基于非对称salamo型N2O4配体的四核镍(Ⅱ)和锌(Ⅱ)配合物的合成、晶体结构、Hirshfeld表面分析与荧光性质
-
关键词:
- salamo型N2O4配体
- / 配合物
- / 合成
- / 晶体结构
- / Hirshfeld表面分析
English
Syntheses, Crystal Structures, Hirshfeld Surfaces Analyses and Fluorescence Properties of Two Tetranuclear Nickel(Ⅱ) and Zinc(Ⅱ) Complexes Based on an Unsymmetrical Salamo-like N2O4-Donor Ligand
-
Key words:
- salamo-like N2O4-donor ligand
- / complex
- / synthesis
- / crystal structure
- / Hirshfeld surface analysis
-
0. Introduction
It is common knowledge that Salen and its many different kinds of analogues (R - CH=N -(CH2) 2 - N=CH -R) have been extensively investigated in modern coor- dination chemistry and organometallic chemistry for several decades[1-5]. They are one of the most versatile multidentate chelating ligands and could form stable mono- or multi-nuclear metal complexes[6-9] with alkaline earth, rare earth and transition metal ions, and their potential applications have been explored in bio- logical system[10-15]. Moreover, they have certain advan- tages in luminescent[16-22] and magnetic[23] materials, ion recognitions[24-26], electrochemical fields[27-30], supramo- lecular constructions[31-37], and so on.
In recent years, our research mostly concentrated on the syntheses of salamo - like ligands as derivatives of Salen [38-46]. These compounds have been investigated in forming transition metal complexes with interest- ing properties[47-49]. Some works have been devoted to synthesize and characterize mono-, di- and multi-nuclear metal complexes bearing salamo -like ligand and its derivatives[50-53]. However, there are few researches on unsymmetric salamo-like ligands, and it is expected to obtain multi-nuclear transition metal complexes by introducing some groups such as alkoxy or hydroxyl substitute at 3- positions of salicylaldehyde derivatives in the salamo-like ligands. Herein, as part of our ongo- ing interest in salamo-like transition metal complexes, X-ray crystal structures, spectroscopic properties and Hirshfeld surfaces analyses of two newly designed and synthesized transition metal complexes, {[Ni2(L) (μ-OAc) (CH3OH)]2·4CH3OH (1) and [Zn2(L) (μ-OAc) (CH3CH2OH)]2 (2), derived from an unsymmetrical sala-mo-like N2O4-donor ligand (H3L=6-hydroxy-6′- me- thoxy-2, 2′-(ethylenediyldioxybis(nitrilomethylidyne))di- phenol) have been investigated in detail.
1. Experimental
1.1 Materials and methods
3-Hydroxysalicylic aldehyde of 99% purity and 3- methoxysalicylaldehyde of 98% purity were purchased from Alfa Aesar and used without further purification. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory.
C, H and N analyses were obtained using a GmbH VarioEL Ⅴ3.00 automatic elemental analyzer. Elemen- tal analysis for Ni and Zn were conducted using an IRIS ER/S·WP-1 ICP atomic emission spectrometer.1H NMR spectra were recorded using a Bruker AVANCE DRX - 400 spectrometer. The melting points were determined by a microscopic melting point instru- ment made in Beijing Tektronix Instrument Limited Company and were uncorrected. IR spectra were recorded on a VERTEX70 FT-IR spectrophotometer, with samples prepared as KBr (500~4 000 cm-1) and CsI (100~500 cm-1) pellets. UV-Vis absorption spectra were recorded on a Shimadzu UV - 2550 spectrometer. Fluorescent spectra were recorded on F - 7000 spectro- photometer. X - ray single crystal structure determina- tions were carried out on a SuperNova, Dual Eos four- circle diffractometer. Hirshfeld surfaces analyses and two-dimensional fingerprint plots of complexes 1 and 2 were calculated using Crystal Explorer program.
1.2 Synthesis of H3L
The unsymmetric salamo-like ligand H3L was syn- thesized by a modified method reported in the earlier literature (Scheme 1)[54].
Scheme 1
1.3 Synthesis of complex 1
A methanol solution (3.0 mL) of nickel acetate tetrahydrate (4.92 mg, 0.02 mmol) was added to a ace-tone solution (2.0 mL) of H3L (3.46 mg, 0.01 mmol) at room temperature. After stirring for 2 h, the mixture was filtered off. The resulting filtrate was left undis-turbed for about a week to form block-like clear yellow- ish green crystals suitable for X-ray crystallographic analysis. Yield: 45.8%. Anal. Calcd. for C44H60N4Ni4O22 (%): C, 42.91; H, 4.91; N, 4.55; Ni, 19.06. Found(%): C, 43.16; H, 4.98; N, 4.47; Ni, 18.87.
