Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold

Chong-Yang Shi Jian-Xing Gong Zhen Li Chao Shu Long-Wu Ye Qing Sun Bo Zhou Xin-Qi Zhu

Citation:  Chong-Yang Shi, Jian-Xing Gong, Zhen Li, Chao Shu, Long-Wu Ye, Qing Sun, Bo Zhou, Xin-Qi Zhu. Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold[J]. Chinese Chemical Letters, 2025, 36(2): 109895. doi: 10.1016/j.cclet.2024.109895 shu

Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold

English

  • The generation of α-imino metal carbenes is arguably the most important aspect of metal carbene chemistry attributed to their abundant carbene transfer reactions in the synthesis of valuable N-containing molecules [1-12]. Among these, gold-catalyzed alkyne amination reactions via α-imino gold carbene complexes have proved to be a powerful and intriguing method in organic synthesis because of their high regio- and stereoselectivity for rapid assembly of a variety of worthwhile N-heterocycles from readily available alkynes. In the past decades, a series of amination reagents, including nitrogen ylides [13-20], sulfilimines [21-27], isoxazoles [28-37], anthranils [38-46] and others [47-52], have been nicely exploited in the gold-catalyzed intermolecular alkyne amination reactions (Scheme 1a). Since the pioneer work on the gold-catalyzed azide-alkyne cyclization reaction via α-imino gold carbenes in 2005 by Toste and co-workers [53], an increasing number of protocols involving the generation of α-imino gold carbenes through gold-catalyzed amination reactions based on azides have been developed in the past decades owing to the ready availability of the azide precursors, environmental friendliness and good compatibility with functional groups of these reactions [53-68]. However, such protocols are only limited to intramolecular generation of α-imino gold carbenes probably due to the weak nucleophilicity of azides, and intermolecular generation of α-imino gold carbenes by the use of azides as amination reagents has not been evoked.

    Scheme 1

    Scheme 1.  Amination reagents for gold-catalyzed intermolecular alkyne amination reactions via α-imino gold carbenes.

    In 2015, our group described the first gold-catalyzed amination reactions by employing the benzyl azides and indolyl azides as a new type of amination reagents for the intermolecular generation of α-imino gold carbenes, leading to the facile formation of functionalized 2-aminoindoles and 3-amino-β-carbolines in generally high yields via formal [3 + 2] and [4 + 2] annulations, respectively [69,70]. On the basis of this work, in 2016, we further realized a gold-catalyzed intermolecular amination reaction initiated aza-Nazarov cyclization reaction based on 3-en-1-ynamides and a gold-catalyzed intermolecular tandem ynamide amination/C—H functionalization by both using the benzyl azides as amination reagents, thus allowing the flexible synthesis of synthetically useful 2-aminopyrroles and 2-aza-1,3-butadienes, respectively [71,72]. Inspired by the above results and by our recent study on developing ynamide chemistry for N-heterocycle synthesis [73-91], we envisioned that the use of allyl azides might act as amination reagents to react with ynamides for the intermolecular generation of alkene-tethered α-imino gold carbenes, followed by intramolecular cyclopropanation, eventually leading to valuable 3-azabicyclo[3.1.0] scaffold (Scheme 1b), which is widely existing in pharmaceutical molecules and natural products (Fig. 1) [92-101]. However, realizing this intermolecular annulation is highly challenging: (i) Whether the allyl azide is nucleophilic enough to inter-molecularly attack the ynamide; (ii) how to prevent the possible triazole formation via direct azide-alkyne [3 + 2] cycloaddition [102-105] and (iii) how to control the regioselectivity and diastereoselectivity. Herein, we disclose such a gold-catalyzed ynamide amination initiated cyclopropanation by employing the allyl azide as amination reagent, thus representing the first use of allyl azide as a novel amination reagent. This protocol enables the efficient and flexible synthesis of a wide range of 3-azabicyclo[3.1.0]hex-2-enes in generally good to excellent yields. In addition, the formed 3-azabicyclo[3.1.0]hex-2-enes can be readily converted into valuable γ-lactams [106-108] through a facile hydrolysis of the amide moiety under the acidic conditions. Furthermore, a mechanistic rationale for this α-imino gold carbene-involved intermolecular annulation reaction is strongly supported by theoretical calculations.

    Figure 1

    Figure 1.  3-Azabicyclo[3.1.0] scaffold in pharmaceutical molecules and natural products.

