两个基于刚性线型三羧酸配体的镍(Ⅱ)配合物的合成
English
Syntheses of Two Nickel(Ⅱ) Coordination Compounds Based on a Rigid Linear Tricarboxylic Acid
-
Key words:
- coordination polymer
- / hydrogen bonding
- / tricarboxylic acid
- / magnetic properties
-
0. Introduction
In recent years, the design and hydrothermal syntheses of functional coordination polymers have attracted tremendous attention owing to their fascinating architectures and topologies, as well as potential applications in catalysis, magnetism, luminescence and gas absorption[1-10]. Even after years of comprehensive study, it is difficult to predict the structures of coordination polymers, because a lot of factors influence the construction of complexes, such as the structural features of organic ligands, the coordination requirements of metal ions, solvent systems, temperatures, and pH values[11-17].
In this regard, various types of aromatic polycarboxylic acids have been proved to be versatile and efficient candidates for constructing diverse coordination polymers due to their rich coordination chemistry, tunable degree of deprotonation, and ability to act as H-bond acceptors and donors[3, 13, 17-20].
In order to extend our research in this field, we chose a rigid linear tricarboxylic acid ligand, 2, 5-di(4-carboxylphenyl)nicotinic acid (H3L), to construct novel coordination compounds. The ligand possesses the following features: (1) it contains a pyridyl and two phenyl rings with structural flexibility and conforma-tion, and rotation of the C-C single bond between pyridyl and phenyl rings could form numbers of coordination geometries of metal ions; (2) it has seven potential coordination sites, one N atom from pyridyl ring and six O atoms of three carboxylate groups, which is beneficial to construct coordination polymers with interesting structures by its rich coordination modes; (3) it can act as hydrogen-bond acceptor as well as donor, depending upon the degree of deprotonation.
Taking into account these factors, we herein report the syntheses, crystal structures, and magnetic properties of two Ni(Ⅱ) coordination compounds constructed from H3L.
1. Experimental
1.1 Reagents and physical measurements
All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1. Magnetic susceptibility data were collected in the 2~300 K temperature range with a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T. A correction was made for the diamagnetic contribution prior to data analysis.
1.2 Synthesis of [Ni2(μ-HL)2(2, 2′-bipy)2(H2O)4]·6H2O (1)
A mixture of NiCl2·6H2O (0.024 g, 0.10 mmol), H3L (0.036 g, 0.10 mmol), 2, 2′-bipy (0.016 g, 0.1 mmol), NaOH (0.012 g, 0.20 mmol), and H2O (8 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 120 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Blue block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 60% (based on H3L). Anal. Calcd. for C60H58Ni2N6O22(%): C 54.08, H 4.39, N 6.31; Found(%): C 54.37, H 4.36, N 6.33. IR (KBr, cm-1): 3 451m, 3 277m, 1 694m, 1 599s, 1 560s, 1 476w, 1 448m, 1 392s, 1 314w, 1 280w, 1 224w, 1 174w, 1 097w, 1 052w, 1 013w, 918w, 901w, 873w, 790w, 762m, 739w, 707w, 668w, 657w.
1.3 Synthesis of {[Ni(μ-HL)(2, 2′-bipy)(H2O)2]·H2O}n (2)
Synthesis of 2 was similar to 1 except using 160 ℃ instead of 120 ℃ as the temperature of hydrothermal reaction. Green block-shaped crystals of 2 were isolated manually, and washed with distilled water. Yield: 57% (based on H3L). Anal. Calcd. for C30H25NiN3O9(%): C 57.17, H 4.00, N 6.67; Found(%): C 56.92, H 3.98, N 6.69. IR (KBr, cm-1): 3 339w, 3 033w, 1 677m, 1 604m, 1 560s, 1 521m, 1 476w, 1 431m, 1 386s, 1 319w, 1 287m, 1 192w, 1 153w, 1 125w, 1 103w, 1 058w, 1 008w, 968w, 918w, 857w, 806w, 778m, 734w, 711w, 678w, 650w. The complexes are insoluble in water and common organic solvents, such as methanol, ethanol, acetone, and DMF.
