可持续高分子-纤维素新材料研究进展

段博 涂虎 张俐娜

引用本文: 段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160 shu
Citation:  Bo Duan, Hu Tu, Li-na Zhang. Material Research Progress of the Sustainable Polymer-Cellulose[J]. Acta Polymerica Sinica, 2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160 shu

可持续高分子-纤维素新材料研究进展

    作者简介: 段博,男,1987年生,副研究员. 2015年毕业于武汉大学化学与分子科学学院并获得理学博士学位. 2016 ~ 2019年在美国斯托瓦斯研究所从事博士后工作,研究生殖干细胞分化微环境. 2019年6月进入武汉大学化学与分子科学学院从事天然高分子方面的研究工作. 主要研究方向为甲壳素、纤维素功能材料的开发;

    张俐娜,女,1940年生,教授/博导,中国科学院院士. 1963年毕业于武汉大学化学系. 1985年曾获日本政府学术振兴协会奖学金(JSPS)赴大阪大学研究近2年. 1993年创立天然高分子科研组,2011年当选中国科学院院士,2014年为英国皇家化学会会士. 现任美国化学会刊物ACS Sustainable Chemistry & Engineering的副主编以及多家国内外刊物编委. 基础研究成果已在国内外刊物发表论文600余篇,其中560余篇发表在国际SCI源刊上,被他人引用近18000次;主编专著15部;获准专利100余项;荣获国家自然科学奖二等奖1项,省级自然科学一等奖1项及技术发明一等奖1项;获美国化学会2011年Anselme Payen奖(国际纤维素与可再生资源材料领域最高奖). 曾获全国优秀教师和全国先进工作者等国家级荣誉. 主要研究方向为高分子物理、天然高分子改性材料、复杂多糖的分子和链构象与其生物活性关系;
    通讯作者: E-mail: bo_duan@whu.edu.cn; E-mail: zhangln@whu.edu.cn
摘要: 21世纪“绿色”化学已成为世界各国社会经济发展中的研究与开发战略方向. 纤维素是自然界中储量最丰富的天然高分子,是重要的可再生资源以及未来的主要工业原料. 然而由于纤维素存在着大量的分子内以及分子间氢键,其结构致密,难以溶解或熔融进一步加工. 本文简要介绍了近几年来关于直接使用物理溶剂方法(非衍生化)对纤维素材料开发利用的新进展,主要包括以下4个方面:(1)纤维素在“绿色”溶剂-碱/尿素以及离子液体体系中的溶解和再生;(2)纳米纤维素的制备以及组装;(3)木材纳米技术的开发及利用;(4)细菌纤维素基材料等,旨在推进“绿色”技术实现纤维素资源的研究开发及利用.

English


    1. [1]

      Chandhuri S. The Wall Street Journal @ Statista Charts, 2018-12-12

    2. [2]

      Macarthur E. Science, 2017, 358(6365): 843 doi: 10.1126/science.aao6749

    3. [3]

      Science, 2017, 358(6369): 1362 − 1363

    4. [4]

      Lamb J B, Willis B L, Fiorenza E A, Couch C S, Howard R, Rader D N, True J D, Kelly L A, Ahmad A, Jompa J. Science, 2018, 359(6374): 460 − 462 doi: 10.1126/science.aar3320

    5. [5]

      People’s Daily Overseas Edition, 2019-07-05

    6. [6]

      Zhu Y, Romain C, Williams C K. Nature, 2016, 540: 354 − 362 doi: 10.1038/nature21001

    7. [7]

      Smaglik P. Nature, 2000, 406: 807 − 808 doi: 10.1038/35021181

    8. [8]

      Wang S, Lu A, Zhang L. Prog Polym Sci, 2016, 53: 169 − 206 doi: 10.1016/j.progpolymsci.2015.07.003

    9. [9]

      Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351 doi: 10.1021/ma801110g

    10. [10]

      Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L. J Phys Chem B, 2014, 118(34): 10250 − 10257 doi: 10.1021/jp501408e