    We commenced our investigation by examining the reaction between readily prepared ynamide 1a and allyl azide 2a in DCE at room temperature using IPrAuNTf2 as gold catalyst. To our delight, the desired fused cyclopropanation product 3a could be obtained in 30% yield with 60% of ynamide 1a recovered (Table 1, entry 1). Encouraged by this preliminary attempt, we then increased the reaction temperature to 80 ℃, and found that 3-azabicyclo[3.1.0]hex-2-ene 3a could be obtained in 85% NMR yield with the full conversion of 1a (Table 1, entry 2). Subsequently, solvent screening showed that typical solvents such as toluene and MeCN failed to improve the reaction yield (Table 1, entries 3 and 4). Various gold catalysts, including BrettPhosAuNTf2, Au(Ⅲ), Ph3PAuNTf2 and Cy-JohonPhosAuNTf2, were then investigated but also failed to further improve the yield, and significant formation of hydrolysis product 3aa was observed in these cases (Table 1, entries 5–8). Of note, only triazole formation (97%) via azide-alkyne [3 + 2] cycloaddition was observed under rhodium catalysis, which was similar to Huang's protocol (Table 1, entry 9) [102]. In addition, the use of other representative transition metal catalysts such as AgNTf2 and Zn(OTf)2 also failed to deliver the desired product 3a, and hydrolysis product 3aa was obtained as the main product in these cases (Table 1, entries 10 and 11). Finally, it was found that the reaction time could be shortened to 60 h by increasing the catalyst amount to 10 mol%, but no obvious improvement of the yield was observed (Table 1, entry 12). Importantly, excellent diastereoselectivities (> 20:1) were achieved in all these cases.

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    Having established the optimized reaction conditions (Table 1, entry 2), we next explored the substrate scope of this gold-catalyzed intermolecular amination reaction of ynamides with allyl azides. As shown in Scheme 2, we initially investigated the scope of a wide array of substituted ynamides 1 under the optimized conditions. It was found that ynamides with various substitutions at the para position of the phenyl ring were suitable substrates to furnish the corresponding 3-azabicyclo[3.1.0]hex-2-ene products 3a3f in 64%–88% yields, and ynamides bearing electron-deficient groups gave better yields than the ones containing the electron-rich groups on the aryl. Ynamides bearing the disubstituted aryl, such as 3,5-dichloro and 3-chloro-5-bromo substitution, were well tolerated in this annulation, affording the desired 3-azabicyclo[3.1.0]hex-2-enes 3g and 3h in excellent yields. In addition, the reaction was also extended to the naphthyl and furyl substituted ynamides, and the expected cyclopropanation products 3i and 3j were formed in both of 66% yields. Finally, ynamides with diverse R2 substituents (nBu, Bn) were able to undergo smooth annulation to deliver the desired products 3k in 78% yield and 3l in 84% yield, respectively. Prominently, excellent diastereoselectivities (dr > 20:1) were obtained in all these cases, and no triazole formation via azide-alkyne [3 + 2] cycloaddition was detected in such a gold catalysis.

    Scheme 2

    Scheme 2.  Reaction scope of ynamides 1. Reactions run in vials; 1 (0.3 mmol), 2a (0.6 mmol), IPrAuNTf2 (0.015 mmol), DCE (3 mL), 4 Å MS (60 mg), 80 ℃, 100 h; yields are those for the isolated products.

    Next, we explored the reaction scope of various allyl azides 2. As depicted in Scheme 3, different aryl substituted allyl azides tethered with either electron-donating or -withdrawing substituents on different position of the phenyl ring, such as Me, iPr, OMe, OTBS, F, Cl, and Br, were well tolerated in this intermolecular amination reaction with ynamide 1a to generate the desired 3-azabicyclo[3.1.0]hex-2-ene products 3m3t in generally good to excellent yields. Besides, the reaction proceeded smoothly with disubstituted aryl allyl azides, providing the corresponding bicyclic cyclopropanation products 3u3w in 79%–83% yields. 1-Naphthyl-substituted allyl azide also provided an excellent universal fit for this annulation reaction, affording the expected product 3x in 80% yield. Apart from the aryl substituted allyl azides, the alkyl substituted allyl azide was proved to be an appropriate substrate to produce the alkyl substituted cyclopropane compound 3y in 79% yield. Finally, the allyl azide containing 1,2-disubstituted olefin moiety could also be smoothly converted into the corresponding multisubstituted 3-azabicyclo[3.1.0]hex-2-ene 3z bearing two vicinal all carbon quaternary stereocenters which was difficult to construct by traditional methods in organic synthesis. Again, excellent diastereoselectivities (dr > 20:1) were achieved in all cases. The relative configuration of product 3r was verified by X-ray crystallographic analysis and that of others was assigned analogously (Fig. 2) [106-108]. Thus, this intermolecular protocol provides a highly efficient and flexible route for the construction of valuable 3-azabicyclo[3.1.0] scaffold. Our attempts to extend the reaction to the chiral amine-derived ynamide for the asymmetric synthesis has been unsuccessful, and attempts to develop the direct asymmetric catalysis by employing Shi's chiral N-heterocyclic carbene (NHC)-derived chiral gold catalysts also failed [109-115].