1.4 Structure determinations
The data of two single crystals with dimensions of 0.25 mm×0.24 mm×0.22 mm (1) and 0.26 mm×0.23 mm×0.22 mm (2) were collected at 293(2) K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo Kα radiation (λ=0.071 073 nm). The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-2014 program[21]. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1. The selected bond lengths and angles for complexes 1 and 2 are listed in Table 2. Hydrogen bond parameters of complexes 1 and 2 are given in Table 3 and 4.
Table 1
Complex 1 2 Empirical formula C60H58Ni2N6O22 C30H25NiN3O9 Formula weight 1 332.54 630.24 Crystal system Triclinic Triclinic Space group p1 P1 a / nm 0.897 79(6) 0.697 47(5) b / nm 1.223 20(8) 0.923 50(6) c / nm 1.399 50(10) 2.118 55(15) α/(°) 99.107(6) 91.484(5) β/(°) 103.230(6) 90.892(6) γ/(°) 94.417(5) 105.347(6) V/ nm3 1.466 96(18) 1.315 13(16) Dc/ (g·cm-3) 1.508 1.592 Z 1 2 F(000) 692 652 θ range for data collection / (°) 3.397~25.049 3.415~25.048 Limiting indices -10≤h≤10, -14≤k≤14, -16≤l≤16 -8≤h≤7, -10≤k≤10, -24≤l≤25 Reflection collected, unique (Rint) 5 195, 4 254 (0.035 6) 4 644, 3 829 (0.032 7) μ / mm-1 0.729 0.803 Data, restraint, parameter 4 254, 0, 407 3 829, 0, 389 Goodness-of-fit on F2 1.054 1.069 Final R indices [I≥2σ(I)]R1, wR2 0.046 3, 0.109 7 0.042 0, 0.086 8 R indices (all data) R1, wR2 0.058 8, 0.121 2 0.054 4, 0.095 7 Largest diff. peak and hole /(e·nm-3) 417 and -413 315 and -351 Table 2
1 Ni(1)-O(1) 0.206 6(2) Ni(1)-O(4)A 0.207 8(2) Ni(1)-O(7) 0.210 9(2) Ni(1)-O(8) 0.208 6(2) Ni(1)-N(2) 0.207 5(2) Ni(1)-N(3) 0.205 9(2) N(3)-Ni(1)-O(1) 177.71(9) N(3)-Ni(1)-N(2) 79.30(10) O(1)-Ni(1)-N(2) 100.39(9) N(3)-Ni(1)-O(4)A 93.51(9) O(1)-Ni(1)-O(4)A 86.78(8) N(2)-Ni(1)-O(4)A 172.81(9) N(3)-Ni(1)-O(8) 86.78(9) O(1)-Ni(1)-O(8) 90.94(8) N(2)-Ni(1)-O(8) 86.09(9) O(4)A-Cu(1)-O(8) 93.46(8) N(3)-Ni(1)-O(7) 91.25(9) O(1)-Ni(1)-O(7) 91.02(8) N(2)-Ni(1)-O(7) 90.72(9) O(4)A-Ni(1)-O(7) 89.52(8) O(8)-Ni(1)-O(7) 176.52(7) 2 Ni(l)-O(2) 0.202 2(2) Ni(1)-O(3)A 0.204 4(2) Ni(1)-O(7) 0.214 1(2) Ni(1)-O(8) 0.205 2(2) Ni(1)-N(2) 0.206 1(2) Ni(1)-N(3) 0.208 7(2) O(2)-Ni(1)-O(3)A 92.61(8) O(2)-Ni(1)-O(8) 87.09(8) O(3)A-Ni(1)-O(8) 86.68(8) O(2)-Ni(1)-N(2) 169.33(8) O(3)A-Ni(1)-N(2) 97.63(8) O(8)-Ni(1)-N(2) 90.50(9) N(3)-Ni(1)-O(2) 91.08(8) N(3)-Ni(1)-O(3)A 174.54(8) N(3)-Ni(1)-O(8) 89.49(9) N(3)-Ni(1)-N(2) 78.50(8) O(2)-Ni(1)-O(7) 91.40(8) O(3)A-Ni(1)-O(7) 89.42(8) O(7)-Ni(1)-O(8) 175.75(7) N(2)-Ni(1)-O(7) 91.69(9) N(3)-Ni(1)-O(7) 94.52(8) Symmetry codes: A: -x+2, -y+1, -z+2 for 1; A: x, y+1, z for 2. Table 3
