Metal-Organic Frameworks with 2, 6-Di(1H-imidazol-1-yl)naphthalene and Dicarboxylate Ligands: Synthesis, Crystal Structure and Photoluminescence Sensing Property

Zhi-Qiang LIU Shi-Hu CAO Zhe ZHANG Jun-Feng WU Yue ZHAO Wei-Yin SUN

Citation:  LIU Zhi-Qiang, CAO Shi-Hu, ZHANG Zhe, WU Jun-Feng, ZHAO Yue, SUN Wei-Yin. Metal-Organic Frameworks with 2, 6-Di(1H-imidazol-1-yl)naphthalene and Dicarboxylate Ligands: Synthesis, Crystal Structure and Photoluminescence Sensing Property[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(11): 2145-2151. doi: 10.11862/CJIC.2019.225 shu

2, 6-二(1-咪唑基)萘和二羧酸构筑的金属-有机框架化合物:合成、晶体结构和荧光识别性能

    通讯作者: 孙为银, sunwy@nju.edu.cn
  • 基金项目:

    安徽省自然科学基金 1908085QB47

    配位化学国家重点实验室开放课题 SKLCC1906

    安徽高校自然科学研究重点项目 KJ2018A0371

    安徽省自然科学基金(No.1908085QB47),安徽高校自然科学研究重点项目(No.KJ2018A0371)和配位化学国家重点实验室开放课题(No.SKLCC1906)资助

摘要: 利用2,6-二(1-咪唑基)萘(L)和二羧酸配体与过渡金属盐反应,通过溶剂热法合成了3个新颖的金属有机框架化合物(MOFs):[Co(L)(AIP)]·2DMF(1),[Co(L)(AIP)]·DMF(2)和[Co(L)(IDC)(H2O)2]·0.5L·H2O(3)(H2AIP=5-氨基间苯二甲酸,H2IDC=4,4'-亚氨基二苯甲酸)。利用元素分析、红外、X射线单晶和粉末衍射、热重分析等对MOFs进行了表征。单晶结构解析结果表明:1属于单斜晶系C2/c空间群,23属于三斜晶系P1空间群。13均为一维的链状结构,2为二维的层状结构,三者通过氢键作用形成三维超分子结构。此外,对MOFs的热稳定性和荧光性质进行了研究,发现3通过荧光猝灭对丙酮分子具有识别作用。

English


    1. [1]

      Meng X, Wang H N, Song S Y, et al. Chem. Soc. Rev., 2017, 46:464-480 doi: 10.1039/C6CS00528D

    2. [2]

      Wu S Y, Min H, Shi W, et al. Adv. Mater., 2019, 31:1805871-180584

    3. [3]

      Kang Y S, Lu Y, Chen K, et al. Coord. Chem. Rev., 2019, 378: 262-280 doi: 10.1016/j.ccr.2018.02.009

    4. [4]

      Cui Y, Li B, He H, et al. Acc. Chem. Res., 2016, 49:483-493 doi: 10.1021/acs.accounts.5b00530

    5. [5]

      Gu Z G, Li D J, Zheng C, et al. Angew. Chem. Int. Ed., 2017, 56:6853-6858 doi: 10.1002/anie.201702162

    6. [6]

      Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013, 113: 734-777 doi: 10.1021/cr3002824

    7. [7]

      Lustig W P, Mukherjee S, Rudd N D, et al. Chem. Soc. Rev., 2017, 46:3242-3285 doi: 10.1039/C6CS00930A

    8. [8]

      Tang Q, Liu S, Liu Y, et al. Inorg. Chem., 2013, 52:2799-2801 doi: 10.1021/ic400029p

    9. [9]

      Lin Z J, Lu J, Hong M C, et al. Chem. Soc. Rev., 2014, 43: 5867-5895 doi: 10.1039/C3CS60483G

    10. [10]

      Lan Y Q, Jiang H L, Li S L, et al. Inorg. Chem., 2012, 51: 7484-7491 doi: 10.1021/ic202635a

    11. [11]

      Sun Y X, Sun W Y. CrysEngComm, 2015, 17:4045-4063 doi: 10.1039/C5CE00372E

    12. [12]

      Su Z, Fan J, Okamura T, et al. Cryst. Growth Des., 2011, 11: 1159-1169 doi: 10.1021/cg101365v

    13. [13]

      Hua J A, Zhao Y, Kang Y S, et al. Dalton. Trans., 2015, 44: 11524-11532 doi: 10.1039/C5DT01386K

    14. [14]

      Li Y L, Zhao D, Zhao Y, et al. Dalton. Trans., 2016, 45:8816 -8823 doi: 10.1039/C6DT00568C

    15. [15]

      Deng Y, Yao Z Y, Wang P, et al. Sens. Actuators B: Chem., 2017, 244:114-123 doi: 10.1016/j.snb.2016.12.130

    16. [16]

      Li Y L, Zhao Y, Kang Y S, et al. Cryst. Growth Des., 2016, 16:7112-7123 doi: 10.1021/acs.cgd.6b01352

    17. [17]

      Lian X, Yan B. Dalton. Trans., 2016, 45:2666-2673 doi: 10.1039/C5DT03939H

    18. [18]

      Yan W, Zhang C L, Chen S G, et al. ACS Appl. Mater. Interfaces, 2017, 9:1629-1634 doi: 10.1021/acsami.6b14563

    19. [19]

      刘志强, 黄永清, 孙为银.无机化学学报, 2017, 33:1959-969 doi: 10.11862/CJIC.2017.244LIU Zhi-Qiang, HUANG Yong-Qing, SUN Wei-Yin. Chinese J. Inorg. Chem., 2017, 33:1959-969 doi: 10.11862/CJIC.2017.244

    20. [20]

      Liu Z Q, Zhao Y, Deng Y, et al. Sens. Actuators B: Chem., 2017, 250:179-188 doi: 10.1016/j.snb.2017.04.151

    21. [21]

      Fan J, Gan L, Kawaguchi H, et al. Chem. Eur. J., 2003, 9: 3965-3973 doi: 10.1002/chem.200204298

    22. [22]

      SAINT, Program for Data Extraction and Reduction, Bruker AXS, Inc., Madison, WI, 2001.