    Scheme 3

    Scheme 3.  Reaction scope of allyl azides 2. Reactions run in vials; 1a (0.3 mmol), 2 (0.6 mmol), IPrAuNTf2 (0.015 mmol), DCE (3 mL), 4 Å MS (60 mg), 80 ℃, 100 h; yields are those for the isolated products.

    Figure 2

    Figure 2.  Structure of compound 3r in its crystal.

    Further preparative scale reaction and synthetic application of the as-synthesized 3-azabicyclo[3.1.0]hex-2-enes 3 were then explored (Scheme 4). Initially, preparative scale could be achieved for the synthesis of 3a (530 mg, 62%) with a catalyst loading of 3 mol%. Then, synthetic applications of 3-azabicyclo[3.1.0]hex-2-ene 3l were investigated. For example, hydrolysis of the amide moiety of 3-azabicyclo[3.1.0]hex-2-ene 3l via the facile use of HCl (aq.) led to the cyclopropane-fused γ-lactam 4 in 66% yield, and subsequent reduction could afford pyrrolidine 5, which is broadly existed in natural products and bioactive molecules [106-108]. Moreover, 3l could be readily transferred into the corresponding pyrrolidine 6 in 80% yield with excellent diastereoselectivity (>20:1) via selective ring opening of cyclopropane and debenzylation process under the reductive condition by using Pd/C and HCO2NH4. The structures of γ-lactam 4 and pyrrolidine 6 were confirmed by X-ray diffraction analysis (Fig. 3).

    Scheme 4

    Scheme 4.  Preparative scale reaction and synthetic application.

    Figure 3

    Figure 3.  Structure of compounds 4 (left) and 6 (right) in its crystal.

    On the basis of our previous studies and density functional theory (DFT) calculations [69-72,109], a plausible reaction mechanism for this gold-catalyzed intermolecular amination of ynamides with allyl azides is proposed. As shown in Scheme 5, ynamide 1a is first activated by the gold catalyst to afford intermediate A, which undergoes regioselective attack by the allyl azide 2a via transition state TS with a free energy barrier of 19.6 kcal/mol, leading to the formation of vinyl gold intermediate B. Subsequently, intermediate B overcomes a free energy barrier of 5.7 kcal/mol via TS with a release of N2, resulting in the generation of α-imino gold carbene intermediate C. Then, an intramolecular attack occurs between the gold carbene and the alkene moiety within intermediate C to deliver the carbocation intermediate D with a free energy barrier of 7.9 kcal/mol via TS. Subsequent intramolecular cyclopropanation of the intermediate D occurs almost without barriers to yield the cyclopropane intermediate E. Finally, intermediate E gives rise to the desired 3-azabicyclo[3.1.0]hex-2-ene 3a via a substrate exchange. The whole process proceeds smoothly and highly exergonically with a release of free energy amounting to 88.3 kcal/mol.

    Scheme 5

    Scheme 5.  Plausible reaction mechanism.

    In summary, we have developed an efficient gold-catalyzed intermolecular amination reaction of ynamides with allyl azides, leading to the flexible synthesis of a range of synthetically useful 3-azabicyclo[3.1.0]hex-2-ene derivatives in good to excellent yields with excellent diastereoselectivities. Importantly, this protocol represents the first use of allyl azide as an efficient amination reagent in gold-catalyzed alkyne amination reactions. Of note, the as-synthesized 3-azabicyclo[3.1.0]hex-2-enes can be readily converted into valuable γ-lactams via hydrolysis of the amide moieties under the acidic conditions, thus fulfilling the facile removing of the directing group of ynamides. Moreover, theoretical calculations provide further evidence for the proposed α-imino gold carbene-involved mechanism. Further investigation of the asymmetric version of this annulation and other related intermolecular alkyne aminations are ongoing in our lab.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Chong-Yang Shi: Writing – original draft, Validation, Investigation, Data curation. Jian-Xing Gong: Validation, Investigation, Data curation. Zhen Li: Investigation, Data curation. Chao Shu: Investigation, Data curation. Long-Wu Ye: Writing – review & editing, Writing – original draft, Validation, Funding acquisition, Conceptualization. Qing Sun: Writing – review & editing, Funding acquisition. Bo Zhou: Writing – review & editing. Xin-Qi Zhu: Writing – review & editing, Conceptualization.

