Synthesis of aminoisoquinolines via Rh-catalyzed [4 + 2] annulation of benzamidamides with vinylene carbonate

Xin Huang Yingying Xu Jianglian Li Ruizhi Lai Yi Luo Qiantao Wang Zhongzhen Yang Yong Wu

Citation:  Xin Huang, Yingying Xu, Jianglian Li, Ruizhi Lai, Yi Luo, Qiantao Wang, Zhongzhen Yang, Yong Wu. Synthesis of aminoisoquinolines via Rh-catalyzed [4 + 2] annulation of benzamidamides with vinylene carbonate[J]. Chinese Chemical Letters, 2021, 32(11): 3518-3521. doi: 10.1016/j.cclet.2021.04.058 shu

Synthesis of aminoisoquinolines via Rh-catalyzed [4 + 2] annulation of benzamidamides with vinylene carbonate

English

  • During the past decades, transition-metal catalyzed cascade C-H activation/annulation reaction has clearly served as an efficient method in synthetic chemistry [1-6] to construct diverse heterocycles such as isoquinolines [7], quinazolines [8], naphthalenone [9], naphthols [10] and others [11-24]. And this method has been well explored by numerous chemists because of its simple operation, fewer synthetic steps, high atom economy and high regioselectivity.

    On the other hand, 1-aminoisoquinolines are frequently found in many drug molecules (Fig. 1) and exhibit a wide range of biological and pharmaceutical activities [25-31]. Therefore, straightforward strategy to access 1-aminoisoquinolines has intensively intrigued the scientists. According literatures, many methods have been reported including the coupling reaction of 1-aminoisoquinoline with phenylboronic acid [32], the transformation of 1-chloroisoquinoline with amine [33-35], and the amination between isoquinoline-N-oxide with amines [36-42], phenyl isothiocyanate [43]. Besides, benzamidines are efficient directing groups [44-53], which have been widely employed for the construction of 1-aminoisoquinolines derivatives via C-H activation/annulation adopting different C2 synthons, such as α-OMs/OTs acetophenone [54], diazo compounds [55-57], allyl carbonates [58], alkynes [59, 60] and sulfoxonium ylides (Scheme 1a) [61, 62]. However, all of these transformations only provided the aminoisquinolines with R2 or R3 (phenyl or alkyl), and the construction of nonsubstituted aminoisquinoline skeletons (R2, R3 = H) were seldom disclosed through C-H activation.

    Figure 1

    Figure 1.  Selected examples of bioactive aminoisoquinolines.

    Scheme 1

    Scheme 1.  Synthesis of aminoisoquinolines and other heterocycles via C-H activation/annulation.

    Recently, vinylene carbonate, featuring higher operational security and commercial availability as acetylene surrogate, has been involved in the transition-metal-catalyzed C(sp2)-H activation reactions [63-66] by extruding a carbonate anion (Scheme 1b). In these cases, heterocyclic structures such as isoquinolinones and isocoumarins, have been successfully and efficiently synthesized utilizing vinylene carbonate as a new C2 synthon under Co(Ⅲ) or Rh(Ⅲ) catalysis with N-methoxybenzamide [67] or benzoic acid [68]. In this regard, we herein demonstrate a facile method to generate nonsubstituted aminoisoquinolines derivatives by a Rh(Ⅲ)-catalyzed cascade C-H activation/annulation reaction using benzimidamides with vinylene carbonate (Scheme 1c).

    We commenced the reaction of Rh(Ⅲ)-catalyzed [4 + 2] annulation reaction with N-(tert-butyl)benzimidamide (1a) and vinylene carbonate (2a) as model substrates. To our delight, we obtained the expected aminoisoquinolines products in 20% yields by employing [Cp*RhCl2]2 (5 mol%) and AgSbF6 (20 mol%) as catalytic system in 1, 2-dichloroethane at 100 ℃ for 24 h under argon atmosphere (Table 1, entry 1). Initially, the yields of aminoisoquinolines did not increase when replacing the Rh catalyst with other metal catalysts (entries 2 and 3). Then several sliver salts were investigated, among which AgOTf gave the superior result compared with AgSbF6, AgBF4 and AgOTs (entries 4–6). In order to further increase the yield, different bases were screened including NaOAc, KPF6, K2CO3, KOPiv, and the results revealed that KOPiv was the best base for this reaction (entries 7–10). Finally, the use of toluene significantly increased the yield to 79%, which revealed solvents have a significant impact on the conversion (entries 11–13). In conclusion, the optimal conditions are shown as follows: the reaction proceeded in 79% yield under [Cp*RhCl2]2 (5 mol%) and AgOTf (20 mol%), using KOPiv (20 mol%) as additives in Tol (2.0 mL) at 100 ℃ for 24 h under Ar.

