Syntheses, Crystal Structures, Hirshfeld Surfaces Analyses and Fluorescence Properties of Two Tetranuclear Nickel(Ⅱ) and Zinc(Ⅱ) Complexes Based on an Unsymmetrical Salamo-like N2O4-Donor Ligand

Yan-Bin WANG Meng YU Yu ZHANG Qiong SU Wen-Kui DONG

Citation:  WANG Yan-Bin, YU Meng, ZHANG Yu, SU Qiong, DONG Wen-Kui. Syntheses, Crystal Structures, Hirshfeld Surfaces Analyses and Fluorescence Properties of Two Tetranuclear Nickel(Ⅱ) and Zinc(Ⅱ) Complexes Based on an Unsymmetrical Salamo-like N2O4-Donor Ligand[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1967-1976. doi: 10.11862/CJIC.2020.215 shu

基于非对称salamo型N2O4配体的四核镍(Ⅱ)和锌(Ⅱ)配合物的合成、晶体结构、Hirshfeld表面分析与荧光性质

    通讯作者: 苏琼, hgsq@xbmu.edu.cn
    董文魁, dongwk@126.com
  • 基金项目:

    国家自然科学基金 21968032

    国家自然科学基金(No.21968032)资助项目

摘要: 设计并合成了2种新型的salamo型N2O4配体的四核过渡金属配合物:[Ni2(L)(μ-OAc)(CH3OH)]2·4CH3OH(1)和[Zn2(L)(μ-OAc)(CH3CH2OH)]22)(H3L=6-hydroxy-6'-methoxy-2,2'-(ethylenediyldioxybis(nitrilomethylidyne))diphenol),并用元素分析、红外光谱、紫外-可见光谱、荧光光谱、Hirshfeld表面分析和单晶X射线晶体学对配合物进行了表征。X射线晶体学分析表明,配合物12均为对称的四核配合物。配合物1中所有六配位的镍(Ⅱ)原子都形成了扭曲的八面体几何构型,而配合物2中的所有五配位的锌(Ⅱ)原子则形成了扭曲的四方锥和三角双锥几何构型。

English

  • It is common knowledge that Salen and its many different kinds of analogues (R - CH=N -(CH2) 2 - N=CH -R) have been extensively investigated in modern coor- dination chemistry and organometallic chemistry for several decades[1-5]. They are one of the most versatile multidentate chelating ligands and could form stable mono- or multi-nuclear metal complexes[6-9] with alkaline earth, rare earth and transition metal ions, and their potential applications have been explored in bio- logical system[10-15]. Moreover, they have certain advan- tages in luminescent[16-22] and magnetic[23] materials, ion recognitions[24-26], electrochemical fields[27-30], supramo- lecular constructions[31-37], and so on.

    In recent years, our research mostly concentrated on the syntheses of salamo - like ligands as derivatives of Salen [38-46]. These compounds have been investigated in forming transition metal complexes with interest- ing properties[47-49]. Some works have been devoted to synthesize and characterize mono-, di- and multi-nuclear metal complexes bearing salamo -like ligand and its derivatives[50-53]. However, there are few researches on unsymmetric salamo-like ligands, and it is expected to obtain multi-nuclear transition metal complexes by introducing some groups such as alkoxy or hydroxyl substitute at 3- positions of salicylaldehyde derivatives in the salamo-like ligands. Herein, as part of our ongo- ing interest in salamo-like transition metal complexes, X-ray crystal structures, spectroscopic properties and Hirshfeld surfaces analyses of two newly designed and synthesized transition metal complexes, {[Ni2(L) (μ-OAc) (CH3OH)]2·4CH3OH (1) and [Zn2(L) (μ-OAc) (CH3CH2OH)]2 (2), derived from an unsymmetrical sala-mo-like N2O4-donor ligand (H3L=6-hydroxy-6′- me- thoxy-2, 2′-(ethylenediyldioxybis(nitrilomethylidyne))di- phenol) have been investigated in detail.

    3-Hydroxysalicylic aldehyde of 99% purity and 3- methoxysalicylaldehyde of 98% purity were purchased from Alfa Aesar and used without further purification. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory.

    C, H and N analyses were obtained using a GmbH VarioEL Ⅴ3.00 automatic elemental analyzer. Elemen- tal analysis for Ni and Zn were conducted using an IRIS ER/S·WP-1 ICP atomic emission spectrometer.1H NMR spectra were recorded using a Bruker AVANCE DRX - 400 spectrometer. The melting points were determined by a microscopic melting point instru- ment made in Beijing Tektronix Instrument Limited Company and were uncorrected. IR spectra were recorded on a VERTEX70 FT-IR spectrophotometer, with samples prepared as KBr (500~4 000 cm-1) and CsI (100~500 cm-1) pellets. UV-Vis absorption spectra were recorded on a Shimadzu UV - 2550 spectrometer. Fluorescent spectra were recorded on F - 7000 spectro- photometer. X - ray single crystal structure determina- tions were carried out on a SuperNova, Dual Eos four- circle diffractometer. Hirshfeld surfaces analyses and two-dimensional fingerprint plots of complexes 1 and 2 were calculated using Crystal Explorer program.

    The unsymmetric salamo-like ligand H3L was syn- thesized by a modified method reported in the earlier literature (Scheme 1)[54].

    Scheme 1

    Scheme 1.  Synthetic route of H3L

    A methanol solution (3.0 mL) of nickel acetate tetrahydrate (4.92 mg, 0.02 mmol) was added to a ace-tone solution (2.0 mL) of H3L (3.46 mg, 0.01 mmol) at room temperature. After stirring for 2 h, the mixture was filtered off. The resulting filtrate was left undis-turbed for about a week to form block-like clear yellow- ish green crystals suitable for X-ray crystallographic analysis. Yield: 45.8%. Anal. Calcd. for C44H60N4Ni4O22 (%): C, 42.91; H, 4.91; N, 4.55; Ni, 19.06. Found(%): C, 43.16; H, 4.98; N, 4.47; Ni, 18.87.