    We are grateful for financial support from the National Natural Science Foundation of China (Nos. 22125108, 22331004 and 22121001), Yunnan Normal University, Applied Basic Research Projects of Yunnan Province (No. 202101AT070217), the Jiangxi Provincial Natural Science Foundation (No. 20224BAB213013), and the Jiangxi Provincial Department of Education in Science and Technology Program Project (No. GJJ210906). We also thank Mr. Zanbin Wei from Xiamen University for assistance with X-ray crystallo-graphic analysis.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2024.109895.


    1. [1]

      M. Akter, K. Rupa, P. Anbarasan, Chem. Rev. 122 (2022) 13108–13205. doi: 10.1021/acs.chemrev.1c00991

    2. [2]

      K. Pal, C.M.R. Volla, Chem. Rec. 21 (2021) 4032–4058. doi: 10.1002/tcr.202100238

    3. [3]

      W. Li, J. Zhang, Chem. Eur. J. 26 (2020) 11931–11945. doi: 10.1002/chem.202000674

    4. [4]

      Y. Jiang, R. Sun, X.Y. Tang, M. Shi, Chem. Eur. J. 22 (2016) 17910–17924. doi: 10.1002/chem.201601703

    5. [5]

      M.L.H. Davies, J.S. Alford, Chem. Soc. Rev. 43 (2014) 5151–5162. doi: 10.1039/C4CS00072B

    6. [6]

      B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 51 (2012) 862–872. doi: 10.1002/anie.201104807

    7. [7]

      L.W. Ye, X.Q. Zhu, R.L. Sahani, et al., Chem. Rev. 121 (2021) 9039–9112. doi: 10.1021/acs.chemrev.0c00348

    8. [8]

      T. Wang, A.S.K. Hashmi, Chem. Rev. 121 (2021) 8948–8978. doi: 10.1021/acs.chemrev.0c00811

    9. [9]

      P.W. Davies, Chem. Rec. 21 (2021) 3964–3977. doi: 10.1002/tcr.202100205

    10. [10]

      R.L. Sahani, L.W. Ye, R.S. Liu, Adv. Organomet. Chem. 73 (2020) 195–251.

    11. [11]

      E. Aguilar, J. Santamaría, Org. Chem. Front. 6 (2019) 1513–1540. doi: 10.1039/c9qo00243j

    12. [12]

      P.W. Davies, M. Garzón, Asian J. Org. Chem. 4 (2015) 694–708. doi: 10.1002/ajoc.201500170

    13. [13]

      C. Li, L. Zhang, Org. Lett. 13 (2011) 1738–1741. doi: 10.1021/ol2002607

    14. [14]

      P.W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed. 50 (2011) 8931–8935. doi: 10.1002/anie.201103563

    15. [15]

      E. Chatzopoulou, P.W. Davies, Chem. Commun. 49 (2013) 8617–8619. doi: 10.1039/c3cc45410j

    16. [16]

      M. Garzón, P.W. Davies, Org. Lett. 16 (2014) 4850–4853. doi: 10.1021/ol502346d

    17. [17]

      A.D. Gillie, R.J. Reddy, P.W. Davies, Adv. Synth. Catal. 358 (2016) 226–239. doi: 10.1002/adsc.201500905

    18. [18]

      X.H. Zhang, Z.Y. Geng, RSC Adv. 6 (2016) 62099–62108. doi: 10.1039/C6RA07780C

    19. [19]

      M. Garzón, E.M. Arce, R.J. Reddy, P.W. Davies, Adv. Synth. Catal. 359 (2017) 1837–1843. doi: 10.1002/adsc.201700249

    20. [20]

      R.J. Reddy, M.P. Ball-Jones, P.W. Davies, Chem. Int. Ed. 56 (2017) 13310–13313. doi: 10.1002/anie.201706850

    21. [21]

      X. Tian, L. Song, M. Rudolph, et al., Angew. Chem. Int. Ed. 58 (2019) 3589–3593. doi: 10.1002/anie.201812002

    22. [22]

      X. Tian, L. Song, M. Rudolph, et al., Org. Lett. 21 (2019) 1598–1601. doi: 10.1021/acs.orglett.9b00140

    23. [23]

      X. Tian, L. Song, C. Han, C. Zhang, Y. Wu, Org. Lett. 21 (2019) 2937–2940. doi: 10.1021/acs.orglett.9b01011

    24. [24]

      X. Tian, L. Song, M. Rudolph, F. Rominger, A.S.K. Hashmi, Org. Lett. 21 (2019) 4327–4330. doi: 10.1021/acs.orglett.9b01501