1.4 Synthesis of complex 2
A solution of zinc acetate tetrahydrate (4.96 mg, 0.02 mmol) in ethanol (2.5 mL) was added drop- wise to a solution of H3L (3.5 mg, 0.01 mmol) in dichlo- romethane (3 mL) at room temperature. The color of the mixing solution turned yellow immediately, and was stirred continually for 1 h at room temperature. The mixture was filtered and the filtrate was allowed to stand at room temperature for about two weeks. The sol- vent was partially evaporated, and several clear yellow- ish single crystals suitable for X-ray crystallographic analysis were obtained. Yield: 47.3%. Anal. Calcd. for C42H48N4Zn4O18(%): C 43.55; H 4.18; N 4.84; Zn 22.58. Found(%): C 43.68; H 4.32; N 4.74; Zn 22.31.
1.5 Crystal structure determinations of complexes 1 and 2
Suitable crystals of complexes 1 and 2 with approximate dimensions of 0.18 mm×0.15 mm×0.12 mm and 0.11 mm×0.10 mm×0.08 mm, respectively, were mounted on glass rod for determining single crys- tal structures. X - ray diffraction data of complexes 1 and 2 were collected on a Bruker APEX Ⅱ CCD diffractometer with a graphite monochromated Cu Kα radiation source (λ =0.154 184 nm) at 173.20(10) K, and SuperNova (Dual, Cu at zero, Eos) diffractometer using a graphite monochromated Mo Kα radiation source (λ =0.071 073 nm) at 100 K, respectively. The semi-empirical absorption corrections were applied using the SADABS program. The structures were solved by the direct methods (SHELXS-2014). All non- hydrogen atoms were refined anisotropically; the hydroxyl hydrogen atoms in the methanol molecules were located in difference Fourler maps, all other hydrogen atoms were generated geometrically and allowed to ride on their parent carbon atoms[55]. The crystal data and experimental parameters relevant to the structure determinations are listed in Table 1.
Table 1
Complex 1 2 Formula C44H60N4Ni4O22 C42H48N4Zn4O18 Formula weight 1 231.8 1 158.32 Crystal system Triclinic Triclinic Space group P1 P1 a /nm 0.966 71(4) 0.976 37(6) b / nm 1.135 94(6) 1.041 21(7) c / nm 1.454 37(10) 1.214 10(9) α/(°) 112.312(6) 89.010(6) β/(°) 95.582(5) 73.275(6) γ/(°) 106.259(4) 74.235(6) V / nm3 13.806 7(15) 11.351 0(14) Z 1 1 Dc / (g·cm-3) 1.481 1.695 μ / mm-1 2.203 2.169 F(000) 640 592 θ range /(°) 4.312~66.598 2.037~27.099 Index ranges -11 ≤ h ≤ 11, -10 ≤ k ≤ 13, -17 ≤ l ≤ 16 -12≤ h ≤ 12, -11 ≤ k ≤ 13, -15 ≤ l ≤ 15 Reflections collected 8 899 9 115 Independent reflection 4 871 4 917 Rint 0.020 6 0.042 2 Completeness / % 99.76 98 Data, restraint, parameter 4 871, 1, 344 4 917, 0, 310 GOF 1.044 1.048 Final R1, wR2 indices [I > 2σ(I)] 0.028 8, 0.075 1 0.051 2, 0.106 2 R1, wR2 indices (all data) 0.031 6, 0.077 4 0.076 2, 0.115 9 a R1=∑||Fo|-|Fc||/∑|Fo||; b wR2={∑w(Fo2-Fc2)2/∑[w(Fo2)]2}1/2. CCDC: 1984199, 1; 1984198, 2.
2. Results and discussion
2.1 IR spectra
The FT - IR spectra of H3L with its corresponding complexes 1 and 2 exhibited various bands in the 400~ 4 000 cm-1 region (Table 2). The hydroxyl group of H3L exhibited a characteristic absorption band at approxi- mate 3 436 cm-1. An absorption band of the coordinat- ed and crystallized methanol molecules was observed at approximate 3 387 cm-1 in complex 1, and an absorp- tion band of the coordinated ethanol molecules was observed at approximate 3 428 cm-1 in complex 2, indi- cating that the Ni and Zn ions are coordinated to oxygen atoms in phenoxy groups of the fully deprotonat- ed ligand L3- moieties. The results are in accordance with the elemental analysis results. A characteristic strong C=N stretching band of H3L emerged at approxi- mate 1 613 cm-1, and those of complexes 1 and 2 emerged at approximate 1 602 and 1 597 cm-1, respec- tively[56]. The changes in the spectra of complexes 1 and 2 shows that the oxime nitrogen atoms of the ligand H3L have coordinated with the Ni and Zn ions. The expected Ar-O vibration band of H3L was observed at approximate 1 253 cm-1; nevertheless, this band occurred at approximate 1 234 and 1 213 cm-1 in com- plexes 1 and 2, respectively. The Ar - O stretching fre- quencies of phenoxy groups are shifted to low frequen- cies, which could be evidence of the Ni - O or Zn - O bond formation between the Ni or Zn ions and the oxygen atoms of phenoxy groups[57].