    A solution of zinc acetate tetrahydrate (4.96 mg, 0.02 mmol) in ethanol (2.5 mL) was added drop- wise to a solution of H3L (3.5 mg, 0.01 mmol) in dichlo- romethane (3 mL) at room temperature. The color of the mixing solution turned yellow immediately, and was stirred continually for 1 h at room temperature. The mixture was filtered and the filtrate was allowed to stand at room temperature for about two weeks. The sol- vent was partially evaporated, and several clear yellow- ish single crystals suitable for X-ray crystallographic analysis were obtained. Yield: 47.3%. Anal. Calcd. for C42H48N4Zn4O18(%): C 43.55; H 4.18; N 4.84; Zn 22.58. Found(%): C 43.68; H 4.32; N 4.74; Zn 22.31.

    Suitable crystals of complexes 1 and 2 with approximate dimensions of 0.18 mm×0.15 mm×0.12 mm and 0.11 mm×0.10 mm×0.08 mm, respectively, were mounted on glass rod for determining single crys- tal structures. X - ray diffraction data of complexes 1 and 2 were collected on a Bruker APEX Ⅱ CCD diffractometer with a graphite monochromated Cu radiation source (λ =0.154 184 nm) at 173.20(10) K, and SuperNova (Dual, Cu at zero, Eos) diffractometer using a graphite monochromated Mo radiation source (λ =0.071 073 nm) at 100 K, respectively. The semi-empirical absorption corrections were applied using the SADABS program. The structures were solved by the direct methods (SHELXS-2014). All non- hydrogen atoms were refined anisotropically; the hydroxyl hydrogen atoms in the methanol molecules were located in difference Fourler maps, all other hydrogen atoms were generated geometrically and allowed to ride on their parent carbon atoms[55]. The crystal data and experimental parameters relevant to the structure determinations are listed in Table 1.

    Table 1

    Table 1.  Crystal data and structure refinement parameters for complexes 1 and 2
    下载: 导出CSV
    Complex 1 2
    Formula C44H60N4Ni4O22 C42H48N4Zn4O18
    Formula weight 1 231.8 1 158.32
    Crystal system Triclinic Triclinic
    Space group P1 P1
    a /nm 0.966 71(4) 0.976 37(6)
    b / nm 1.135 94(6) 1.041 21(7)
    c / nm 1.454 37(10) 1.214 10(9)
    α/(°) 112.312(6) 89.010(6)
    β/(°) 95.582(5) 73.275(6)
    γ/(°) 106.259(4) 74.235(6)
    V / nm3 13.806 7(15) 11.351 0(14)
    Z 1 1
    Dc / (g·cm-3) 1.481 1.695
    μ / mm-1 2.203 2.169
    F(000) 640 592
    θ range /(°) 4.312~66.598 2.037~27.099
    Index ranges -11 ≤ h ≤ 11, -10 ≤ k ≤ 13, -17 ≤ l ≤ 16 -12≤ h ≤ 12, -11 ≤ k ≤ 13, -15 ≤ l ≤ 15
    Reflections collected 8 899 9 115
    Independent reflection 4 871 4 917
    Rint 0.020 6 0.042 2
    Completeness / % 99.76 98
    Data, restraint, parameter 4 871, 1, 344 4 917, 0, 310
    GOF 1.044 1.048
    Final R1, wR2 indices [I > 2σ(I)] 0.028 8, 0.075 1 0.051 2, 0.106 2
    R1, wR2 indices (all data) 0.031 6, 0.077 4 0.076 2, 0.115 9
    a R1=∑||Fo|-|Fc||/∑|Fo||; b wR2={∑w(Fo2-Fc2)2/∑[w(Fo2)]2}1/2.

    CCDC: 1984199, 1; 1984198, 2.

    The FT - IR spectra of H3L with its corresponding complexes 1 and 2 exhibited various bands in the 400~ 4 000 cm-1 region (Table 2). The hydroxyl group of H3L exhibited a characteristic absorption band at approxi- mate 3 436 cm-1. An absorption band of the coordinat- ed and crystallized methanol molecules was observed at approximate 3 387 cm-1 in complex 1, and an absorp- tion band of the coordinated ethanol molecules was observed at approximate 3 428 cm-1 in complex 2, indi- cating that the Ni and Zn ions are coordinated to oxygen atoms in phenoxy groups of the fully deprotonat- ed ligand L3- moieties. The results are in accordance with the elemental analysis results. A characteristic strong C=N stretching band of H3L emerged at approxi- mate 1 613 cm-1, and those of complexes 1 and 2 emerged at approximate 1 602 and 1 597 cm-1, respec- tively[56]. The changes in the spectra of complexes 1 and 2 shows that the oxime nitrogen atoms of the ligand H3L have coordinated with the Ni and Zn ions. The expected Ar-O vibration band of H3L was observed at approximate 1 253 cm-1; nevertheless, this band occurred at approximate 1 234 and 1 213 cm-1 in com- plexes 1 and 2, respectively. The Ar - O stretching fre- quencies of phenoxy groups are shifted to low frequen- cies, which could be evidence of the Ni - O or Zn - O bond formation between the Ni or Zn ions and the oxygen atoms of phenoxy groups[57].

    Table 2

    Table 2.  FT-IR spectra of H3L and complexes 1 and 2 cm-1
    下载: 导出CSV
    Compound νO-H νC=N νAr-O νM-N νM-O
    H3L 3 436 1 613 1 253
    1 3 387 1 602 1 234 516 426
    2 3 428 1 597 1 213 512 423

    The far-IR spectra (500~100 cm-1) of complexes 1 and 2 were also obtained to identify the bonds of M-O and M - N frequencies. The νM-O bands at approximate 426 and 423 cm-1 in complexes 1 and 2 can be assigned to νNi-O and νZn-O, while the νM-N bands at approximate 516 and 512 cm-1 are attributed to νNi-N and νZn-N, respectively[52]. The results mentioned above are in accordance with the results of X-ray crystal dif- fractions.