    25. [25]

      X. Tian, L. Song, A.S.K. Hashmi, Angew. Chem. Int. Ed. 59 (2020) 12342–12346. doi: 10.1002/anie.202000146

    26. [26]

      A.V. Mackenroth, P.W. Antoni, F. Rominger, M. Rudolph, A.S.K. Hashmi, Org. Lett. 25 (2023) 2907–2912. doi: 10.1021/acs.orglett.3c00953

    27. [27]

      Q. Sun, C. Hüßler, J. Kahle, et, al., Angew. Chem. Int. Ed. 62 (2023) e202313738.

    28. [28]

      A.H. Zhou, Q. He, C. Shu, et al., Chem. Sci. 6 (2015) 1265–1271. doi: 10.1039/C4SC02596B

    29. [29]

      X.Y. Xiao, A.H. Zhou, C. Shu, et al., Chem. Asian J. 10 (2015)1854–1858. doi: 10.1002/asia.201500447

    30. [30]

      R.L. Sahani, R.S. Liu, Angew. Chem. Int. Ed. 56 (2017) 1026–1030. doi: 10.1002/anie.201610665

    31. [31]

      S.S. Giri, R.S. Liu, Chem. Sci. 9 (2018) 2991–2995. doi: 10.1039/c8sc00232k

    32. [32]

      R.D. Kardile, B.S. Kale, P. Sharma, R.S. Liu, Org. Lett. 20 (2018) 3806–3809. doi: 10.1021/acs.orglett.8b01398

    33. [33]

      A.S.K. Raj, K.C. Tan, L.Y. Chen, M.J. Cheng, R.S. Liu, Chem. Sci. 10 (2019) 6437–6442. doi: 10.1039/C9SC00735K

    34. [34]

      Z. Tong, P.J. Smith, H.D. Pickford, K.E. Christensen, E.A. Anderson, Chem. Eur. J. 29 (2023) e202302821. doi: 10.1002/chem.202302821

    35. [35]

      X.Q. Zhu, Q. Sun, Z.X. Zhang, et al., Chem. Commun. 54 (2018) 7435–7438. doi: 10.1039/c8cc03140a

    36. [36]

      X.Q. Zhu, H. Yuan, Q. Sun, et al., Green Chem. 20 (2018) 4287–4291. doi: 10.1039/c8gc02051e

    37. [37]

      X.Q. Zhu, Z.S. Wang, B.S. Hou, et al., Angew. Chem. Int. Ed. 59 (2020) 1666–1673. doi: 10.1002/anie.201912534

    38. [38]

      H. Jin, L. Huang, J. Xie, et al., Angew. Chem. Int. Ed. 55 (2016) 794–797. doi: 10.1002/anie.201508309

    39. [39]

      H. Jin, B. Tian, X. Song, et al., Angew. Chem. Int. Ed. 55 (2016) 12688–12692. doi: 10.1002/anie.201606043

    40. [40]

      R.L. Sahani, R.S. Liu, Angew. Chem. Int. Ed. 56 (2017) 12736–12740. doi: 10.1002/anie.201707423

    41. [41]

      Z. Zeng, H. Jin, K. Sekine, et al., Angew. Chem. Int. Ed. 57 (2018) 6935–6939. doi: 10.1002/anie.201802445

    42. [42]

      Z. Zeng, H. Jin, M. Rudolph, F. Rominger, A.S.K. Hashmi, Angew. Chem. Int. Ed. 57 (2018) 16549–16553. doi: 10.1002/anie.201810369

    43. [43]

      B.D. Mokar, P.D. Jadhav, Y.B. Pandit, R.S. Liu, Chem. Sci. 9 (2018) 4488–4492. doi: 10.1039/c8sc00986d

    44. [44]

      R.R. Singh, M. Skaria, L.Y. Chen, M.J. Cheng, R.S. Liu, Chem. Sci. 10 (2019) 1201–1206. doi: 10.1039/c8sc03619e

    45. [45]

      L. Song, X. Tian, M. Rudolph, F. Romingera, A.S.K. Hashmi, Chem. Commun. 55 (2019) 9007–9010. doi: 10.1039/c9cc04027g

    46. [46]

      X. Tian, L. Song, K. Farshadfar, et al., Angew. Chem. Int. Ed. 59 (2020) 471–478. doi: 10.1002/anie.201912334

    47. [47]

      A. Prechter, G. Henrion, P.F. dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 53 (2014) 4959–4963. doi: 10.1002/anie.201402470

    48. [48]

      L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 17 (2015) 30–33. doi: 10.1021/ol503172h

    49. [49]