Table 2
Compound νO-H νC=N νAr-O νM-N νM-O H3L 3 436 1 613 1 253 — — 1 3 387 1 602 1 234 516 426 2 3 428 1 597 1 213 512 423 The far-IR spectra (500~100 cm-1) of complexes 1 and 2 were also obtained to identify the bonds of M-O and M - N frequencies. The νM-O bands at approximate 426 and 423 cm-1 in complexes 1 and 2 can be assigned to νNi-O and νZn-O, while the νM-N bands at approximate 516 and 512 cm-1 are attributed to νNi-N and νZn-N, respectively[52]. The results mentioned above are in accordance with the results of X-ray crystal dif- fractions.
2.2 UV-Vis spectra
The UV - Vis absorption spectra of the free ligand H3L with its corresponding complexes 1 and 2 in the ethanol solutions (10 μmol·L-1) at 298 K are shown in Fig. 1.
Figure 1
Obviously, the absorption peaks of the free ligand H3L differ from those of complexes 1 and 2. The UV - Vis spectra of ligand H3L and its complexes 1 and 2 in the ethanol solutions are shown in Fig. 1. From the Fig. 1, we can see that the free ligand H3L showed two strong absorption peaks near 271 and 319 nm. The ab- sorption peak at ca. 271 nm can be assigned to the π- π* transitions of phenyl rings, and the absorption peak at ca. 319 nm can be assigned to the intra-ligand π -π* transition of oxime group. Upon coordination of the free ligand, the π-π* transitions of phenyl rings in complex- es 1 and 2 are bathochromically shifted to 274 and 278 nm, respectively, which indicates the coordination of ligand L3- moieties with Ni and Zn ions[49]. Mean- while, new absorption peaks appeared at 374 and 349 nm in complexes 1 and 2 may be accounted for the n- π* charge transfer transition from the filled p orbital of bridging phenoxo oxygen atoms to the vacant d-orbital of corresponding metal ions.
2.3 Descriptions of crystal structures
X - ray crystallographic analyses reveal that com- plexes 1 and 2 form two different crystal structures, which are different from common tetra - nuclear struc- tures of salamo-like complexes reported earlier[40].
2.3.1 Crystal structure of complex 1
As shown in Fig. 2 and Table 3, in the crystal structure of complex 1, there are four Ni ions, two fully deprotonated L3- moieties, two coordinated MeOH molecules, two μ - acetate ligands and four crystallized MeOH molecules. Complex 1 possesses a highly sym- metrical tetra-nuclear structure. The hexa -coordinated central Ni ion (Ni1) is surrounded by four oxygen atoms (O1, O1#1, O2 and O5) from the fully deproton- ated L3- moiety, one oxygen atom (O7) of the μ-acetate ligand and one oxygen atoms (O6) from the coordinated methanol molecule adopting a twisted octahedral geom- etry. The hexa-coordinated terminal Ni ion (Ni2) lies in the N2O2 -donor coordination sphere (N1, N2, O2 and O5) of the fully deprotonated L3- unit, and coordinates further to one oxygen atom (O8) from the μ - acetate ligand and one oxygen atoms (O9) from the coordinated methanol molecule adopting a twisted octahedral geometry.
Figure 2
Table 3
Ni1-O1 0.208 68(15) Ni1-O7 0.204 17(14) Ni2-O8 0.206 33(13) Ni1-O2 0.200 25(14) Ni1-O1#1 0.204 14(12) Ni2-O9 0.211 58(14) Ni1-O5 0.200 69(14) Ni1-O2 0.201 32(14) Ni2-N1 0.211 21(17) Ni1-O6 0.218 97(14) Ni2-O5 0.202 22(13) Ni2-N2 0.209 30(18) O1-Ni1-O2 80.68(6) O5-Ni1-O7 89.25(6) O5-Ni2-O8 91.69(5) O1-Ni1-O5 161.72(5) O1#1-Ni1-O5 100.61(5) O5-Ni2-O9 86.90(5) O1-Ni1-O6 121.26(6) O6-Ni1-O7 83.53(5) O5-Ni2-N1 164.56(6) O1-Ni1-O7 88.70(6) O1#1-Ni1-O6 91.87(5) O5-Ni2-N2 86.34(6) O1-Ni1-O1#1 84.11(5) O1#1-Ni1-O7 167.88(6) O8-Ni2-O9 178.16(6) O2-Ni1-O5 81.38(6) O2-Ni2-O5 80.74(6) O8-Ni2-N1 90.09(6) O2-Ni1-O6 157.81(6) O1-Ni2-O8 91.38(5) O8-Ni2-N2 87.55(6) O2-Ni1-O7 94.48(5) O2-Ni2-O9 89.56(6) O9-Ni2-N1 91.59(6) O1#1-Ni1-O2 93.96(5) O1-Ni2-N1 83.88(6) O9-Ni2-N2 91.17(6) O5-Ni1-O6 76.51(6) O1-Ni2-N2 167.01(6) N1-Ni2-N2 109.06(7) Symmetry code: #1: 2-x, 1-y, 1-z. As illustrated in Fig. 3 and Table 4, there are two intra-molecular hydrogen bonding inter -actions (C8-H8A…O9 and C20-H20B…O5) in the crystal struc- ture of complex 1.