    11. [11]

      Wang S, Sun P, Liu M, Lu A, Zhang L. Phys Chem Chem Phys, 2017, 19(27): 17909 − 17917 doi: 10.1039/C7CP02514A

    12. [12]

      Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L. Phys Chem Chem Phys, 2017, 19(11): 7486 − 7490 doi: 10.1039/C6CP08744B

    13. [13]

      Wang Y, Liu L, Chen P, Zhang L, Lu A. Phys Chem Chem Phys, 2018, 20(20): 14223 − 14233 doi: 10.1039/C8CP01268G

    14. [14]

      Ye D, Cheng Q, Zhang Q, Wang Y, Chang C, Li L, Peng H, Zhang L. ACS Appl Mater Interfaces, 2017, 9(49): 43154 − 43162 doi: 10.1021/acsami.7b14900

    15. [15]

      Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J. Adv Funct Mater, 2016, 26(34): 6279 − 6287 doi: 10.1002/adfm.201601645

    16. [16]

      Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, Zhang L. ACS Nano, 2019, 13(4): 4843 − 4853 doi: 10.1021/acsnano.9b02081

    17. [17]

      Ye D, Yang P, Lei X, Zhang D, Li L, Chang C, Sun P, Zhang L. Chem Mater, 2018, 30(15): 5175 − 5183 doi: 10.1021/acs.chemmater.8b01799

    18. [18]

      Ye D, Chang C, Zhang L. Biomacromolecules, 2019, 20(5): 1989 − 1995 doi: 10.1021/acs.biomac.9b00204

    19. [19]

      Zhu K, Qiu C, Lu A, Luo L, Guo J, Cong H, Chen F, Liu X, Zhang X, Wang H, Cai J, Fu Q, Zhang L. ACS Sustain Chem Eng, 2018, 6(4): 5314 − 5321 doi: 10.1021/acssuschemeng.8b00039

    20. [20]

      Qiu C, Zhu K, Yang W, Wang Y, Zhang L, Chen F, Fu Q. Biomacromolecules, 2018, 19(11): 4386 − 4395 doi: 10.1021/acs.biomac.8b01262

    21. [21]

      Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. Adv Energy Mater, 2016, 6(6): 1501929 doi: 10.1002/aenm.201501929

    22. [22]

      Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L. ACS Appl Mater Interfaces, 2016, 8(27): 17090 − 17097 doi: 10.1021/acsami.6b03555

    23. [23]

      Dai L, Zhu W, Lu J, Kong F, Si C, Ni Y. Green Chem, 2019, 21(19): 5222 − 5230 doi: 10.1039/C1039GC01975H

    24. [24]

      Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J Am Chem Soc, 2002, 124(18): 4974 − 4975 doi: 10.1021/ja025790m

    25. [25]

      Zhang H, Wu J, Zhang J, He J. Macromolecules, 2005, 38(20): 8272 − 8277 doi: 10.1021/ma0505676

    26. [26]

      Raghuwanshi V S, Cohen Y, Garnier G, Garvey C J, Russell R A, Darwish T, Garnier G. Macromolecules, 2018, 51(19): 7649 − 7655 doi: 10.1021/acs.macromol.8b01425

    27. [27]

      Liu H, Sale K L, Holmes B M, Simmons B A, Singh S. J Phys Chem B, 2010, 114(12): 4293 − 4301 doi: 10.1021/jp9117437

    28. [28]

      Rabideau B D, Ismail A E. J Phys Chem B, 2012, 116(32): 9732 − 9743 doi: 10.1021/jp305469p

    29. [29]

      Vitz J, Erdmenger T, Haensch C, Schubert U. Green Chem, 2009, 11(3): 417 − 424 doi: 10.1039/b818061j

    30. [30]

      Mazza M, Catana D A, Vaca-Garcia C, Cecutti C J C. Cellulose, 2009, 16(2): 207 − 215 doi: 10.1007/s10570-008-9257-x