      S.K. Pawar, R.L. Sahani, R.S. Liu, Chem. Eur. J. 21 (2015) 10843–10850. doi: 10.1002/chem.201500694

    50. [50]

      Z. Zeng, H. Jin, J. Xie, et al., Org. Lett. 19 (2017) 1020–1023. doi: 10.1021/acs.orglett.7b00001

    51. [51]

      W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 19 (2017) 3307–3310. doi: 10.1021/acs.orglett.7b01469

    52. [52]

      W. Xu, Y. Chen, A. Wang, Y. Liu, Org. Lett. 21 (2019) 7613–7618. doi: 10.1021/acs.orglett.9b02893

    53. [53]

      D.J. Gorin, N.R. Davis, F.D. Toste, J. Am. Chem. Soc. 127 (2005) 11260–11261. doi: 10.1021/ja053804t

    54. [54]

      C.A. Witham, P. Mauleón, N.D. Shapiro, B.D. Sherry, F.D. Toste, J. Am. Chem. Soc. 129 (2007) 5838–5839. doi: 10.1021/ja071231+

    55. [55]

      A. Wetzel, F. Gagosz, Angew. Chem., Int. Ed. 50 (2011) 7354–7358. doi: 10.1002/anie.201102707

    56. [56]

      B. Lu, Y. Luo, L. Liu, et al., Angew. Chem. Int. Ed. 50 (2011) 8358–8362. doi: 10.1002/anie.201103014

    57. [57]

      J. Matsuoka, Y. Matsuda, Y. Kawada, S. Oishi, H. Ohno, Angew. Chem. Int. Ed. 56 (2017) 7444–7448. doi: 10.1002/anie.201703279

    58. [58]

      W.B. Shen, Q. Sun, L. Li, et al., Nat. Commun. 8 (2017)1748. doi: 10.1038/s41467-017-01853-1

    59. [59]

      J.M. Xie, Y.L. Zhu, Y.M. Fu, et al., Org. Lett. 25 (2023) 421–425. doi: 10.1021/acs.orglett.2c04147

    60. [60]

      S.P. Sancheti, D.J. Mondal, N.T. Patil, ACS Catal. 13 (2023) 4391–4397. doi: 10.1021/acscatal.3c00088

    61. [61]

      D.F.L. Rayo, A. Mansour, W. Wu, B.N. Bhawal, F. Gagosz, Angew. Chem. Int. Ed. 62 (2023) e202212893. doi: 10.1002/anie.202212893

    62. [62]

      L.C. Greiner, N. Arichi, S. Inuki, H. Ohno, Angew. Chem. Int. Ed. 62 (2023) e202213653. doi: 10.1002/anie.202213653

    63. [63]

      X. Liu, Z.S. Wang, T.Y. Zhai, et al., Angew. Chem. Int. Ed. 59 (2020) 17984–17990. doi: 10.1002/anie.202007206

    64. [64]

      C.Y. Weng, G.Y. Zhu, B.H. Zhu, et al., Org. Chem. Front. 9 (2022) 2773–2778. doi: 10.1039/d2qo00457g

    65. [65]

      X. Liu, L.G. Liu, C.M. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202216923. doi: 10.1002/anie.202216923

    66. [66]

      Y. Chen, Y.H. Yan, B.H. Zhu, et al., Org. Lett. 25 (2023) 2063–2067. doi: 10.1021/acs.orglett.3c00434

    67. [67]

      D. Huang, G. Yan, Adv. Synth. Catal. 359 (2017) 1600–1619. doi: 10.1002/adsc.201700103

    68. [68]

      X.R. Song, Y.F. Qiu, X.Y. Liu, Y.M. Liang, Org. Biomol. Chem. 14 (2016) 11317–11331. doi: 10.1039/C6OB01965J

    69. [69]

      C. Shu, Y.H. Wang, B. Zhou, et al., J. Am. Chem. Soc. 137 (2015) 9567–9570. doi: 10.1021/jacs.5b06015

    70. [70]

      B. Zhou, Y.Q. Zhang, X. Liu, L.W. Ye, Sci. Bull. 62 (2017) 1201–1206. doi: 10.1016/j.scib.2017.08.020

    71. [71]

      C. Shu, Y.H. Wang, C.H. Shen, et al., Org. Lett. 18 (2016) 3254–3257. doi: 10.1021/acs.orglett.6b01503

    72. [72]

      C. Shu, C.H. Shen, Y.H. Wang, et al., Org. Lett. 18 (2016) 4630–4633. doi: 10.1021/acs.orglett.6b02267

    73. [73]

      Y.C. Hu, Y. Zhao, B. Wan, Q.A. Chen, Chem. Soc. Rev. 50 (2021) 2582–2625. doi: 10.1039/d0cs00283f