    The UV - Vis absorption spectra of the free ligand H3L with its corresponding complexes 1 and 2 in the ethanol solutions (10 μmol·L-1) at 298 K are shown in Fig. 1.

    Figure 1

    Figure 1.  UV-Vis spectra of H3L and complexes 1 and 2

    Obviously, the absorption peaks of the free ligand H3L differ from those of complexes 1 and 2. The UV - Vis spectra of ligand H3L and its complexes 1 and 2 in the ethanol solutions are shown in Fig. 1. From the Fig. 1, we can see that the free ligand H3L showed two strong absorption peaks near 271 and 319 nm. The ab- sorption peak at ca. 271 nm can be assigned to the π- π* transitions of phenyl rings, and the absorption peak at ca. 319 nm can be assigned to the intra-ligand π -π* transition of oxime group. Upon coordination of the free ligand, the π-π* transitions of phenyl rings in complex- es 1 and 2 are bathochromically shifted to 274 and 278 nm, respectively, which indicates the coordination of ligand L3- moieties with Ni and Zn ions[49]. Mean- while, new absorption peaks appeared at 374 and 349 nm in complexes 1 and 2 may be accounted for the n- π* charge transfer transition from the filled p orbital of bridging phenoxo oxygen atoms to the vacant d-orbital of corresponding metal ions.

    X - ray crystallographic analyses reveal that com- plexes 1 and 2 form two different crystal structures, which are different from common tetra - nuclear struc- tures of salamo-like complexes reported earlier[40].

    2.3.1   Crystal structure of complex 1

    As shown in Fig. 2 and Table 3, in the crystal structure of complex 1, there are four Ni ions, two fully deprotonated L3- moieties, two coordinated MeOH molecules, two μ - acetate ligands and four crystallized MeOH molecules. Complex 1 possesses a highly sym- metrical tetra-nuclear structure. The hexa -coordinated central Ni ion (Ni1) is surrounded by four oxygen atoms (O1, O1#1, O2 and O5) from the fully deproton- ated L3- moiety, one oxygen atom (O7) of the μ-acetate ligand and one oxygen atoms (O6) from the coordinated methanol molecule adopting a twisted octahedral geom- etry. The hexa-coordinated terminal Ni ion (Ni2) lies in the N2O2 -donor coordination sphere (N1, N2, O2 and O5) of the fully deprotonated L3- unit, and coordinates further to one oxygen atom (O8) from the μ - acetate ligand and one oxygen atoms (O9) from the coordinated methanol molecule adopting a twisted octahedral geometry.

    Figure 2

    Figure 2.  (a) Molecular structure of complex 1 with 30% probability displacement ellipsoids; (b) Coordination polyhedra for Ni ions of complex 1

    Hydrogen atoms are omitted for clarity; Symmetry code: #1: 2-x, 1-y, 1-z

    Table 3

    Table 3.  Selected bond lengths (nm) and angles (°) for complex 1
    下载: 导出CSV
    Ni1-O1 0.208 68(15) Ni1-O7 0.204 17(14) Ni2-O8 0.206 33(13)
    Ni1-O2 0.200 25(14) Ni1-O1#1 0.204 14(12) Ni2-O9 0.211 58(14)
    Ni1-O5 0.200 69(14) Ni1-O2 0.201 32(14) Ni2-N1 0.211 21(17)
    Ni1-O6 0.218 97(14) Ni2-O5 0.202 22(13) Ni2-N2 0.209 30(18)
    O1-Ni1-O2 80.68(6) O5-Ni1-O7 89.25(6) O5-Ni2-O8 91.69(5)
    O1-Ni1-O5 161.72(5) O1#1-Ni1-O5 100.61(5) O5-Ni2-O9 86.90(5)
    O1-Ni1-O6 121.26(6) O6-Ni1-O7 83.53(5) O5-Ni2-N1 164.56(6)
    O1-Ni1-O7 88.70(6) O1#1-Ni1-O6 91.87(5) O5-Ni2-N2 86.34(6)
    O1-Ni1-O1#1 84.11(5) O1#1-Ni1-O7 167.88(6) O8-Ni2-O9 178.16(6)
    O2-Ni1-O5 81.38(6) O2-Ni2-O5 80.74(6) O8-Ni2-N1 90.09(6)
    O2-Ni1-O6 157.81(6) O1-Ni2-O8 91.38(5) O8-Ni2-N2 87.55(6)
    O2-Ni1-O7 94.48(5) O2-Ni2-O9 89.56(6) O9-Ni2-N1 91.59(6)
    O1#1-Ni1-O2 93.96(5) O1-Ni2-N1 83.88(6) O9-Ni2-N2 91.17(6)
    O5-Ni1-O6 76.51(6) O1-Ni2-N2 167.01(6) N1-Ni2-N2 109.06(7)
    Symmetry code: #1: 2-x, 1-y, 1-z.

    As illustrated in Fig. 3 and Table 4, there are two intra-molecular hydrogen bonding inter -actions (C8-H8A…O9 and C20-H20B…O5) in the crystal struc- ture of complex 1.