    23. [23]

      Sheldrick G M. SADABS, University of Göttingen, Germany, 2003.

    24. [24]

      Sheldrick G M. Acta Crystallogr. Sect. A: Found. Crystallogr., 2015, A71:3-8

    25. [25]

      Sheldrick G M. Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, C71:3-8

    26. [26]

      Hu G F, Wen B, Yu Y H, et al. Inorg. Chim. Acta, 2013, 402:128-132 doi: 10.1016/j.ica.2013.03.046

    27. [27]

      Xiao Q Q, Song Z W, Li Y H, et al. J. Solid State Chem., 2019, 276:331-338 doi: 10.1016/j.jssc.2019.05.025

    28. [28]

      Liu Z Q, Zhao Y, Liu X H, et al. Polyhedron, 2019, 167:33-38 doi: 10.1016/j.poly.2019.04.007

    29. [29]

      Liu Z Q, Chen K, Zhao Y, et al. Cryst. Growth Des., 2018, 18:1136-1146 doi: 10.1021/acs.cgd.7b01572

    30. [30]

      Liu Z Q, Zhao Y, Wang P, et al. Dalton Trans., 2017, 46: 9022-9029 doi: 10.1039/C7DT01759F

  • Figure 1  (a) Coordination environment of Co(Ⅱ) in 1 with the ellipsoids drawn at 30% probability level; (b) 1D chain of Co(Ⅱ)-L in 1; (c) 1D chain of Co(Ⅱ)-AIP2- in 1; (d) 1D chain of 1; (e) 3D structure of 1 with hydrogen bonds indicated by dashed lines

    Hydrogen atoms and free solvent molecules are omitted for clarity; Symmetry codes: A:-x, y, -z+1/2; B:-x+1, y, -z+1/2

    Scheme 1  Coordination modes of AIP2- and IDC2- in 1~3

    Figure 2  (a) Coordination environment of Co(Ⅱ) in 2 with the ellipsoids drawn at 30% probability level; (b) 1D chain of Co(Ⅱ)-L in 2; (c) 1D chain of Co(Ⅱ)-AIP2- in 2; (d) 2D network of 2; (e) 3D structure of 2 with hydrogen bonds indicated by dashed lines

    Hydrogen atoms and free DMF molecules are omitted for clarity; Symmetry codes: B:-x, -y, -z+2; C: -x+1, -y+1, -z+2; D: x, y+1, z

    Figure 3  (a) Coordination environment of Co(Ⅱ) in 3 with the ellipsoids drawn at 30% probability level; (b) Dinuclear SBU in 3; (c) 1D chain constructed by Co(Ⅱ) and L; (d) 3D structure of 3 with hydrogen bonds indicated by dashed lines

    Hydrogen atoms and free water and L molecules are omitted for clarity; Symmetry codes: A: x, y+1, z-1; D:-x, -y+2, -z

    Figure 4  Photoluminescence intensities introduced into varied pure solvent upon excitation at 292 nm for 3

    Figure 5  Photoluminescence spectra of the dispersed 3 in C2H5OH in the presence of varied contents of acetone solvent

    Table 1.  Crystal data and structure refinements for complexes 1~3

    Complex 1 2 3
    Empirical formula C30H31N7O6Co C27H24N6O5Co C38H33N7O7Co
    Formula weight 644.55 571.45 758.64
    Crystal system Monoclinic Triclinic Triclinic
    Space group C2/c P1 P1
    a / nm 1.012 0(2) 1.006 04(9) 1.166 43(8)
    b nm 2.050 9(4) 1.102 61(10) 1.175 44(8)
    c / nm 1.525 7(3) 1.295 70(12) 1.279 95(8)
    α / (°) 66.862(1) 76.460(1)
    β / (°) 108.012(3) 72.915(1) 84.218(1)
    γ / (°) 80.548(1) 80.201(1)
    V / nm3 3.011 4(10) 1.261 4(2) 1.677 83(19)
    Z 4 2 2
    Dc/(g·cm-3) 1.422 1.505 1.502
    μ / mm-1 0.625 0.732 0.576
    F(000) 1 340 590 786
    Reflection collected 10 339 8 742 10 803
    Unique reflection 3 478 5 769 6 885
    Goodness-of-fit 1.020 0.866 0.844
    R1a [I > 2σ(I)] 0.044 5 0.035 7 0.040 8
    wR2b [I > 2σ(I)] 0.142 3 0.118 9 0.131 0
    a R1=∑||Fo|-|Fc||/∑|Fo|; b wR2=|∑w(|Fo|2-|Fc|2)|/∑|w(Fo)2|1/2, where w=1/[σ2(Fo2)+(aP)2+bP], P=(Fo2+2Fc2)/3.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  1016
  • HTML全文浏览量:  70
文章相关
  • 发布日期:  2019-11-10
  • 收稿日期:  2019-08-28
  • 修回日期:  2019-09-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章