Figure 3
Table 4
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A / (°) C8-H8A…O9 0.097 0.244 0.329 0(3) 146 C20-H20B…O5 0.096 0.257 0.312 8(3) 177 2.3.2 Crystal structure of complex 2
X - ray crystallographic analysis reveals that com- plex 2 is a symmetric trinuclear structure. It crystalliz- es in the triclinic system, space group P1. As shown in Fig. 4, the obtained complex 2 includs four Zn ions, two fully deprotonated L3- moieties, two coordinated ethanol molecules and two μ-acetate ligands. The penta - coordinated central Zn ion (Zn1) is surrounded by three oxygen atoms (O6, O6 and O5) from the fully deprotonated L3- moiety, one oxygen atom (O8) of the μ - acetate ligand and one oxygen atom (O9) from the coordinated ethanol molecule, forming a square pyra- mid geometry. Unlike the center Zn ion, the penta - coordinated terminal Zn ion (Zn2) lies in the N2O2 - donor coordination sphere (N1, N2, O1 and O5) of the fully deprotonated L3- unit, and coordinates further to one oxygen atom (O7) from the μ-acetate ligand, adopt- ing a twisted triangular bipyramidal geometry. Herein, we have synthesized a novel structural tetranuclear complex 2, where all the Zn ions are penta- coordinated with distorted tetragonal pyramidal and trigonal bipyramidal symmetries. In order to get the geometries adopted by Zn1 and Zn2, the τ values were estimated to be τ1=0.143 and τ2=0.725[58-59], respectively.
Figure 4
Table 5
Zn1-O5 0.205 4(3) Zn1-O6#1 0.201 5(3) Zn2-N1 0.211 8(4) Zn1-O6 0.204 1(3) Zn2-O1 0.195 1(3) Zn2-N1 0.209 5(4) Zn1-O8 0.198 2(3) Zn2-O5 0.202 6(3) Zn1-O9 0.203 4(3) Zn2-O7 0.197 8(2) O5-Zn1-O6 79.33(11) O8-Zn1-O9 108.61(12) O5-Zn2-O7 92.37(11) O5-Zn1-O8 95.91(12) O6#1-Zn1-O8 98.56(11) O5-Zn2-N1 171.13(13) O5-Zn1-O9 93.25(11) O6#1-Zn1-O9 100.40(12) O5-Zn2-N2 83.69(14) O5-Zn1-O6#1 155.75(12) O1-Zn2-O5 96.09(13) O7-Zn2-N1 92.14(13) O6-Zn1-O8 147.18(12) O1-Zn2-O7 112.79(12) O7-Zn2-N2 127.64(14) O6-Zn1-O9 104.10(12) O1-Zn2-N1 89.20(14) N1-Zn2-N2 87.51(15) O6-Zn1-O6#1 77.95(11) O1-Zn2-N2 119.56(13) Symmetry code: #1: 1-x, 1-y, 1-z. As illustrated in Fig. 5, there are three intra- molecular (O9 -H9…O1, O9-H9…O2, and C9 -H9A… O7) hydrogen bonding interactions. As shown in Fig. 6 and Table 6, complex 2 molecules are linked into an in- finite 2D supramolecular structure by inter - molecular (C7-H7B…O3, C10-H10A…O4) hydrogen bonding interactions in the crystal structure of complex 2[60-64].
Figure 5
Figure 6
Table 6
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A /(°) O9-H9…O1 0.086(3) 0.188(3) 0.267 5(4) 153 O9-H9…O2 0.086(3) 0.242(2) 0.308 2(4) 134 C7-H7B…O3#2 0.096 0.260 0.339 3(6) 141 C9-H9A…O7 0.097 0.242 0.326 8(6) 146 C18-H18…O6#1 0.097 0.254 0.325 4(6) 130 Symmetry codes: #1: 2-x, 1-y, 2-z; #2: -1+x, y, z. 2.4 Hirshfeld surfaces analyses
The Hirshfeld surfaces[65] of complexes 1 and 2 are illustrated in Fig. 7. The surfaces have been mapped over dnorm, and the corresponding location in shape index exists the complementary region of red concave surface surrounded by receptors and the blue convex surface surrounding receptors, further proving that such hydrogen bonding exists. As for the large amount of white region in dnorm surfaces, it is suggested that there is a weaker and farther contact between mole- cules, rather than hydrogen bonding.
Figure 7
Fig. 8 shows the 2D plots generated[66] correspond- ing to the O…H, C…H and H…H interactions from the Hirshfeld surfaces of complexes 1 and 2. As shown in Fig. 8a, for complex 1, the H…H interactions appear at (0.115 7 nm, 0.114 7 nm) and account for 67% of the total area of Hirshfeld surfaces. The C…H/H…C interactions are in the range of (0.157 8 nm, 0.106 7 nm) and appear as a pair of symmetrical wings, accounting for 11.4% of the total area of Hirshfeld sur- faces. The proportions of O…H/H…O interactions are comprised of 17.7% of the total Hirshfed surfaces for each molecule of complex 1. As shown in Fig. 8b, for complex 2, the interactions of H…H appear at (0.115 nm, 0.115 nm) accounting for 45.4% of the total area of Hirshfeld surfaces. The C…H/H…C interactions in the range of (0.160 nm, 0.105 nm) account for 24.2% of the total area of Hirshfeld surfaces. The proportions of O…H/H…O interactions are comprised of 24.3% of the total Hirshfed surfaces for each molecule of com- plex 2. It is because of the existence of these weaker hydrogen bonds that complexes 1 and 2 can be stable.