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With the optimized conditions in hand, we started to investigate the scope and generality of benzamidines derivatives for the [4 + 2] annulation reactions. Generally, benzamidines bearing electron-donating (Me, OMe, t-Bu) and electron-withdrawing groups (F, Cl, Br) on the benzene ring could generate aminoisoquinolines derivatives (Scheme 2, 3aa-3ha) smoothly by reacting with vinylene carbonate in moderate to good yields. As shown in Scheme 2, it was obvious that the yields of the transformation decreased dramatically to 33%–42% for ortho-substituent substrates (3na-3pa), which indicated that the transformation was tremendously influenced by steric hindrance effect. Besides, it was interesting to note that the substrates with diverse groups at the meta position demonstrated higher efficiencies than that at the para position on the whole. In addition, meta-methyl-, meta-cholro- and meta-bromo-substituted benzamidines preferred the site with less hindrance (3ia-3ka), while meta-methoxyl- and meta-fluoro-substituted reactants gave the two regioselective products (3la-3ma). Delightfully, the product was isolated in 90% yields when reactant with a thiophene ring was used. Moreover, substituent with naphthalene was also suitable for the reaction, albeit in a 58% yield. Furthermore, when tert-butyl is replaced by other alkyl groups such as benzyl, isopropyl and n-butyl, this cascade procedure could also convert to generate corresponding products in 42%–46% yields (3sa-3ua). However, the reaction failed to work when N-phenylbenzimidamide was added.

    Scheme 2

    Scheme 2.  Substrate scope of benzamidines. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), [Cp*RhCl2]2 (5 mol%), AgOTf (20 mol%), KOPiv (20 mol%), Toluene (1.5 mL), Ar, 100 ℃, 24 h.

    Scheme 3

    Scheme 3.  Substrate scope of N-phenylbenzimidamides.

    Due to the inert reactivity of N-phenylbenzimidamide, a series of reaction conditions were examined for realization of the conversion by employing vinylene carbonate (see Supporting information for details). Fortunately, we obtained the expected N-phenylisoquinolin-1-amine successfully and confirmed the optimal conditions that the reaction proceeded in 60% yield with [Cp*RhCl2]2 (5 mol%), AgOAc (20 mol%) and ZnSO4·7H2O (20 mol%) as catalytic system in chlorobenzene (2.0 mL) at 140 ℃ for 24 h under Ar (Scheme 3). The electron-donating and electron-withdrawing groups were all compatible in 45%–66% yields without obvious electrical effect. Unfortunately, when the benzene ring was replaced by thiophene ring or naphthalene, we did not observe obvious products.

    In order to explore whether the strategy could be applied for large scale, we enlarged the amount of 1a (2 mmol) and 2a (4 mmol) under the optimized conditions (Scheme 4). The result disclosed the transformation was less efficient in the yield of 55%.

    Scheme 4

    Scheme 4.  Ten-fold-scale synthesis of aminoisoquinolines.

    To further explore the experimental mechanism, we completed some mechanistic experiments. The H/D exchange experiment was carried out by using 1b with CD3OD at 100 ℃ for 2 h, which showed that 42% deuterium incorporation was estimated at ortho-position by 1H NMR indicating C-H bond cleavage of the transformation was reversible (Scheme 5a). When equimolar amounts of 1b and 1e were added in intermolecular competition experiment, the 3ba and 3ea were obtained in a ratio of 1.5:1, which indicated that electron-donating group was more effective (Scheme 5b).

    Scheme 5

    Scheme 5.  Mechanistic studies.