    31. [31]

      Wan J, Zhang J, Yu J, Zhang J. ACS Appl Mater Interfaces, 2017, 9(29): 24591 − 24599 doi: 10.1021/acsami.7b06271

    32. [32]

      Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J F. Phys Chem Chem Phys, 2010, 12: 1941 − 1947 doi: 10.1039/b920446f

    33. [33]

      Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J. Chem Commun, 2012, 48: 6283 − 6285 doi: 10.1039/c2cc31483e

    34. [34]

      Zhang J, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J. Sci China Chem, 2016, 59: 1421 − 1429 doi: 10.1007/s11426-016-0269-5

    35. [35]

      Liu J, Zhang J, Zhang B, Zhang X, Xu L, Zhang J, He J, Liu C Y. Cellulose, 2016, 23: 2341 − 2348 doi: 10.1007/s10570-016-0967-1

    36. [36]

      Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J. Polym Int, 2015, 64: 963 − 970 doi: 10.1002/pi.4883

    37. [37]

      Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Mater Chem Front, 2017, 1: 1273 − 1290 doi: 10.1039/C6QM00348F

    38. [38]

      Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4(8): 4417 − 4423 doi: 10.1021/acssuschemeng.6b01034

    39. [39]

      Mi Q, Ma S-r, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4: 656 − 660 doi: 10.1021/acssuschemeng.5b01079

    40. [40]

      Nguyen N A, Kim K, Bowland C C, Keum J K, Kearney L T, André N, Labbé N, Naskar A K. Green Chem, 2019, 21(16): 4354 − 4367 doi: 10.1039/C9GC00774A

    41. [41]

      Yang S, Lu X, Zhang Y, Xu J, Xin J, Zhang S. Cellulose, 2018, 25(6): 3241 − 3254 doi: 10.1007/s10570-018-1785-4

    42. [42]

      Shamshina J L, Zavgorodnya O, Choudhary H, Frye B, Newbury N, Rogers R D. ACS Sustain Chem Eng, 2018, 6(11): 14713 − 14722 doi: 10.1021/acssuschemeng.8b03269

    43. [43]

      Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Biomacromolecules, 2008, 10(1): 162 − 165

    44. [44]

      Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv Mater, 2009, 21(16): 1595 − 1598 doi: 10.1002/adma.200803174

    45. [45]

      Ansari F, Salajková M, Zhou Q, Berglund L A. Biomacromolecules, 2015, 16: 3916 − 3924 doi: 10.1021/acs.biomac.5b01245

    46. [46]

      Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2018, 6(3): 2954 − 2960 doi: 10.1021/acssuschemeng.7b02363

    47. [47]

      Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(3): 2529 − 2534 doi: 10.1021/acssuschemeng.6b02867

    48. [48]

      Ci J, Cao C, Kuga S, Shen J, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(11): 9614 − 9618 doi: 10.1021/acssuschemeng.7b01970

    49. [49]

      Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules, 2007, 8(8): 2485 − 2491 doi: 10.1021/bm0703970

    50. [50]

      De France K J, Hoare T, Cranston E D. Chem Mater, 2017, 29(11): 4609 − 4631 doi: 10.1021/acs.chemmater.7b00531

    51. [51]

      Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Nat Nanotechnol, 2014, 10: 277 − 283

    52. [52]

      Xiong R, Yu S, Smith M J, Zhou J, Krecker M, Zhang L, Nepal D, Bunning T J, Tsukruk V V. ACS Nano, 2019, 13(8): 9047 − 9081 doi: 10.1021/acsnano.1029b03305

    53. [53]

      Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. Biomacromolecules, 2015, 16(5): 1489 − 1496 doi: 10.1021/acs.biomac.5b00188

    54. [54]

      Lundahl M J, Klar V, Wang L, Ago M, Rojas O J. Ind Eng Chem Res, 2017, 56(1): 8 − 19 doi: 10.1021/acs.iecr.6b04010

    55. [55]