Figure 8
2.5 Fluorescence properties
The fluorescence spectra of H3L and its corre- sponding complexes 1 and 2 were investigated at room temperature and are shown in Fig. 9. The free ligand H3L exhibited a relatively strong emission peak at ca. 400 nm upon excitation at 370 nm, and it should be assigned to the intraligand π-π* transition. Complex 1 showed a lower photoluminescence with maximum emission at ca. 391 nm. Compared with the ligand H3L, emission intensity of complex 1 reduced obviously, indicating that the Ni ions have a quality of fluores- cent quenching. On the other hand, complex 2 showed an obvious fluorescence enhancement at ca. 395 nm. The intense peak is likely due to the coordination of H3L with the Zn ions, which breaks the intramolecu- lar hydrogen-bonding interactions of H3L and increases the coplanarity of the conjugated system.
Figure 9
3. Conclusions
In summary, we have reported the successful syntheses and characterizations of two newly designed tetra-nuclear metal complexes, [Ni2(L)(μ-OAc) (CH3OH)]2·4CH3OH (1) and [Zn2(L) (μ-OAc) (CH3CH2OH)]2 (2), derived from an unsymmetrical sala-mo - like ligand H3L. All the hexa - coordinated Ni ions in complex 1 adopt slightly twisted octahedral con- figurations. The penta-coordinated Zn ions (Zn1 and Zn1#1) in complex 2 form square pyramid geometries, while the other penta-coordinated Zn ions (Zn2 and Zn2#1) possess twisted triangular bipyramidal geome- tries. The inter-molecular hydrogen bonding interac- tions in crystal structure of 2 result in a self-assembled infinite 2D supramolecular network.
Acknowledgements: This work was supported by the Na- tional Natural Science Foundation of China (Grant No.21968032), the Fundamental Research Funds of Central Uni- versities-Innovation Team Cultivation Project (Grant No.31920190012), the Northwest Minzu University′s Double First-class and Characteristic Development Guide Special Funds-Chemistry Key Disciplines in Gansu Province (Grant No.11080316), and the Teaching Quality and Reform Engineer- ing Project of Gansu University (Grants No.2019GSSYJXSFZX- 01, 2019GSJXCGPY-16), which are gratefully acknowledged. -
-
[1]
Dong X Y, Kang Q P, Li X Y, et al. Crystals, 2018, 8:139 doi: 10.3390/cryst8030139
-
[2]
Wu H L, Wang C P, Wang F, et al. J. Chin. Chem. Soc., 2015, 62:1028-1034 doi: 10.1002/jccs.201500121
-
[3]
Liu Y A, Wang C Y, Zhang M, et al. Polyhedron, 2017, 127:278-286 doi: 10.1016/j.poly.2017.02.007
-
[4]
Kang Q P, Li X Y, Wang L, et al. Appl. Organomet. Chem., 2019, 33:e5013
-
[5]
Chai L Q, Mao K H, Zhang J Y, et al. Inorg. Chim. Acta, 2017, 457:34-40 doi: 10.1016/j.ica.2016.12.004
-
[6]
Akine S, Varadi Z, Nabeshima T. Eur. J. Inorg. Chem., 2013, 35:5987-5998
-
[7]
Akine S. J. Incl. Phenom. Macrocycl. Chem., 2012, 72:25-54 doi: 10.1007/s10847-011-0026-3
-
[8]
Wu H L, Pan G L, Bai Y C, et al. J. Chem. Res., 2014, 38:211- 217 doi: 10.3184/174751914X13933417974082
-
[9]
Wu H L, Pan G L, Bai Y C, et al. Res. Chem. Intermed., 2015, 41:3375-3388 doi: 10.1007/s11164-013-1440-5
-
[10]
Zhang Y, Yu M, Pan Y Q, et al. Appl. Organomet. Chem., 2020, 34:e5442
-
[11]
Sun S S, Stern C L, Nguyen S T, et al. J. Am. Chem. Soc., 2004, 126:6314-6326 doi: 10.1021/ja037378s
-
[12]
Venkataramanan N S, Kuppuraj G, Rajagopal S. Coord. Chem. Rev., 2005, 249:1249-1268 doi: 10.1016/j.ccr.2005.01.023