    Based on the above experiments and related literature, a plausible mechanism is presented in the Scheme 6. First, benzamidine transforms into a rhodacyclic intermediate A by C-H activation. Subsequently, the insertion of 2a with intermediate A results in the formation of seven-member intermediate B. Then, intermediate B undergoes reductive elimination to generate intermediate C releasing the Cp*Rh (I). The rhodium complexe D is obtained from oxidative addition of intermediate C and Cp*Rh (I). Finally, the rhodium complexe D generates aminoisoquinoline with the formation of the carbonate anion through β-oxygen elimination.

    Scheme 6

    Scheme 6.  Plausible reaction mechanism.

    In conclusion, we developed a novel method to construct aminoisoquinolines derivatives via Rh(Ⅲ)-catalyzed C-H activation/annulation by coupling benzamidines with vinylene carbonate as an acetylene surrogate. In this work, we realized the transformations of phenyl and alkyl-substituted benzamidines in good to moderate yields under different conditions, which was applied for larger scale.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We are grateful for the support from the National Natural Science Foundation of China (NSFC, Nos. 81602954, 81573286, 81373259 and 81773577).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.04.058.


    1. [1]

      A. Baccalini, G. Faita, G. Zanoni, D. Maiti, Chem. Eur. J.26 (2020) 9749-9783 doi: 10.1002/chem.202001832

    2. [2]

      L. Song, E.V. Van der Eycken, Chem. Eur. J. 26 (2020) 1-25 doi: 10.1111/cwe.12349

    3. [3]

      M.R. Sk, S.S. Bera, S. Basuli, A. Metya, M.S. Maji, Asian J. Org. Chem. 9 (2020) 1701-1717 doi: 10.1002/ajoc.202000367

    4. [4]

      X. Huang, S. Liao, L. Xin, F. Zhang, Y. Yu, Synthesis 53 (2021) 238-254 doi: 10.1055/s-0040-1707268

    5. [5]

      Z. Wang, P. Xie, Y. Xia, Chin. Chem. Lett. 2018, 29, 47-53 doi: 10.11648/j.ajmsp.20180303.12

    6. [6]

      X. Han, P. Lin, Q. Li, Chin. Chem. Lett. 30 (2019) 1495-1502 doi: 10.1016/j.cclet.2019.04.027

    7. [7]

      Y.F. Wang, K.K. Toh, J.Y. Lee, S. Chiba, Angew. Chem. Int. Ed. 50 (2011) 5927-5931 doi: 10.1002/anie.201101009

    8. [8]

      R. Lai, X. Wu, S. Lv, et al., Chem. Commun. 55 (2019) 4039-4042 doi: 10.1039/c9cc01146c

    9. [9]

      X. Chen, M. Wang, X. Zhang, X. Fan, Org. Lett. 21 (2019) 2541-2545 doi: 10.1021/acs.orglett.9b00340

    10. [10]

      Y. Xu, X. Yang, X. Zhou, L. Kong, X. Li, Org. Lett. 19 (2017) 4307-4310 doi: 10.1021/acs.orglett.7b01974

    11. [11]

      B. Ramesh, M. Tamizmani, M.J. Jeganmohan, J. Org. Chem. 84 (2019) 4058-4071 doi: 10.1021/acs.joc.9b00051

    12. [12]

      S.T. Mei, H.W. Liang, B. Teng, et al., Org. Lett. 18 (2016) 1088-1091 doi: 10.1021/acs.orglett.6b00197

    13. [13]

      L. Shi, B. Wang, Org. Lett. 18 (2016) 2820-2823 doi: 10.1021/acs.orglett.6b01234

    14. [14]

      R. Chen, S. Cui, Org. Lett. 19 (2017) 4002-4005 doi: 10.1021/acs.orglett.7b01728

    15. [15]

      X. Wu, H. Xiong, S. Sun, J. Cheng, Org. Lett. 20 (2018) 1396-1399 doi: 10.1021/acs.orglett.8b00119

    16. [16]

      C. Zhou, J. Zhao, W. Guo, J. Jiang, J. Wang, Org. Lett. 21 (2019) 9315-9319 doi: 10.1021/acs.orglett.9b03357

    17. [17]