    74. [74]

      C.C. Lynch, A. Sripada, C. Wolf, Chem. Soc. Rev. 49 (2020) 8543–8583. doi: 10.1039/d0cs00769b

    75. [75]

      Y.B. Chen, P.C. Qian, L.W. Ye, Chem. Soc. Rev. 49 (2020) 8897–8909. doi: 10.1039/d0cs00474j

    76. [76]

      F.L. Hong, L.W. Ye, Acc. Chem. Res. 53 (2020) 2003–2019. doi: 10.1021/acs.accounts.0c00417

    77. [77]

      B. Zhou, T.D. Tan, X.Q. Zhu, M. Shang, L.W. Ye, ACS Catal. 9 (2019) 6393–6406. doi: 10.1021/acscatal.9b01851

    78. [78]

      G. Evano, C. Theunissen, M. Lecomte, Aldrichimica Acta 48 (2015) 59–77.

    79. [79]

      X.N. Wang, H.S. Yeom, L.C. Fang, et al., Acc. Chem. Res. 47 (2014) 560–578. doi: 10.1021/ar400193g

    80. [80]

      Y.B. Chen, L.G. Liu, C.M. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202303670. doi: 10.1002/anie.202303670

    81. [81]

      C.T. Li, L.J. Qi, L.G. Liu, et al., Nat. Commun. 14(2023)7058. doi: 10.1038/s41467-023-42805-2

    82. [82]

      Y. Xu, G.L. Qian, D.Q. Cui, et al., ACS Catal. 13(2023) 8803–8812. doi: 10.1021/acscatal.3c01680

    83. [83]

      Z.X. Zhang, L.G. Liu, Y.X. Liu, et al., Chem. Sci. 14 (2023) 5918–5924. doi: 10.1039/d3sc01880f

    84. [84]

      Z.X. Zhang, X. Wang, J.T. Jiang, et al., Chin. Chem. Lett. 34 (2023) 107647. doi: 10.1016/j.cclet.2022.06.070

    85. [85]

      L.J. Qi, C.T. Li, Z.Q. Huang, et al., Angew. Chem. Int. Ed. 61 (2022) e202210637. doi: 10.1002/anie.202210637

    86. [86]

      G.Y. Zhu, J.J. Zhou, L.G. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202204603. doi: 10.1002/anie.202204603

    87. [87]

      Z.S. Wang, L.J. Zhu, C.T. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e.202201436. doi: 10.1002/anie.202201436

    88. [88]

      F.L. Hong, C.Y. Shi, P. Hong, et al., Angew. Chem. Int. Ed. 61 (2022) e202115554. doi: 10.1002/anie.202115554

    89. [89]

      Y.Q. Zhang, Y.B. Chen, J.R. Liu, et al., Nat. Chem. 13 (2021) 1093–1100. doi: 10.1038/s41557-021-00778-z

    90. [90]

      P.F. Chen, B. Zhou, P. Wu, B. Wang, L.W. Ye, Angew. Chem. Int. Ed. 60 (2021) 27164–27170. doi: 10.1002/anie.202113464

    91. [91]

      X.Q. Zhu, P. Hong, Y.X. Zheng, et al., Chem. Sci. 12 (2021) 9466–9474. doi: 10.1039/d1sc02773e

    92. [92]

      D.L. Boger, C.W. Boyce, R.M. Garbaccio, Chem. Rev. 97 (1997) 787–828. doi: 10.1021/cr960095g

    93. [93]

      F.G. Njoroge, K.X. Chen, N.Y. Shih, J. Piwinski, Acc. Chem. Res. 41 (2008) 50–59. doi: 10.1021/ar700109k

    94. [94]

      J.W. Epstein, H.J. Brabander, W.J. Fanshawe, et al., J. Med. Chem. 24 (1981) 481–490. doi: 10.1021/jm00137a002

    95. [95]

      G. Kim, M.Y. Chu-Moyer, S.J. Danishefsky, J. Am. Chem. Soc. 112 (1990) 2003–2005. doi: 10.1021/ja00161a059

    96. [96]

      D.L. Boger, W. Yun, S. Terashima, et al., Med. Chem. Lett. 7 (1992) 759–765.