-
[13]
Zhang L W, Zhang Y, Cui Y F, et al. Inorg. Chim. Acta, 2020, 506:119534 doi: 10.1016/j.ica.2020.119534
-
[14]
Wu H L, Pan G L, Bai Y C, et al. J. Photochem. Photobiol. B, 2014, 135:33-43 doi: 10.1016/j.jphotobiol.2014.04.005
-
[15]
Chen C Y, Zhang J W, Zhang Y H, et al. J. Coord. Chem., 2015, 68:1054-1071 doi: 10.1080/00958972.2015.1007965
-
[16]
Ren Z L, Hao J, Hao P, et al. Z. Naturforsch. B, 2018, 73:203 -210 doi: 10.1515/znb-2017-0191
-
[17]
Akine S, Taniguchi T, Nabeshima T. Chem. Lett., 2001, 30:682-683 doi: 10.1246/cl.2001.682
-
[18]
Zhang L W, Li X Y, Kang Q P. Crystals, 2018, 8:173 doi: 10.3390/cryst8040173
-
[19]
Kang Q P, Li X Y, Zhao Q, et al. Appl. Organomet. Chem., 2018, 32:e4379 doi: 10.1002/aoc.4379
-
[20]
Dong X Y, Akogun S F, Zhou W M, et al. J. Chin. Chem. Soc., 2017, 64:412-419
-
[21]
Song X Q, Peng Y J, Chen G Q, et al. Inorg. Chim. Acta, 2015, 427:13-21 doi: 10.1016/j.ica.2014.12.008
-
[22]
Liu L Z, Wang L, Yu M, et al. Spectrochim. Acta Part A, 2019, 222:117209 doi: 10.1016/j.saa.2019.117209
-
[23]
Song X Q, Liu P P, Liu Y A, et al. Dalton Trans., 2016, 45:8154-8163 doi: 10.1039/C6DT00212A
-
[24]
Pan Y Q, Xu X, Zhang Y, et al. Spectrochim. Acta Part A, 2020, 229:117927 doi: 10.1016/j.saa.2019.117927
-
[25]
Wei Z L, Wang L, Wang J F, et al. Spectrochim. Acta Part A, 2020, 228:117775 doi: 10.1016/j.saa.2019.117775
-
[26]
Wang L, Wei Z L, Chen Z Z, et al. Microchem. J., 2020, 155:104801 doi: 10.1016/j.microc.2020.104801
-
[27]
Li J, Zhang H J, Chang J, et al. Crystals, 2018, 8:176 doi: 10.3390/cryst8040176
-
[28]
Chai L Q, Zhou L, Zhang K Y, et al. Appl. Organomet.Chem, 2018,32:e4576
-
[29]
Ömer S, Ümmühan Ö Ö, Nurgul S, et al. Tetrahedron, 2016, 72:5843-5852
-
[30]
Hao J, Li X Y, Wang L, et al. Spectrochim. Acta Part A, 2018, 204:388-402 doi: 10.1016/j.saa.2018.06.074
-
[31]
常健, 张宏佳, 贾浩然, 等.无机化学学报, 2018, 34(11):2097-2107 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181119&journal_id=wjhxxbcnCHANG Jian, ZHANG Hong-Jia, JIA Hao- Ran, et al. Chinese J. Inorg. Chem., 2018, 34(11):2097-2107 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181119&journal_id=wjhxxbcn
-
[32]
Jia H R, Chang J, Zhang H J, et al. Crystals, 2018, 8:272 doi: 10.3390/cryst8070272
-
[33]
Zhou L, Hu Q, Chai L Q, et al. Polyhedron, 2019, 158:102- 116 doi: 10.1016/j.poly.2018.10.052
-
[34]
张宏佳, 常健, 贾浩然, 等.无机化学学报, 2018, 34(12):2261-2270 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181217&journal_id=wjhxxbcnZHANG Hong-Jia, CHANG Jian, JIA Hao- Ran, et al. Chinese J. Inorg. Chem., 2018, 34(12):2261-2270 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20181217&journal_id=wjhxxbcn
-
[35]
Dong X Y, Li X Y, Liu L Z, et al. RSC Adv., 2017, 7:48394- 48403 doi: 10.1039/C7RA07826A
-
[36]
Liu C, An X X, Cui Y F, et al. Appl. Organomet. Chem., 2020, 34:e5272
-
[37]
Pan Y Q, Zhang Y, Yu M, et al. Appl. Organomet. Chem., 2020, 34:e5441
-
[38]
Zhao Q, An X X, Liu L Z, et al. Inorg. Chim. Acta, 2019, 490:6-15 doi: 10.1016/j.ica.2019.02.040
-
[39]
Akine S, Taniguchi T, Dong W K, et al. J. Org. Chem., 2005, 70:1704-1711 doi: 10.1021/jo048030y
-
[40]
Liu C, Wei Z L, Mu H R, et al. J. Photochem. Photobiol. A, 2020, 397:112569 doi: 10.1016/j.jphotochem.2020.112569
-
[41]
Yu M, Zhang Y, Pan Y Q, et al. Inorg. Chim. Acta, 2020, 509:
-
[42]