D-H···A d(D-H) / nm d(H·A) /nm d(D ···A) / nm ∠DHA/(°) O(6)-H(6)···O(9)A 0.082 0.175 0.256 0 169.6 O(7)-H(1W)···O(10) 0.082 0.205 0.281 2 154.3 O(7)-H(2W)···O(3)B 0.084 0.183 0.264 1 160.8 O(8)-H(3W)···O(2) 0.082 0.195 0.267 9 148.3 O(8)-H(4W)···N(1)C 0.085 0.196 0.278 3 164.8 O(9)-H(5W)···O(2)D 0.085 0.192 0.276 8 179.7 O(9)-H(6P)···O(3)E 0.084 0.187 0.270 6 173.4 O(10)-H(7W)···O(5)F 0.086 0.201 0.282 6 160.1 O(10)-H(8W)···O(11)D 0.085 0.197 0.280 2 165.3 O(11)-H(9W)···O(10) 0.085 0.203 0.281 4 152.8 O(11)-H(10P)···O(1) 0.093 0.209 0.288 6 155.6 Symmetry codes: A: x, y-1, z+1; B: -x+2, -y+1, -z+2; C: x, y+1, z; D: -x+1, -y+1, -z+1; E: x, y, z-1; F: x, y+1, z-1. Table 4
D-H···A d(D-H) / nm d(H·A) /nm d(D ···A) / nm ∠DHA/(°) O(6)-H(6)···O(9)A 0.082 0.181 0.263 1 176.5 O(7)-H(1W)···O(4)B 0.080 0.191 0.267 8 161.4 O(7)—H(2W)···O(1) 0.082 0.201 0.271 1 142.6 O(8)-H(3W)···O(4)C 0.076 0.210 0.285 2 176.6 O(8)-H(4W)···O(5)D 0.082 0.194 0.274 2 163.8 O(9)-H(5W)···O(1)E 0.079 0.206 0.285 0 177.0 O(9)-H(6W)···O(2)F 0.090 0.203 0.292 7 174.2 Symmetry codes: A: x, y+1, z+1; B: x, y+1, z; C: x+1, y+1, z; D: -x+1, -y+2, -z+2; E: -x, -y+1, -z+1; F: -x+1, -y+1, -z+1. CCDC: 1909474, 1; 1909475, 2.
2. Results and discussion
2.1 Description of the structure
2.1.1 [Ni2(μ-HL)2(2, 2′-bipy)2(H2O)4]·6H2O (1)
Single-crystal X-ray diffraction analysis reveals that complex 1 crystallizes in the triclinic space group P1. Its asymmetric unit contains one crystallogra-phically unique Ni(Ⅱ) ion, one μ-HL2- block, one chelating 2, 2′-bipy moiety, two H2O ligands, and three lattice water molecules. As depicted in Fig. 1, the six-coordinated Ni1 center is bound by two O atoms from two μ-HL2- blocks, two O atoms from two H2O ligands, and two N atoms from 2, 2′-bipy moiety, thus resulting in an octahedral {NiN2O4} environment. The lengths of the Ni-O bonds range from 0.206 6(2) to 0.210 9(2) nm, whereas the Ni-N distances vary from 0.205 9(2) to 0.207 5(2) nm; these bonding parameters are comp-arable to those found in other reported Ni(Ⅱ) comp-lexes[10, 15]. In 1, the HL2- block behaves as a μ-spacer (mode Ⅰ, Scheme 1). Its nicotinate N donor remains uncoordinated while two COO- groups are mono-dentate. The dihedral angles between pyridyl and phenyl rings in the HL2- are 49.84° and 54.79°. The μ-HL2- blocks connect two Ni1 ions to give a Ni2 molecular unit having a Ni…Ni distance of 1.337 1(2) nm (Fig. 2). These discrete Ni2 units are assembled to a 3D supra-molecular framework through O-H…O/N hydrogen bond (Fig. 3 and Table 3).