      Richardson J J, Tardy B L, Guo J, Liang K, Rojas O J, Ejima H. ACS Sustain Chem Eng, 2019, 7(6): 6287 − 6294 doi: 10.1021/acssuschemeng.8b06713

    56. [56]

      Voisin H, Bergström L, Liu P, Mathew A P J N. Nanomaterials, 2017, 7(3): 57 doi: 10.3390/nano7030057

    57. [57]

      Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S X A, Xu Y. Adv Mater, 2018, 30(13): 1705948 doi: 10.1002/adma.201705948

    58. [58]

      Xu Y, Atrens A D, Stokes J R. Soft Matter, 2019, 15(8): 1716 − 1720 doi: 10.1039/C8SM02288G

    59. [59]

      Chu G, Qu D, Zussman E, Xu Y. Chem Mater, 2017, 29(9): 3980 − 3988 doi: 10.1021/acs.chemmater.7b00361

    60. [60]

      Hiratani T, Kose O, Hamad W Y, MacLachlan M J. Mater Horiz, 2018, 5(6): 1076 − 1081 doi: 10.1039/C8MH00586A

    61. [61]

      Kaushik M, Basu K, Benoit C, Cirtiu C M, Vali H, Moores A. J Am Chem Soc, 2015, 137(19): 6124 − 6127 doi: 10.1021/jacs.5b02034

    62. [62]

      Gu J, Hu C, Zhang W, Dichiara A B. Appl Catal B, 2018, 237: 482 − 490 doi: 10.1016/j.apcatb.2018.06.002

    63. [63]

      Ellebracht N C, Jones C W. ACS Catal, 2019, 9(4): 3266 − 3277 doi: 10.1021/acscatal.8b05180

    64. [64]

      Qin X, Xia W, Sinko R, Keten S. Nano Lett, 2015, 15(10): 6738 − 6744 doi: 10.1021/acs.nanolett.5b02588

    65. [65]

      Biswas S K, Tanpichai S, Witayakran S, Yang X, Shams M I, Yano H. ACS Nano, 2019, 13(2): 2015 − 2023

    66. [66]

      Zhu L, Zhou X, Liu Y, Fu Q. ACS Appl Mater Interfaces, 2019, 11(13): 12968 − 12977 doi: 10.1021/acsami.9b00136

    67. [67]

      Wu K, Fang J, Ma J, Huang R, Chai S, Chen F, Fu Q. ACS Appl Mater Interfaces, 2017, 9(35): 30035 − 30045 doi: 10.1021/acsami.7b08214

    68. [68]

      Yang W, Zhang Y, Liu T, Huang R, Chai S, Chen F, Fu Q. ACS Sustain Chem Eng, 2017, 5(10): 9102 − 9113 doi: 10.1021/acssuschemeng.7b02012

    69. [69]

      Cheng Q, Ye D, Chang C, Zhang L. J Membr Sci, 2017, 525: 1 − 8 doi: 10.1016/j.memsci.2016.11.084

    70. [70]

      Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. ACS Nano, 2018, 12(5): 4462 − 4468 doi: 10.1021/acsnano.8b00566

    71. [71]

      Zhu H, Yang X, Cranston E D, Zhu S. Adv Mater, 2016, 28(35): 7652 − 7657 doi: 10.1002/adma.201601351

    72. [72]

      Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste U H, Bruck H A, Zhu J Y, Vellore A, Li H, Minus M L, Jia Z, Martini A, Li T, Hu L. Nature, 2018, 554(7691): 224 − 228 doi: 10.1038/nature25476

    73. [73]

      Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, Mi R, Sunderland P B, Hu L. Adv Funct Mater, 2019, 29(14): 1807444 doi: 10.1002/adfm.201807444

    74. [74]

      Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. Science, 2019, 364(6442): 760 − 763 doi: 10.1126/science.aau9101

    75. [75]

      Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. Energy Environ Sci, 2017, 10: 538 − 545 doi: 10.1039/C6EE03716J