    Figure 3

    Figure 3.  View of intra-molecular hydrogen bondings of complex 1

    Hydrogen atoms are omitted for clarity except those forming hydrogen bonds

    Table 4

    Table 4.  Hydrogen bonding interaction parameters for complex 1
    下载: 导出CSV
    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A / (°)
    C8-H8A…O9 0.097 0.244 0.329 0(3) 146
    C20-H20B…O5 0.096 0.257 0.312 8(3) 177
    2.3.2   Crystal structure of complex 2

    X - ray crystallographic analysis reveals that com- plex 2 is a symmetric trinuclear structure. It crystalliz- es in the triclinic system, space group P1. As shown in Fig. 4, the obtained complex 2 includs four Zn ions, two fully deprotonated L3- moieties, two coordinated ethanol molecules and two μ-acetate ligands. The penta - coordinated central Zn ion (Zn1) is surrounded by three oxygen atoms (O6, O6 and O5) from the fully deprotonated L3- moiety, one oxygen atom (O8) of the μ - acetate ligand and one oxygen atom (O9) from the coordinated ethanol molecule, forming a square pyra- mid geometry. Unlike the center Zn ion, the penta - coordinated terminal Zn ion (Zn2) lies in the N2O2 - donor coordination sphere (N1, N2, O1 and O5) of the fully deprotonated L3- unit, and coordinates further to one oxygen atom (O7) from the μ-acetate ligand, adopt- ing a twisted triangular bipyramidal geometry. Herein, we have synthesized a novel structural tetranuclear complex 2, where all the Zn ions are penta- coordinated with distorted tetragonal pyramidal and trigonal bipyramidal symmetries. In order to get the geometries adopted by Zn1 and Zn2, the τ values were estimated to be τ1=0.143 and τ2=0.725[58-59], respectively.

    Figure 4

    Figure 4.  (a) Molecular structure of complex 2 with 30% probability displacement ellipsoids; (b) Coordination polyhedra for Zn ions of complex 2

    Hydrogen atoms are omitted for clarity; Symmetry code: #1: 1-x, 1-y, z

    Table 5

    Table 5.  Selected bond lengths (nm) and angles (°) for complex 2
    下载: 导出CSV
    Zn1-O5 0.205 4(3) Zn1-O6#1 0.201 5(3) Zn2-N1 0.211 8(4)
    Zn1-O6 0.204 1(3) Zn2-O1 0.195 1(3) Zn2-N1 0.209 5(4)
    Zn1-O8 0.198 2(3) Zn2-O5 0.202 6(3)
    Zn1-O9 0.203 4(3) Zn2-O7 0.197 8(2)
    O5-Zn1-O6 79.33(11) O8-Zn1-O9 108.61(12) O5-Zn2-O7 92.37(11)
    O5-Zn1-O8 95.91(12) O6#1-Zn1-O8 98.56(11) O5-Zn2-N1 171.13(13)
    O5-Zn1-O9 93.25(11) O6#1-Zn1-O9 100.40(12) O5-Zn2-N2 83.69(14)
    O5-Zn1-O6#1 155.75(12) O1-Zn2-O5 96.09(13) O7-Zn2-N1 92.14(13)
    O6-Zn1-O8 147.18(12) O1-Zn2-O7 112.79(12) O7-Zn2-N2 127.64(14)
    O6-Zn1-O9 104.10(12) O1-Zn2-N1 89.20(14) N1-Zn2-N2 87.51(15)
    O6-Zn1-O6#1 77.95(11) O1-Zn2-N2 119.56(13)
    Symmetry code: #1: 1-x, 1-y, 1-z.

    As illustrated in Fig. 5, there are three intra- molecular (O9 -H9…O1, O9-H9…O2, and C9 -H9A… O7) hydrogen bonding interactions. As shown in Fig. 6 and Table 6, complex 2 molecules are linked into an in- finite 2D supramolecular structure by inter - molecular (C7-H7B…O3, C10-H10A…O4) hydrogen bonding interactions in the crystal structure of complex 2[60-64].

    Figure 5

    Figure 5.  Intra-molecular C-H…O hydrogen bondings of complex 2

    Hydrogen atoms, except those forming hydrogen bonds, are omit-ted for clarity

    Figure 6

    Figure 6.  Two dimensional supramolecular structure linked by inter-molecular C-H…O hydrogen bondings in complex 2

    Table 6

    Table 6.  Hydrogen bonding interaction parameters for complex 2
    下载: 导出CSV
    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A /(°)
    O9-H9…O1 0.086(3) 0.188(3) 0.267 5(4) 153
    O9-H9…O2 0.086(3) 0.242(2) 0.308 2(4) 134
    C7-H7B…O3#2 0.096 0.260 0.339 3(6) 141
    C9-H9A…O7 0.097 0.242 0.326 8(6) 146
    C18-H18…O6#1 0.097 0.254 0.325 4(6) 130
    Symmetry codes: #1: 2-x, 1-y, 2-z; #2: -1+x, y, z.

    The Hirshfeld surfaces[65] of complexes 1 and 2 are illustrated in Fig. 7. The surfaces have been mapped over dnorm, and the corresponding location in shape index exists the complementary region of red concave surface surrounded by receptors and the blue convex surface surrounding receptors, further proving that such hydrogen bonding exists. As for the large amount of white region in dnorm surfaces, it is suggested that there is a weaker and farther contact between mole- cules, rather than hydrogen bonding.

    Figure 7

    Figure 7.  Hirshfeld surfaces analyses mapped with curvedness, dnorm and shape index of complexes 1 and 2

    Fig. 8 shows the 2D plots generated[66] correspond- ing to the O…H, C…H and H…H interactions from the Hirshfeld surfaces of complexes 1 and 2. As shown in Fig. 8a, for complex 1, the H…H interactions appear at (0.115 7 nm, 0.114 7 nm) and account for 67% of the total area of Hirshfeld surfaces. The C…H/H…C interactions are in the range of (0.157 8 nm, 0.106 7 nm) and appear as a pair of symmetrical wings, accounting for 11.4% of the total area of Hirshfeld sur- faces. The proportions of O…H/H…O interactions are comprised of 17.7% of the total Hirshfed surfaces for each molecule of complex 1. As shown in Fig. 8b, for complex 2, the interactions of H…H appear at (0.115 nm, 0.115 nm) accounting for 45.4% of the total area of Hirshfeld surfaces. The C…H/H…C interactions in the range of (0.160 nm, 0.105 nm) account for 24.2% of the total area of Hirshfeld surfaces. The proportions of O…H/H…O interactions are comprised of 24.3% of the total Hirshfed surfaces for each molecule of com- plex 2. It is because of the existence of these weaker hydrogen bonds that complexes 1 and 2 can be stable.