Figure 1
Scheme1
Figure 2
Figure 3
2.1.2 {[Ni(μ-HL)(2, 2′-bipy)(H2O)2]·H2O}n (2)
The asymmetric unit of 2 consists of one Ni(Ⅱ) ion, one μ-HL2- block, one 2, 2′-bipy ligand, two coordinated and one lattice water molecules. As shown in Fig. 4, six-coordinates Ni1 ion reveals a distorted octahedral {NiN2O4} environment, filled by two carboxylate O atoms from two individual μ-HL2- blocks, two O atoms from two H2O ligands, and a pair of N atoms from 2, 2′-bipy ligand. The Ni-O distances range from 0.202 2(2) to 0.214 1(2) nm, whereas the Ni-N distances vary from 0.206 1(2) to 0.208 7(2) nm; these bonding parameters are comparable to those observed in other Ni(Ⅱ) complexes[15, 17-18]. In 2, the HL2- block acts as a μ-linker via monodentate COO- groups (mode Ⅱ, Scheme 1), and the nicotinate N atom remains uncoordinated. In HL2-, two dihedral angles between pyridyl and benzene rings are 19.52° and 42.02°. The HL2- linkers connect the adjacent Nil centers to form a zigzag 1D chain with the Ni1…Ni1 separation of 0.923 5(2) nm (Fig. 5).
Figure 4
Figure 5
The nickel(Ⅱ) compounds 1 and 2 were prepared hydrothermally under similar reaction conditions, except using different reaction temperatures (120 ℃ for 1 and 160 ℃ for 2). The HL2- ligands adopt different coordination modes at 120 and 160 ℃ (Scheme 1), which results in distinct structures[22-25].
2.2 TGA analysis
To determine the thermal stability of complexes 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis (TGA). As shown in Fig. 6, complex 1 lost its six lattice and four coordinated water molecules in the range of 36~178 ℃ (Obsd. 13.2%; Calcd. 13.5%), followed by the decomposition at 278 ℃. The TGA curve of 2 revealed that one lattice and two coordinated water molecules were released between 142 and 218 ℃ (Obsd. 8.9%; Calcd. 8.6%), and the dehydrated solid began to decompose at 271 ℃.
Figure 6
2.3 Magnetic properties
Variable-temperature magnetic susceptibility studies were carried out on powder sample of 2 in the 2~300 K temperature range. The χMT value at 300 K was 1.05 cm3·mol-1·K, which is close to the expected one (1.00 cm3·mol-1·K) for one magnetically isolated Ni(Ⅱ) ion (S=1, g=2.0). Upon cooling, the χMT value decreased very slowly from 1.05 cm3·mol-1·K at 300 K to 0.981 cm3·mol-1·K at 17 K, and then decreased steeply to 0.663 cm3·mol-1·K at 2 K. In the 2~300 K interval, the χM-1 vs T plot for 2 obeys the Curie-Weiss law with a Weiss contant θ of -5.23 K and a Curie constant C of 1.05 cm3·mol-1·K. An empirical (Weng′s) formula can be applied to analyze the 1D systems with S=1, using numerical procedures[26-27]:
$ {{\chi _{\rm{M}}} = \frac{{N{\beta ^2}{g^2}}}{{kT}}\frac{A}{B}} $
$ {A = 2.0 + 0.0194x + 0.7777{x^2}} $
$ {B = 3.0 + 4.346x + 3.232{x^2} + 5.834{x^2}} $
with
${x = |\mathit{J}|kT}$ Using this method, the best-fit parameters for 2 were obtained: g=2.08, J=-0.94 cm-1, and R=7.7×10-5, where
$R = \sum {{{\left({{T_{{\rm{obs}}}} - {T_{{\rm{calc}}}}} \right)}^2}} /\sum {{{\left({{T_{{\rm{obs}}}}} \right)}^2}} $ . The J value of -0.94 cm-1 indicates that the coupling between the Ni(Ⅱ) centers is antiferromagnetic.3. Conclusions
In summary, we have synthesized two Ni(Ⅱ)coordination compounds whose structures depend on the hydrothermal reaction temperature. This work demonstrates that the hydrothermal reaction temperature has a significant effect on the structures of the coordination compounds.