    76. [76]

      Song H, Xu S, Li Y, Dai J, Hu L. Adv Energy Mater, 2017, 8(4): 1701203

    77. [77]

      Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. Energy Environ Sci, 2018, 11(11): 3231 − 3237 doi: 10.1039/C8EE01468J

    78. [78]

      He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren Z J, Yang B, Das S, Hu L. Energy Environ Sci, 2019, 12(5): 1558 − 1567 doi: 10.1039/C9EE00945K

    79. [79]

      Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, Jia C, Chen C, Hitz E, Siddhartha D, Yang R, Hu L. Adv Funct Mater, 2018, 28(16): 1707134 doi: 10.1002/adfm.201707134

    80. [80]

      Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey S D, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L. Adv Mater, 2017, 29(44): 1704107 doi: 10.1002/adma.201704107

    81. [81]

      Kuang Y, Chen C, He S, Hitz E M, Wang Y, Gan W, Mi R, Hu L. Adv Mater, 2019, 31(23): 1900498

    82. [82]

      Picheth G F, Pirich C L, Sierakowski M R, Woehl M A, Sakakibara C N, de Souza C F, Martin A A, da Silva R, de Freitas R A. Int J Biol Macromol, 2017, 104: 97 − 106 doi: 10.1016/j.ijbiomac.2017.05.171

    83. [83]

      Foresti M L, Vázquez A, Boury B. Carbohydr Polym, 2017, 157: 447 − 467 doi: 10.1016/j.carbpol.2016.09.008

    84. [84]

      Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Acc Chem Res, 2016, 49(1): 96 − 105 doi: 10.1021/acs.accounts.5b00380

    85. [85]

      Chen Z, Hu Y, Zhuo H, Liu L, Jing S, Zhong L, Peng X, Sun R C. Chem Mater, 2019, 31: 3301 − 3312 doi: 10.1021/acs.chemmater.9b00259

    86. [86]

      Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. Adv Mater, 2017, 29(35): 1702498 doi: 10.1002/adma.201702498

    87. [87]

      Liang H W, Wu Z Y, Chen L F, Li C, Yu S H. Nano Energy, 2015, 11: 366 − 376 doi: 10.1016/j.nanoen.2014.11.008

    88. [88]

      Guan Q F, Han Z M, Luo T T, Yang H B, Liang H W, Chen S M, Wang G S, Yu S H J N S R. Natl Sci Rev, 2019, 6(1): 64 − 73 doi: 10.1093/nsr/nwy144

    89. [89]

      Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G. Small, 2018, 14(7): 1702582 doi: 10.1002/smll.201702582

    90. [90]

      Geisel N, Clasohm J, Shi X, Lamboni L, Yang J, Mattern K, Yang G, Schäfer K H, Saumer M. Small, 2016, 12(39): 5407 − 5413

    91. [91]

      Schaffner M, Rühs P A, Coulter F, Kilcher S, Studart A. Sci Adv, 2017, 3: 6804 doi: 10.1126/sciadv.aao6804

    92. [92]

      Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. ACS Appl Mater Interfaces, 2018, 10(39): 33049 − 33059 doi: 10.1021/acsami.8b12083

    93. [93]

      Shi Z, Gao X, Ullah M W, Li S, Wang Q, Yang G. Biomaterials, 2016, 111: 40 − 54 doi: 10.1016/j.biomaterials.2016.09.020

    94. [94]

      Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv Energy Mater, 2014, 4(10): 1301655 doi: 10.1002/aenm.201301655

    95. [95]

      Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy, 2014, 9: 309 − 317 doi: 10.1016/j.nanoen.2014.08.004

    96. [96]

      Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Small, 2017, 13(27): 1700130 doi: 10.1002/smll.201700130

    97. [97]

      Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Talanta, 2015, 131: 243 − 248 doi: 10.1016/j.talanta.2014.07.027

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2822
  • HTML全文浏览量:  482
文章相关
  • 发布日期:  2020-01-01
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-09-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章