    Figure 8

    Figure 8.  Fingerprint plots of complexes 1 (a) and 2 (b)

    Full and resolved into O…H, C…H and H…H contacts show the percentages of contacts contributed to the total Hirshfeld surface area of molecule

    The fluorescence spectra of H3L and its corre- sponding complexes 1 and 2 were investigated at room temperature and are shown in Fig. 9. The free ligand H3L exhibited a relatively strong emission peak at ca. 400 nm upon excitation at 370 nm, and it should be assigned to the intraligand π-π* transition. Complex 1 showed a lower photoluminescence with maximum emission at ca. 391 nm. Compared with the ligand H3L, emission intensity of complex 1 reduced obviously, indicating that the Ni ions have a quality of fluores- cent quenching. On the other hand, complex 2 showed an obvious fluorescence enhancement at ca. 395 nm. The intense peak is likely due to the coordination of H3L with the Zn ions, which breaks the intramolecu- lar hydrogen-bonding interactions of H3L and increases the coplanarity of the conjugated system.

    Figure 9

    Figure 9.  Emission spectra of H3L and complexes 1 and 2

    c=10 μmol·L-1, λex=370 nm

    In summary, we have reported the successful syntheses and characterizations of two newly designed tetra-nuclear metal complexes, [Ni2(L)(μ-OAc) (CH3OH)]2·4CH3OH (1) and [Zn2(L) (μ-OAc) (CH3CH2OH)]2 (2), derived from an unsymmetrical sala-mo - like ligand H3L. All the hexa - coordinated Ni ions in complex 1 adopt slightly twisted octahedral con- figurations. The penta-coordinated Zn ions (Zn1 and Zn1#1) in complex 2 form square pyramid geometries, while the other penta-coordinated Zn ions (Zn2 and Zn2#1) possess twisted triangular bipyramidal geome- tries. The inter-molecular hydrogen bonding interac- tions in crystal structure of 2 result in a self-assembled infinite 2D supramolecular network.


    Acknowledgements: This work was supported by the Na- tional Natural Science Foundation of China (Grant No.21968032), the Fundamental Research Funds of Central Uni- versities-Innovation Team Cultivation Project (Grant No.31920190012), the Northwest Minzu University′s Double First-class and Characteristic Development Guide Special Funds-Chemistry Key Disciplines in Gansu Province (Grant No.11080316), and the Teaching Quality and Reform Engineer- ing Project of Gansu University (Grants No.2019GSSYJXSFZX- 01, 2019GSJXCGPY-16), which are gratefully acknowledged.
    1. [1]

      Dong X Y, Kang Q P, Li X Y, et al. Crystals, 2018, 8:139 doi: 10.3390/cryst8030139

    2. [2]

      Wu H L, Wang C P, Wang F, et al. J. Chin. Chem. Soc., 2015, 62:1028-1034 doi: 10.1002/jccs.201500121

    3. [3]

      Liu Y A, Wang C Y, Zhang M, et al. Polyhedron, 2017, 127:278-286 doi: 10.1016/j.poly.2017.02.007

    4. [4]

      Kang Q P, Li X Y, Wang L, et al. Appl. Organomet. Chem., 2019, 33:e5013

    5. [5]

      Chai L Q, Mao K H, Zhang J Y, et al. Inorg. Chim. Acta, 2017, 457:34-40 doi: 10.1016/j.ica.2016.12.004

    6. [6]

      Akine S, Varadi Z, Nabeshima T. Eur. J. Inorg. Chem., 2013, 35:5987-5998

    7. [7]

      Akine S. J. Incl. Phenom. Macrocycl. Chem., 2012, 72:25-54 doi: 10.1007/s10847-011-0026-3

    8. [8]

      Wu H L, Pan G L, Bai Y C, et al. J. Chem. Res., 2014, 38:211- 217 doi: 10.3184/174751914X13933417974082

    9. [9]

      Wu H L, Pan G L, Bai Y C, et al. Res. Chem. Intermed., 2015, 41:3375-3388 doi: 10.1007/s11164-013-1440-5

    10. [10]

      Zhang Y, Yu M, Pan Y Q, et al. Appl. Organomet. Chem., 2020, 34:e5442

    11. [11]

      Sun S S, Stern C L, Nguyen S T, et al. J. Am. Chem. Soc., 2004, 126:6314-6326 doi: 10.1021/ja037378s

    12. [12]

      Venkataramanan N S, Kuppuraj G, Rajagopal S. Coord. Chem. Rev., 2005, 249:1249-1268 doi: 10.1016/j.ccr.2005.01.023

    13. [13]

      Zhang L W, Zhang Y, Cui Y F, et al. Inorg. Chim. Acta, 2020, 506:119534 doi: 10.1016/j.ica.2020.119534

    14. [14]

      Wu H L, Pan G L, Bai Y C, et al. J. Photochem. Photobiol. B, 2014, 135:33-43 doi: 10.1016/j.jphotobiol.2014.04.005

    15. [15]

      Chen C Y, Zhang J W, Zhang Y H, et al. J. Coord. Chem., 2015, 68:1054-1071 doi: 10.1080/00958972.2015.1007965

    16. [16]

      Ren Z L, Hao J, Hao P, et al. Z. Naturforsch. B, 2018, 73:203 -210 doi: 10.1515/znb-2017-0191

    17. [17]