-
-
[1]
Zhao X, Wang Y X, Li D S, et al. Adv. Mater., 2018, 30:1705189 doi: 10.1002/adma.201705189
-
[2]
Zhen X D, Lu T B. CrystEngComm, 2010, 12:324-336 doi: 10.1039/B911991D
-
[3]
Lu W G, Su C Y, Lu T B, et al. J. Am. Chem. Soc., 2006, 128:34-35 doi: 10.1021/ja0567337
-
[4]
Chen Q, Xue W, Lin J B, et al. Chem. Eur. J., 2016, 22:12088-12094 doi: 10.1002/chem.201601826
-
[5]
Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:2403-2412 doi: 10.1021/acs.inorgchem.8b02926
-
[6]
Kaurl R, Kim K H, Paul A K, et al. J. Mater. Chem. A, 2016, 4:3991-4002 doi: 10.1039/C5TA09668E
-
[7]
Garai D A, Gude V, Biradha K. Cryst. Growth Des., 2018, 18:6070-6077 doi: 10.1021/acs.cgd.8b00924
-
[8]
Zhao D, Yue L, Zhang K, et al. Inorg. Chem., 2018, 57:12596-12602 doi: 10.1021/acs.inorgchem.8b01746
-
[9]
Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:5875-5885 doi: 10.1021/acs.inorgchem.9b00242
-
[10]
Gu J Z, Cai Y, Liang X X, et al. CrystEngComm, 2018, 20:906-916 doi: 10.1039/C7CE02009K
-
[11]
Pal S, Pal T K, Bharadwaj P K. CrystEngComm, 2016, 18:1825-1831 doi: 10.1039/C5CE02540K
-
[12]
Zhang L N, Zhang C, Zhang B, et al. CrystEngComm, 2015, 17:2837-2846 doi: 10.1039/C5CE00263J
-
[13]
Gu J Z, Gao Z Q, Tang Y. Cryst. Growth Des., 2012, 12:3312-3323 doi: 10.1021/cg300442b
-
[14]
Du M, Li C P, Liu C S, et al. Coord. Chem. Soc., 2013, 257:1282-1305 doi: 10.1016/j.ccr.2012.10.002
-
[15]
Gu J Z, Cui Y H, Liang X X, et al. Cryst. Growth Des., 2016, 16:4658-4670 doi: 10.1021/acs.cgd.6b00735
-
[16]
Dong Y B, Jiang Y Y, Li J, et al. J. Am. Chem. Soc., 2007, 129:4520-4521 doi: 10.1021/ja0701917
-
[17]
Gu J Z, Liang X X, Cai Y, et al. Dalton Trans., 2017, 46:10908-10925 doi: 10.1039/C7DT01742A
-
[18]
Yue Q, Liu X, Guo W X, et al. CrystEngComm, 2018, 20:4258-4267 doi: 10.1039/C8CE00692J
-
[19]
顾文君, 顾金忠.无机化学学报, 2017, 33(2):227-236 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20170204&journal_id=wjhxxbcnGU Wen-Jun, GU Jin-Zhong. Chinese J. Inorg. Chem., 2017, 33(2):227-236 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20170204&journal_id=wjhxxbcn
-
[20]