    97. [97]

      E.W. Hook 3rd, G.B. Pinson, C.J. Blalock, R.B. Johnson, Antimicrob. Agents Chemother. 40 (1996) 1720–1721. doi: 10.1128/AAC.40.7.1720

    98. [98]

      L.A. Sorbera, J. Castaner, P.A. Leeson, Drugs Fut. 30 (2005) 7–10. doi: 10.1358/dof.2005.030.01.871476

    99. [99]

      M. Zhang, F. Jovic, T. Vickers, et al., Bioorg. Med. Chem. Lett. 18 (2008) 3682–3686. doi: 10.1016/j.bmcl.2008.05.077

    100. [100]

      J. Pedroni, N. Cramer, J. Am. Chem. Soc. 139 (2017) 12398–12401. doi: 10.1021/jacs.7b07024

    101. [101]

      L. Fu, F. Ye, Y. Feng, et al., Nat. Commun. 11 (2020) 4417. doi: 10.1038/s41467-020-18233-x

    102. [102]

      Y. Liao, Q. Lu, G. Chen, et al., ACS Catal. 7 (2017) 7529–7534. doi: 10.1021/acscatal.7b02558

    103. [103]

      P. Destito, J.R. Couceiro, H. Faustino, F. López, J.L. Mascareñas, Angew. Chem. Int. Ed. 56 (2017) 10766–10770. doi: 10.1002/anie.201705006

    104. [104]

      B.C. Boren, S. Narayan, L.K. Rasmussen, et al., J. Am. Chem. Soc. 130 (2008) 8923–8930. doi: 10.1021/ja0749993

    105. [105]

      L. Zhang, X. Chen, P. Xue, et al., J. Am. Chem. Soc. 127 (2005) 15998–15999. doi: 10.1021/ja054114s

    106. [106]

      J. Caruano, G.G. Mucciolib, R. Robiette, Org. Biomol. Chem. 14 (2016) 10134–10156. doi: 10.1039/C6OB01349J

    107. [107]

      L.W. Ye, C. Shu, F. Gagosz, Org. Biomol. Chem. 12 (2014) 1833–1845. doi: 10.1039/C3OB42181C

    108. [108]

      A. Albrecht, Ł. Albrecht, T. Janecki, Eur. J. Org. Chem. 2011 (2011) 2747–2766. doi: 10.1002/ejoc.201001486

    109. [109]

      L.X. Ruan, B. Sun, J.M. Liu, S.L. Shi, Science 379 (2023) 662–670. doi: 10.1126/science.ade0760

    110. [110]

      Z.C. Wan, X. Luo, J.W. Zhang, et al., Nat. Catal. 6 (2023) 1087–1097. doi: 10.1038/s41929-023-01037-9

    111. [111]

      Z.C. Wang, J.W. Zhang, M.J. Koh, S.L. Shi, Angew. Chem. Int. Ed. 62 (2023) e202310203. doi: 10.1002/anie.202310203

    112. [112]

      J.B. Ma, X. Zhao, D. Zhang, S.L. Shi, J. Am. Chem. Soc. 144 (2022) 13643–13651. doi: 10.1021/jacs.2c04043

    113. [113]

      Y. Cai, S.L. Shi, J. Am. Chem. Soc. 143 (2021) 11963–11968. doi: 10.1021/jacs.1c06614

    114. [114]

      Z.C. Wang, P.P. Xie, Y. Xu, X. Hong, S.L. Shi, Angew. Chem. Int. Ed. 60 (2021)16077–16084. doi: 10.1002/anie.202103803

    115. [115]

      Y. Cai, J.W. Zhang, F. Li, J.M. Liu, S.L. Shi, ACS Catal. 9 (2019) 1–6. doi: 10.1021/acscatal.8b04198

  • Scheme 1  Amination reagents for gold-catalyzed intermolecular alkyne amination reactions via α-imino gold carbenes.

    Figure 1  3-Azabicyclo[3.1.0] scaffold in pharmaceutical molecules and natural products.

    Scheme 2  Reaction scope of ynamides 1. Reactions run in vials; 1 (0.3 mmol), 2a (0.6 mmol), IPrAuNTf2 (0.015 mmol), DCE (3 mL), 4 Å MS (60 mg), 80 ℃, 100 h; yields are those for the isolated products.

    Scheme 3  Reaction scope of allyl azides 2. Reactions run in vials; 1a (0.3 mmol), 2 (0.6 mmol), IPrAuNTf2 (0.015 mmol), DCE (3 mL), 4 Å MS (60 mg), 80 ℃, 100 h; yields are those for the isolated products.

    Figure 2  Structure of compound 3r in its crystal.

    Scheme 4  Preparative scale reaction and synthetic application.

    Figure 3  Structure of compounds 4 (left) and 6 (right) in its crystal.

    Scheme 5  Plausible reaction mechanism.

    Table 1.  Optimization of reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  13
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-02-15
  • 收稿日期:  2024-01-31
  • 接受日期:  2024-04-15
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-04-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章