      Akine S, Taniguchi T, Nabeshima T. Chem. Lett., 2001, 30:682-683 doi: 10.1246/cl.2001.682

    18. [18]

      Zhang L W, Li X Y, Kang Q P. Crystals, 2018, 8:173 doi: 10.3390/cryst8040173

    19. [19]

      Kang Q P, Li X Y, Zhao Q, et al. Appl. Organomet. Chem., 2018, 32:e4379 doi: 10.1002/aoc.4379

    20. [20]

      Dong X Y, Akogun S F, Zhou W M, et al. J. Chin. Chem. Soc., 2017, 64:412-419

    21. [21]

      Song X Q, Peng Y J, Chen G Q, et al. Inorg. Chim. Acta, 2015, 427:13-21 doi: 10.1016/j.ica.2014.12.008

    22. [22]

      Liu L Z, Wang L, Yu M, et al. Spectrochim. Acta Part A, 2019, 222:117209 doi: 10.1016/j.saa.2019.117209

    23. [23]

      Song X Q, Liu P P, Liu Y A, et al. Dalton Trans., 2016, 45:8154-8163 doi: 10.1039/C6DT00212A

    24. [24]

      Pan Y Q, Xu X, Zhang Y, et al. Spectrochim. Acta Part A, 2020, 229:117927 doi: 10.1016/j.saa.2019.117927

    25. [25]

      Wei Z L, Wang L, Wang J F, et al. Spectrochim. Acta Part A, 2020, 228:117775 doi: 10.1016/j.saa.2019.117775

    26. [26]

      Wang L, Wei Z L, Chen Z Z, et al. Microchem. J., 2020, 155:104801 doi: 10.1016/j.microc.2020.104801

    27. [27]

      Li J, Zhang H J, Chang J, et al. Crystals, 2018, 8:176 doi: 10.3390/cryst8040176

    28. [28]

      Chai L Q, Zhou L, Zhang K Y, et al. Appl. Organomet.Chem, 2018,32:e4576

    29. [29]

      Ömer S, Ümmühan Ö Ö, Nurgul S, et al. Tetrahedron, 2016, 72:5843-5852

    30. [30]

      Hao J, Li X Y, Wang L, et al. Spectrochim. Acta Part A, 2018, 204:388-402 doi: 10.1016/j.saa.2018.06.074

    31. [31]

      常健, 张宏佳, 贾浩然, 等.无机化学学报, 2018, 34(11):2097-2107 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181119&journal_id=wjhxxbcnCHANG Jian, ZHANG Hong-Jia, JIA Hao- Ran, et al. Chinese J. Inorg. Chem., 2018, 34(11):2097-2107 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181119&journal_id=wjhxxbcn

    32. [32]

      Jia H R, Chang J, Zhang H J, et al. Crystals, 2018, 8:272 doi: 10.3390/cryst8070272

    33. [33]

      Zhou L, Hu Q, Chai L Q, et al. Polyhedron, 2019, 158:102- 116 doi: 10.1016/j.poly.2018.10.052

    34. [34]

      张宏佳, 常健, 贾浩然, 等.无机化学学报, 2018, 34(12):2261-2270 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181217&journal_id=wjhxxbcnZHANG Hong-Jia, CHANG Jian, JIA Hao- Ran, et al. Chinese J. Inorg. Chem., 2018, 34(12):2261-2270 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181217&journal_id=wjhxxbcn

    35. [35]

      Dong X Y, Li X Y, Liu L Z, et al. RSC Adv., 2017, 7:48394- 48403 doi: 10.1039/C7RA07826A

    36. [36]

      Liu C, An X X, Cui Y F, et al. Appl. Organomet. Chem., 2020, 34:e5272

    37. [37]

      Pan Y Q, Zhang Y, Yu M, et al. Appl. Organomet. Chem., 2020, 34:e5441

    38. [38]

      Zhao Q, An X X, Liu L Z, et al. Inorg. Chim. Acta, 2019, 490:6-15 doi: 10.1016/j.ica.2019.02.040

    39. [39]

      Akine S, Taniguchi T, Dong W K, et al. J. Org. Chem., 2005, 70:1704-1711 doi: 10.1021/jo048030y

    40. [40]

      Liu C, Wei Z L, Mu H R, et al. J. Photochem. Photobiol. A, 2020, 397:112569 doi: 10.1016/j.jphotochem.2020.112569

    41. [41]

      Yu M, Zhang Y, Pan Y Q, et al. Inorg. Chim. Acta, 2020, 509:

    42. [42]

      Wang L, Wei Z L, Liu C, et al. Spectrochim. Acta Part A, 2020, 239:118496 doi: 10.1016/j.saa.2020.118496

    43. [43]

      An X X, Zhao Q, Mu H R, et al. Crystals, 2019, 9:101 doi: 10.3390/cryst9020101

    44. [44]

      Mu H R, Yu M, Wang L, et al. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195:1756807

    45. [45]

      Dong X Y, Zhao Q, Kang Q P, et al. Crystals, 2018, 8:23 doi: 10.3390/cryst8010023

    46. [46]

      Li X Y, Kang Q P, Liu L Z, et al. Crystals, 2018, 8:43 doi: 10.3390/cryst8010043

    47. [47]

      于盟, 穆浩冉, 刘玲芝, 等.无机化学学报, 2019, 35 (6):1109-1120 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190622&journal_id=wjhxxbcnYU Meng, MU Hao-Ran, LIU Ling-Zhi, et al. Chinese J. Inorg. Chem., 2019, 35 (6):1109-1120 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190622&journal_id=wjhxxbcn

    48. [48]

      Dong X Y, Zhao Q, Wei Z L, et al. Molecules, 2018, 23:1006 doi: 10.3390/molecules23051006

    49. [49]

      Kang Q P, Li X Y, Wei Z L, et al. Polyhedron, 2019, 165:38- 50 doi: 10.1016/j.poly.2019.03.008