赵素琴, 顾金忠.无机化学学报, 2016, 32(9):1611-1618 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20160916&journal_id=wjhxxbcnZHAO Su-Qin, GU Jin-Zhong. Chinese J. Inorg. Chem., 2016, 32(9):1611-1618 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20160916&journal_id=wjhxxbcn
-
[21]
Spek A L. Acta Crystallogr. Sect. C:Struct. Chem., 2015, C71:9-18
-
[22]
Zhao N, Li Y, Gu J Z, et al. Dalton Trans., 2019, 48:8361-8374 doi: 10.1039/C9DT01253B
-
[23]
Wan J, Cai S L, Zhang K, et al. CrystEngComm, 2016, 18:5164-5176 doi: 10.1039/C6CE00853D
-
[24]
Chainok K, Ponjan N, Theppitak C, et al. CrystEngComm, 2018, 20:7446-7457 doi: 10.1039/C8CE01430B
-
[25]
Cai S L, Huang Y, Gao Y, et al. Inorg. Chem. Commun., 2017, 84:10-14 doi: 10.1016/j.inoche.2017.06.022
-
[26]
Kahn O. Molecular Magnetism. New York:VCH, 1993.
-
[27]
Weng C Y. Thesis for the Doctorate of Carnegie Mellon University. 1969.
-
[1]
-
Table 1. Crystal data for complexes 1 and 2
Complex 1 2 Empirical formula C60H58Ni2N6O22 C30H25NiN3O9 Formula weight 1 332.54 630.24 Crystal system Triclinic Triclinic Space group p1 P1 a / nm 0.897 79(6) 0.697 47(5) b / nm 1.223 20(8) 0.923 50(6) c / nm 1.399 50(10) 2.118 55(15) α/(°) 99.107(6) 91.484(5) β/(°) 103.230(6) 90.892(6) γ/(°) 94.417(5) 105.347(6) V/ nm3 1.466 96(18) 1.315 13(16) Dc/ (g·cm-3) 1.508 1.592 Z 1 2 F(000) 692 652 θ range for data collection / (°) 3.397~25.049 3.415~25.048 Limiting indices -10≤h≤10, -14≤k≤14, -16≤l≤16 -8≤h≤7, -10≤k≤10, -24≤l≤25 Reflection collected, unique (Rint) 5 195, 4 254 (0.035 6) 4 644, 3 829 (0.032 7) μ / mm-1 0.729 0.803 Data, restraint, parameter 4 254, 0, 407 3 829, 0, 389 Goodness-of-fit on F2 1.054 1.069 Final R indices [I≥2σ(I)]R1, wR2 0.046 3, 0.109 7 0.042 0, 0.086 8 R indices (all data) R1, wR2 0.058 8, 0.121 2 0.054 4, 0.095 7 Largest diff. peak and hole /(e·nm-3) 417 and -413 315 and -351 Table 2. Selected bond lengths (nm) and bond angles (°) for complexes 1 and 2