Wang L, Wei Z L, Liu C, et al. Spectrochim. Acta Part A, 2020, 239:118496 doi: 10.1016/j.saa.2020.118496
-
[43]
An X X, Zhao Q, Mu H R, et al. Crystals, 2019, 9:101 doi: 10.3390/cryst9020101
-
[44]
Mu H R, Yu M, Wang L, et al. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195:1756807
-
[45]
Dong X Y, Zhao Q, Kang Q P, et al. Crystals, 2018, 8:23 doi: 10.3390/cryst8010023
-
[46]
Li X Y, Kang Q P, Liu L Z, et al. Crystals, 2018, 8:43 doi: 10.3390/cryst8010043
-
[47]
于盟, 穆浩冉, 刘玲芝, 等.无机化学学报, 2019, 35 (6):1109-1120 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190622&journal_id=wjhxxbcnYU Meng, MU Hao-Ran, LIU Ling-Zhi, et al. Chinese J. Inorg. Chem., 2019, 35 (6):1109-1120 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190622&journal_id=wjhxxbcn
-
[48]
Dong X Y, Zhao Q, Wei Z L, et al. Molecules, 2018, 23:1006 doi: 10.3390/molecules23051006
-
[49]
Kang Q P, Li X Y, Wei Z L, et al. Polyhedron, 2019, 165:38- 50 doi: 10.1016/j.poly.2019.03.008
-
[50]
Gao L, Liu C, Wang F, et al. Crystals, 2018, 8:77 doi: 10.3390/cryst8020077
-
[51]
Hao J, Li X Y, Zhang Y, et al. Materials, 2018, 11:523 doi: 10.3390/ma11040523
-
[52]
刘玲芝, 于盟, 李肖妍, 等.无机化学学报, 2019, 35 (7):1283-1294 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190721&journal_id=wjhxxbcnLIU Ling-Zhi, YU Meng, LI Xiao-Yan, et al. Chinese J. Inorg. Chem., 2019, 35 (7):1283-1294 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20190721&journal_id=wjhxxbcn
-
[53]
Li X Y, Kang Q P, Liu C, et al. New J. Chem., 2019, 43:4605- 4619 doi: 10.1039/C9NJ00014C
-
[54]
董秀延, 高垒, 王飞, 等.无机化学学报, 2018, 34 (4):739-749 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20180418&journal_id=wjhxxbcnDONG Xiu - Yan, GAO Lei, WANG Fei, et al. Chinese J. Inorg. Chem., 2018, 34 (4):739-749 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20180418&journal_id=wjhxxbcn
-
[55]
Sheldrick G M. SHELXS - 97, Program for the Solution and Refinement of Crystal Structures, University of GÖttingen, Germany, 1997.
-
[56]
Sun Y X, Pan Y Q, Xu X, et al. Crystals, 2019, 9:607 doi: 10.3390/cryst9120607
-
[57]
Zhang Y, Liu L Z, Peng Y D, et al. Transit. Met. Chem., 2019, 44:627-639 doi: 10.1007/s11243-019-00325-3
-
[58]
Addison A W, Rao T N, Reedijk J, et al. J. Chem. Soc. Dalton Trans., 1984, 7:1349-1356
-
[59]
Konno T, Tokuda K, Sakurai J, et al. Bull. Chem. Soc. Jpn., 2000, 73:2767-2773 doi: 10.1246/bcsj.73.2767
-
[60]
Chai L Q, Tang L J, Chen L C, et al. Polyhedron, 2017, 122:228-240 doi: 10.1016/j.poly.2016.11.032
-
[61]
Chai L Q, Liu G, Zhang Y L, et al. J. Coord. Chem., 2013, 66:3926-3938 doi: 10.1080/00958972.2013.857016
-
[62]
Wang P, Zhao L. Spectrochim. Acta A, 2015, 135:342-350 doi: 10.1016/j.saa.2014.06.129
-
[63]
An X X, Liu C, Chen Z Z, et al. Crystals, 2019, 9:602 doi: 10.3390/cryst9110602
-
[64]
郭建强, 孙银霞, 俞彬, 等.无机化学学报, 2017, 33(8):1481-1488 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20170822&journal_id=wjhxxbcnGUO Jian-Qiang, SUN Yin-Xia, YU Bin, et al. Chinese J. Inorg. Chem., 2017, 33(8):1481-1488 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20170822&journal_id=wjhxxbcn
-
[65]
Rohl A L, Moret M, Kaminsky W, et al. Cryst. Growth Des., 2012, 8:4517-4525
-
[66]
Chattopadhyay B, Mukherjee A K, Narendra N, et al. Cryst. Growth Des., 2010, 10:65-68
-
[1]
-
Table 1. Crystal data and structure refinement parameters for complexes 1 and 2