    50. [50]

      Gao L, Liu C, Wang F, et al. Crystals, 2018, 8:77 doi: 10.3390/cryst8020077

    51. [51]

      Hao J, Li X Y, Zhang Y, et al. Materials, 2018, 11:523 doi: 10.3390/ma11040523

    52. [52]

      刘玲芝, 于盟, 李肖妍, 等.无机化学学报, 2019, 35 (7):1283-1294 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190721&journal_id=wjhxxbcnLIU Ling-Zhi, YU Meng, LI Xiao-Yan, et al. Chinese J. Inorg. Chem., 2019, 35 (7):1283-1294 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190721&journal_id=wjhxxbcn

    53. [53]

      Li X Y, Kang Q P, Liu C, et al. New J. Chem., 2019, 43:4605- 4619 doi: 10.1039/C9NJ00014C

    54. [54]

      董秀延, 高垒, 王飞, 等.无机化学学报, 2018, 34 (4):739-749 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20180418&journal_id=wjhxxbcnDONG Xiu - Yan, GAO Lei, WANG Fei, et al. Chinese J. Inorg. Chem., 2018, 34 (4):739-749 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20180418&journal_id=wjhxxbcn

    55. [55]

      Sheldrick G M. SHELXS - 97, Program for the Solution and Refinement of Crystal Structures, University of GÖttingen, Germany, 1997.

    56. [56]

      Sun Y X, Pan Y Q, Xu X, et al. Crystals, 2019, 9:607 doi: 10.3390/cryst9120607

    57. [57]

      Zhang Y, Liu L Z, Peng Y D, et al. Transit. Met. Chem., 2019, 44:627-639 doi: 10.1007/s11243-019-00325-3

    58. [58]

      Addison A W, Rao T N, Reedijk J, et al. J. Chem. Soc. Dalton Trans., 1984, 7:1349-1356

    59. [59]

      Konno T, Tokuda K, Sakurai J, et al. Bull. Chem. Soc. Jpn., 2000, 73:2767-2773 doi: 10.1246/bcsj.73.2767

    60. [60]

      Chai L Q, Tang L J, Chen L C, et al. Polyhedron, 2017, 122:228-240 doi: 10.1016/j.poly.2016.11.032

    61. [61]

      Chai L Q, Liu G, Zhang Y L, et al. J. Coord. Chem., 2013, 66:3926-3938 doi: 10.1080/00958972.2013.857016

    62. [62]

      Wang P, Zhao L. Spectrochim. Acta A, 2015, 135:342-350 doi: 10.1016/j.saa.2014.06.129

    63. [63]

      An X X, Liu C, Chen Z Z, et al. Crystals, 2019, 9:602 doi: 10.3390/cryst9110602

    64. [64]

      郭建强, 孙银霞, 俞彬, 等.无机化学学报, 2017, 33(8):1481-1488 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20170822&journal_id=wjhxxbcnGUO Jian-Qiang, SUN Yin-Xia, YU Bin, et al. Chinese J. Inorg. Chem., 2017, 33(8):1481-1488 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20170822&journal_id=wjhxxbcn

    65. [65]

      Rohl A L, Moret M, Kaminsky W, et al. Cryst. Growth Des., 2012, 8:4517-4525

    66. [66]

      Chattopadhyay B, Mukherjee A K, Narendra N, et al. Cryst. Growth Des., 2010, 10:65-68

  • Scheme 1  Synthetic route of H3L

    Figure 1  UV-Vis spectra of H3L and complexes 1 and 2

    Figure 2  (a) Molecular structure of complex 1 with 30% probability displacement ellipsoids; (b) Coordination polyhedra for Ni ions of complex 1

    Hydrogen atoms are omitted for clarity; Symmetry code: #1: 2-x, 1-y, 1-z

    Figure 3  View of intra-molecular hydrogen bondings of complex 1

    Hydrogen atoms are omitted for clarity except those forming hydrogen bonds

    Figure 4  (a) Molecular structure of complex 2 with 30% probability displacement ellipsoids; (b) Coordination polyhedra for Zn ions of complex 2

    Hydrogen atoms are omitted for clarity; Symmetry code: #1: 1-x, 1-y, z

    Figure 5  Intra-molecular C-H…O hydrogen bondings of complex 2

    Hydrogen atoms, except those forming hydrogen bonds, are omit-ted for clarity

    Figure 6  Two dimensional supramolecular structure linked by inter-molecular C-H…O hydrogen bondings in complex 2

    Figure 7  Hirshfeld surfaces analyses mapped with curvedness, dnorm and shape index of complexes 1 and 2

    Figure 8  Fingerprint plots of complexes 1 (a) and 2 (b)

    Full and resolved into O…H, C…H and H…H contacts show the percentages of contacts contributed to the total Hirshfeld surface area of molecule