1 Ni(1)-O(1) 0.206 6(2) Ni(1)-O(4)A 0.207 8(2) Ni(1)-O(7) 0.210 9(2) Ni(1)-O(8) 0.208 6(2) Ni(1)-N(2) 0.207 5(2) Ni(1)-N(3) 0.205 9(2) N(3)-Ni(1)-O(1) 177.71(9) N(3)-Ni(1)-N(2) 79.30(10) O(1)-Ni(1)-N(2) 100.39(9) N(3)-Ni(1)-O(4)A 93.51(9) O(1)-Ni(1)-O(4)A 86.78(8) N(2)-Ni(1)-O(4)A 172.81(9) N(3)-Ni(1)-O(8) 86.78(9) O(1)-Ni(1)-O(8) 90.94(8) N(2)-Ni(1)-O(8) 86.09(9) O(4)A-Cu(1)-O(8) 93.46(8) N(3)-Ni(1)-O(7) 91.25(9) O(1)-Ni(1)-O(7) 91.02(8) N(2)-Ni(1)-O(7) 90.72(9) O(4)A-Ni(1)-O(7) 89.52(8) O(8)-Ni(1)-O(7) 176.52(7) 2 Ni(l)-O(2) 0.202 2(2) Ni(1)-O(3)A 0.204 4(2) Ni(1)-O(7) 0.214 1(2) Ni(1)-O(8) 0.205 2(2) Ni(1)-N(2) 0.206 1(2) Ni(1)-N(3) 0.208 7(2) O(2)-Ni(1)-O(3)A 92.61(8) O(2)-Ni(1)-O(8) 87.09(8) O(3)A-Ni(1)-O(8) 86.68(8) O(2)-Ni(1)-N(2) 169.33(8) O(3)A-Ni(1)-N(2) 97.63(8) O(8)-Ni(1)-N(2) 90.50(9) N(3)-Ni(1)-O(2) 91.08(8) N(3)-Ni(1)-O(3)A 174.54(8) N(3)-Ni(1)-O(8) 89.49(9) N(3)-Ni(1)-N(2) 78.50(8) O(2)-Ni(1)-O(7) 91.40(8) O(3)A-Ni(1)-O(7) 89.42(8) O(7)-Ni(1)-O(8) 175.75(7) N(2)-Ni(1)-O(7) 91.69(9) N(3)-Ni(1)-O(7) 94.52(8) Symmetry codes: A: -x+2, -y+1, -z+2 for 1; A: x, y+1, z for 2. Table 3. Hydrogen bond parameters for complex 1
D-H···A d(D-H) / nm d(H·A) /nm d(D ···A) / nm ∠DHA/(°) O(6)-H(6)···O(9)A 0.082 0.175 0.256 0 169.6 O(7)-H(1W)···O(10) 0.082 0.205 0.281 2 154.3 O(7)-H(2W)···O(3)B 0.084 0.183 0.264 1 160.8 O(8)-H(3W)···O(2) 0.082 0.195 0.267 9 148.3 O(8)-H(4W)···N(1)C 0.085 0.196 0.278 3 164.8 O(9)-H(5W)···O(2)D 0.085 0.192 0.276 8 179.7 O(9)-H(6P)···O(3)E 0.084 0.187 0.270 6 173.4 O(10)-H(7W)···O(5)F 0.086 0.201 0.282 6 160.1 O(10)-H(8W)···O(11)D 0.085 0.197 0.280 2 165.3 O(11)-H(9W)···O(10) 0.085 0.203 0.281 4 152.8 O(11)-H(10P)···O(1) 0.093 0.209 0.288 6 155.6 Symmetry codes: A: x, y-1, z+1; B: -x+2, -y+1, -z+2; C: x, y+1, z; D: -x+1, -y+1, -z+1; E: x, y, z-1; F: x, y+1, z-1. Table 4. Hydrogen bond parameters for complex 2
D-H···A d(D-H) / nm d(H·A) /nm d(D ···A) / nm ∠DHA/(°) O(6)-H(6)···O(9)A 0.082 0.181 0.263 1 176.5 O(7)-H(1W)···O(4)B 0.080 0.191 0.267 8 161.4 O(7)—H(2W)···O(1) 0.082 0.201 0.271 1 142.6 O(8)-H(3W)···O(4)C 0.076 0.210 0.285 2 176.6 O(8)-H(4W)···O(5)D 0.082 0.194 0.274 2 163.8 O(9)-H(5W)···O(1)E 0.079 0.206 0.285 0 177.0 O(9)-H(6W)···O(2)F 0.090 0.203 0.292 7 174.2 Symmetry codes: A: x, y+1, z+1; B: x, y+1, z; C: x+1, y+1, z; D: -x+1, -y+2, -z+2; E: -x, -y+1, -z+1; F: -x+1, -y+1, -z+1.
计量
- PDF下载量: 3
- 文章访问数: 798
- HTML全文浏览量: 116