Complex 1 2 Formula C44H60N4Ni4O22 C42H48N4Zn4O18 Formula weight 1 231.8 1 158.32 Crystal system Triclinic Triclinic Space group P1 P1 a /nm 0.966 71(4) 0.976 37(6) b / nm 1.135 94(6) 1.041 21(7) c / nm 1.454 37(10) 1.214 10(9) α/(°) 112.312(6) 89.010(6) β/(°) 95.582(5) 73.275(6) γ/(°) 106.259(4) 74.235(6) V / nm3 13.806 7(15) 11.351 0(14) Z 1 1 Dc / (g·cm-3) 1.481 1.695 μ / mm-1 2.203 2.169 F(000) 640 592 θ range /(°) 4.312~66.598 2.037~27.099 Index ranges -11 ≤ h ≤ 11, -10 ≤ k ≤ 13, -17 ≤ l ≤ 16 -12≤ h ≤ 12, -11 ≤ k ≤ 13, -15 ≤ l ≤ 15 Reflections collected 8 899 9 115 Independent reflection 4 871 4 917 Rint 0.020 6 0.042 2 Completeness / % 99.76 98 Data, restraint, parameter 4 871, 1, 344 4 917, 0, 310 GOF 1.044 1.048 Final R1, wR2 indices [I > 2σ(I)] 0.028 8, 0.075 1 0.051 2, 0.106 2 R1, wR2 indices (all data) 0.031 6, 0.077 4 0.076 2, 0.115 9 a R1=∑||Fo|-|Fc||/∑|Fo||; b wR2={∑w(Fo2-Fc2)2/∑[w(Fo2)]2}1/2. Table 2. FT-IR spectra of H3L and complexes 1 and 2
cm-1 Compound νO-H νC=N νAr-O νM-N νM-O H3L 3 436 1 613 1 253 — — 1 3 387 1 602 1 234 516 426 2 3 428 1 597 1 213 512 423 Table 3. Selected bond lengths (nm) and angles (°) for complex 1
Ni1-O1 0.208 68(15) Ni1-O7 0.204 17(14) Ni2-O8 0.206 33(13) Ni1-O2 0.200 25(14) Ni1-O1#1 0.204 14(12) Ni2-O9 0.211 58(14) Ni1-O5 0.200 69(14) Ni1-O2 0.201 32(14) Ni2-N1 0.211 21(17) Ni1-O6 0.218 97(14) Ni2-O5 0.202 22(13) Ni2-N2 0.209 30(18) O1-Ni1-O2 80.68(6) O5-Ni1-O7 89.25(6) O5-Ni2-O8 91.69(5) O1-Ni1-O5 161.72(5) O1#1-Ni1-O5 100.61(5) O5-Ni2-O9 86.90(5) O1-Ni1-O6 121.26(6) O6-Ni1-O7 83.53(5) O5-Ni2-N1 164.56(6) O1-Ni1-O7 88.70(6) O1#1-Ni1-O6 91.87(5) O5-Ni2-N2 86.34(6) O1-Ni1-O1#1 84.11(5) O1#1-Ni1-O7 167.88(6) O8-Ni2-O9 178.16(6) O2-Ni1-O5 81.38(6) O2-Ni2-O5 80.74(6) O8-Ni2-N1 90.09(6) O2-Ni1-O6 157.81(6) O1-Ni2-O8 91.38(5) O8-Ni2-N2 87.55(6) O2-Ni1-O7 94.48(5) O2-Ni2-O9 89.56(6) O9-Ni2-N1 91.59(6) O1#1-Ni1-O2 93.96(5) O1-Ni2-N1 83.88(6) O9-Ni2-N2 91.17(6) O5-Ni1-O6 76.51(6) O1-Ni2-N2 167.01(6) N1-Ni2-N2 109.06(7) Symmetry code: #1: 2-x, 1-y, 1-z. Table 4. Hydrogen bonding interaction parameters for complex 1
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A / (°) C8-H8A…O9 0.097 0.244 0.329 0(3) 146 C20-H20B…O5 0.096 0.257 0.312 8(3) 177 Table 5. Selected bond lengths (nm) and angles (°) for complex 2
Zn1-O5 0.205 4(3) Zn1-O6#1 0.201 5(3) Zn2-N1 0.211 8(4) Zn1-O6 0.204 1(3) Zn2-O1 0.195 1(3) Zn2-N1 0.209 5(4) Zn1-O8 0.198 2(3) Zn2-O5 0.202 6(3) Zn1-O9 0.203 4(3) Zn2-O7 0.197 8(2) O5-Zn1-O6 79.33(11) O8-Zn1-O9 108.61(12) O5-Zn2-O7 92.37(11) O5-Zn1-O8 95.91(12) O6#1-Zn1-O8 98.56(11) O5-Zn2-N1 171.13(13) O5-Zn1-O9 93.25(11) O6#1-Zn1-O9 100.40(12) O5-Zn2-N2 83.69(14) O5-Zn1-O6#1 155.75(12) O1-Zn2-O5 96.09(13) O7-Zn2-N1 92.14(13) O6-Zn1-O8 147.18(12) O1-Zn2-O7 112.79(12) O7-Zn2-N2 127.64(14) O6-Zn1-O9 104.10(12) O1-Zn2-N1 89.20(14) N1-Zn2-N2 87.51(15) O6-Zn1-O6#1 77.95(11) O1-Zn2-N2 119.56(13) Symmetry code: #1: 1-x, 1-y, 1-z. Table 6. Hydrogen bonding interaction parameters for complex 2
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠D-H…A /(°) O9-H9…O1 0.086(3) 0.188(3) 0.267 5(4) 153 O9-H9…O2 0.086(3) 0.242(2) 0.308 2(4) 134 C7-H7B…O3#2 0.096 0.260 0.339 3(6) 141 C9-H9A…O7 0.097 0.242 0.326 8(6) 146 C18-H18…O6#1 0.097 0.254 0.325 4(6) 130 Symmetry codes: #1: 2-x, 1-y, 2-z; #2: -1+x, y, z.
计量
- PDF下载量: 3
- 文章访问数: 315
- HTML全文浏览量: 53