    Figure 9  Emission spectra of H3L and complexes 1 and 2

    c=10 μmol·L-1, λex=370 nm

    Table 1.  Crystal data and structure refinement parameters for complexes 1 and 2

    Complex 1 2
    Formula C44H60N4Ni4O22 C42H48N4Zn4O18
    Formula weight 1 231.8 1 158.32
    Crystal system Triclinic Triclinic
    Space group P1 P1
    a /nm 0.966 71(4) 0.976 37(6)
    b / nm 1.135 94(6) 1.041 21(7)
    c / nm 1.454 37(10) 1.214 10(9)
    α/(°) 112.312(6) 89.010(6)
    β/(°) 95.582(5) 73.275(6)
    γ/(°) 106.259(4) 74.235(6)
    V / nm3 13.806 7(15) 11.351 0(14)
    Z 1 1
    Dc / (g·cm-3) 1.481 1.695
    μ / mm-1 2.203 2.169
    F(000) 640 592
    θ range /(°) 4.312~66.598 2.037~27.099
    Index ranges -11 ≤ h ≤ 11, -10 ≤ k ≤ 13, -17 ≤ l ≤ 16 -12≤ h ≤ 12, -11 ≤ k ≤ 13, -15 ≤ l ≤ 15
    Reflections collected 8 899 9 115
    Independent reflection 4 871 4 917
    Rint 0.020 6 0.042 2
    Completeness / % 99.76 98
    Data, restraint, parameter 4 871, 1, 344 4 917, 0, 310
    GOF 1.044 1.048
    Final R1, wR2 indices [I > 2σ(I)] 0.028 8, 0.075 1 0.051 2, 0.106 2
    R1, wR2 indices (all data) 0.031 6, 0.077 4 0.076 2, 0.115 9
    a R1=∑||Fo|-|Fc||/∑|Fo||; b wR2={∑w(Fo2-Fc2)2/∑[w(Fo2)]2}1/2.
    下载: 导出CSV

    Table 2.  FT-IR spectra of H3L and complexes 1 and 2 cm-1

    Compound νO-H νC=N νAr-O νM-N νM-O
    H3L 3 436 1 613 1 253
    1 3 387 1 602 1 234 516 426
    2 3 428 1 597 1 213 512 423
    下载: 导出CSV

    Table 3.  Selected bond lengths (nm) and angles (°) for complex 1

    Ni1-O1 0.208 68(15) Ni1-O7 0.204 17(14) Ni2-O8 0.206 33(13)
    Ni1-O2 0.200 25(14) Ni1-O1#1 0.204 14(12) Ni2-O9 0.211 58(14)
    Ni1-O5 0.200 69(14) Ni1-O2 0.201 32(14) Ni2-N1 0.211 21(17)
    Ni1-O6 0.218 97(14) Ni2-O5 0.202 22(13) Ni2-N2 0.209 30(18)
    O1-Ni1-O2 80.68(6) O5-Ni1-O7 89.25(6) O5-Ni2-O8 91.69(5)
    O1-Ni1-O5 161.72(5) O1#1-Ni1-O5 100.61(5) O5-Ni2-O9 86.90(5)
    O1-Ni1-O6 121.26(6) O6-Ni1-O7 83.53(5) O5-Ni2-N1 164.56(6)
    O1-Ni1-O7 88.70(6) O1#1-Ni1-O6 91.87(5) O5-Ni2-N2 86.34(6)
    O1-Ni1-O1#1 84.11(5) O1#1-Ni1-O7 167.88(6) O8-Ni2-O9 178.16(6)
    O2-Ni1-O5 81.38(6) O2-Ni2-O5 80.74(6) O8-Ni2-N1 90.09(6)
    O2-Ni1-O6 157.81(6) O1-Ni2-O8 91.38(5) O8-Ni2-N2 87.55(6)
    O2-Ni1-O7 94.48(5) O2-Ni2-O9 89.56(6) O9-Ni2-N1 91.59(6)
    O1#1-Ni1-O2 93.96(5) O1-Ni2-N1 83.88(6) O9-Ni2-N2 91.17(6)
    O5-Ni1-O6 76.51(6) O1-Ni2-N2 167.01(6) N1-Ni2-N2 109.06(7)
    Symmetry code: #1: 2-x, 1-y, 1-z.
    下载: 导出CSV

    Table 4.  Hydrogen bonding interaction parameters for complex 1

    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A / (°)
    C8-H8A…O9 0.097 0.244 0.329 0(3) 146
    C20-H20B…O5 0.096 0.257 0.312 8(3) 177
    下载: 导出CSV

    Table 5.  Selected bond lengths (nm) and angles (°) for complex 2

    Zn1-O5 0.205 4(3) Zn1-O6#1 0.201 5(3) Zn2-N1 0.211 8(4)
    Zn1-O6 0.204 1(3) Zn2-O1 0.195 1(3) Zn2-N1 0.209 5(4)
    Zn1-O8 0.198 2(3) Zn2-O5 0.202 6(3)
    Zn1-O9 0.203 4(3) Zn2-O7 0.197 8(2)
    O5-Zn1-O6 79.33(11) O8-Zn1-O9 108.61(12) O5-Zn2-O7 92.37(11)
    O5-Zn1-O8 95.91(12) O6#1-Zn1-O8 98.56(11) O5-Zn2-N1 171.13(13)
    O5-Zn1-O9 93.25(11) O6#1-Zn1-O9 100.40(12) O5-Zn2-N2 83.69(14)
    O5-Zn1-O6#1 155.75(12) O1-Zn2-O5 96.09(13) O7-Zn2-N1 92.14(13)
    O6-Zn1-O8 147.18(12) O1-Zn2-O7 112.79(12) O7-Zn2-N2 127.64(14)
    O6-Zn1-O9 104.10(12) O1-Zn2-N1 89.20(14) N1-Zn2-N2 87.51(15)
    O6-Zn1-O6#1 77.95(11) O1-Zn2-N2 119.56(13)
    Symmetry code: #1: 1-x, 1-y, 1-z.
    下载: 导出CSV

    Table 6.  Hydrogen bonding interaction parameters for complex 2

    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A /(°)
    O9-H9…O1 0.086(3) 0.188(3) 0.267 5(4) 153
    O9-H9…O2 0.086(3) 0.242(2) 0.308 2(4) 134
    C7-H7B…O3#2 0.096 0.260 0.339 3(6) 141
    C9-H9A…O7 0.097 0.242 0.326 8(6) 146
    C18-H18…O6#1 0.097 0.254 0.325 4(6) 130
    Symmetry codes: #1: 2-x, 1-y, 2-z; #2: -1+x, y, z.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  315
  • HTML全文浏览量:  53
文章相关
  • 发布日期:  2020-10-01
  • 收稿日期:  2020-02-16
  • 修回日期:  2020-06-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章