734952

    39. [39]

      Yuan D Q, Zhao D, Sun D F, Zhou H C. An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity[J]. Angew. Chem. Int. Ed., 2010, 49:  5357-5361.

    40. [40]

      Yan Y, Telepeni I, Yang S H, Lin X, Kockelmann W, Dailly A, Blake A J, Lewis W, Walker G S, Allan D R, Barnett S A, Champness N R, Schröder M. Metal-Organic Polyhedral Frameworks: High H2 Adsorption Capacities and Neutron Powder Diffraction Studies[J]. J. Am. Chem. Soc., 2010, 132:  4092-4094. doi: 10.1021/ja1001407

    41. [41]

      Wang X S, Ma S Q, Forster P M, Yuan D Q, Eckert J, López J J, Murphy B J, Parise J B, Zhou H C. Enhancing H2 Uptake by"Close-Packing"Alignment of Open Copper Sites in Metal-Organic Frameworks[J]. Angew. Chem. Int. Ed., 2008, 47:  7263-7266. doi: 10.1002/anie.200802087

    42. [42]

      Zhang M X, Li B, Li Y Z, Wang Q, Zhang W W, Chen B L, Li S H, Pan Y, You X Z, Bai J F. Finely tuning MOFs towards High Performance in C2H2 Storage: Synthesis and Properties of a New MOF-505 Analogue with an Inserted Amide Functional Group[J]. Chem. Commun., 2016, 52:  7241-7244. doi: 10.1039/C6CC03198F

    43. [43]

      Zheng B S, Liu H T, Wang Z X, Yu X Y, Yi P G, Bai J F. Porous NbO-Type Metal-Organic Framework with Inserted Acylamide Groups Exhibiting Highly Selective CO2 Capture[J]. CrystEngComm, 2013, 15:  3517-3520. doi: 10.1039/c3ce26177h

    44. [44]

      Lu Z Y, Du L T, Zheng B S, Bai J F, Zhang M X, Yun R R. A Highly Porous Agw-Type Metal-Organic Framework and Its CO2 and H2 Adsorption Capacity[J]. CrystEngComm, 2013, 15:  9348-9351. doi: 10.1039/c3ce41119b

    45. [45]

      Du L T, Zhang J C, Lu Z Y, Duan J G, Xu L. A New Methyl-Embedded (3, 36)-Connected txt-Type Metal-Organic Framework Exhibiting High H2 Adsorption Property[J]. CrystEngComm, 2017, 19:  3094-3097. doi: 10.1039/C7CE00461C

    46. [46]

      Zheng B S, Wang H, Wang Z Y, Ozaki N, Hang C, Luo X, Huang L, Zeng W J, Yang M, Duan J G. A Highly Porous rht-Type Acylamide-Functionalized Metal-Organic Framework Exhibiting Large CO2 Uptake Capabilities[J]. Chem. Commun., 2016, 52:  12988-12991. doi: 10.1039/C6CC06734D

    47. [47]

      Lu Z Y, Zhang J F, Duan J G, Du L T, Hang C. Pore Space Partition via Secondary Metal Ions Entrapped by Pyrimidine Hooks: Influences on Structural Flexibility and Carbon Dioxide Capture[J]. J. Mater. Chem. A, 2017, 5:  17287-17292. doi: 10.1039/C7TA02852K

  • Scheme 1  H4L for construction of NTUniv-53

    图 1  (a) 构筑NTUniv-53的配体; (b) 小斜方六面体超分子构筑模块(SBB); (c) 窗口变小的SBB; (d)组装SBBs获得NTUniv-53的图解

    Figure 1  (a) Ligand for construction of NTUniv-53; (b) Small rhombihexahedron supramolecular building block (SBB); (c) SBB with contracted windows; (d) Schematic representation of NTUniv-53 from the assembly of SBBs

    图 2  (a) 77 K下NTUniv-53的N2吸附-脱附等温线; (b) CO2的吸附热; 0~1 kPa的压力范围内NTUniv-53在(c) 298 K和(d) 273 K下的不同气体吸附-脱附等温线

    Figure 2  (a) N2 adsorption-desorption isotherm of NTUniv-53 at 77 K; (b) Heat of adsorption of CO2 for NTUniv-53; Various gas adsorption-desorption isotherms of NTUniv-53 under pressure range of 0-1 kPa at (c) 298 K or (d) 273 K

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  575
  • HTML全文浏览量:  108
文章相关
  • 发布日期:  2022-03-10
  • 收稿日期:  2021-07-13
  • 修回日期:  2022-01-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章