      W. Chen, F.X. Liu, W. Gong, et al., Adv. Synth. Catal. 360 (2018) 2470-2475 doi: 10.1002/adsc.201800322

    18. [18]

      D. Li, N. Xu, Y. Zhang, L. Wang, Chem. Commun. 50 (2014) 14862-14865 doi: 10.1039/C4CC06457G

    19. [19]

      Y. Wang, H. Zhou, K. Xu, M. Shen, H. Xu, Chin. Chem. Lett. 28 (2017) 92-96 doi: 10.1117/12.2285263

    20. [20]

      L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chinese Chem. Lett. 29 (2018) 907-910 doi: 10.1016/j.cclet.2018.05.007

    21. [21]

      H. Li, Y. Han, Z. Yang, Z. Yao, L. Wang, X. Cui, Chin. Chem. Lett. 32 (2021) 1263–1266 doi: 10.1016/j.cclet.2020.09.020

    22. [22]

      Y. Yu, Z. Xia, Q. Wu, D. Liu, L. Yu, Y. Xiao, Z. Tan, Deng, W.; Zhu, G., Chinese Chem. Lett. 32 (2021) 1263-1266 doi: 10.1016/j.cclet.2020.09.020

    23. [23]

      J. Zhang, J.S. Sun, Y.Q. Xia, L. Dong, Adv. Synth. Catal. 361 (2019) 2037-2041 doi: 10.1002/adsc.201801606

    24. [24]

      K. Muralirajan, R. Kuppusamy, S. Prakash, C.H. Cheng, Adv. Synth. Catal. 358 (2016) 774-783 doi: 10.1002/adsc.201501056

    25. [25]

      C.E. Gutteridge, M.M. Hoffman, A.K. Bhattacharjee, W.K. Milhous, L. Gerena, Bioorg. Med. Chem. Lett. 21 (2011) 786-789 doi: 10.1016/j.bmcl.2010.11.099

    26. [26]

      R. Saari, J. C. Torma, T. Nevalainen, Bioorg. Med. Chem. 19, (2011) 939-950 doi: 10.1016/j.bmc.2010.11.059

    27. [27]

      A.L. Smith, F.F. DeMorin, N.A. Paras, et al., J. Med. Chem. 52 (2009) 6189-6192 doi: 10.1021/jm901081g

    28. [28]

      N. Shelach, N. Lowenton-spier, Patent WO 2020165755 A1, 2020.

    29. [29]

      C. Rivalle, F. Wendling, P. Tambourin, et al., J. Med. Chem. 26 (1983) 181-185 doi: 10.1021/jm00356a012

    30. [30]

      C.G. Barber, R.P. Dickinson, P.V. Fish, Bioorg. Med. Chem. Lett. 14 (2004) 3227-3230 doi: 10.1016/j.bmcl.2004.03.094

    31. [31]

      I.H. Bae, J.B. Son, S.M. Han, et al., Patent WO 2013100632, 2013.

    32. [32]

      D.N. Rao, S. Rasheed, S. Aravinda, R.A. Vishwakarma, P. Das, RSC Adv. 3 (2013) 11472-11475 doi: 10.1039/c3ra40735g

    33. [33]

      B.K. Lee, M.R. Biscoe, S.L. Buchwald, Tetrahedron Lett. 50 (2009) 3672-3674 doi: 10.1016/j.tetlet.2009.03.137

    34. [34]

      C. Yang, F. Zhang, G.J. Deng, H. Gong, J. Org. Chem. 84 (2019) 181-190 doi: 10.1021/acs.joc.8b02588

    35. [35]

      X. Xie, T.Y. Zhang, Z. Zhang, J. Org. Chem. 71 (2006) 6522-6529 doi: 10.1021/jo060945k

    36. [36]

      D. Kim, P. Ghosh, N.Y. Kwon, et al., J. Org. Chem. 85 (2020) 2476-2485 doi: 10.1021/acs.joc.9b03173

    37. [37]

      X. Chen, X. Li, Z. Qu, et al., Adv. Synth. Catal. 356 (2014) 1979-1985 doi: 10.1002/adsc.201301065

    38. [38]

      W.Z. Bi, K. Sun, C. Qu, et al., Org. Chem. Front. 4 (2017) 1595-1600 doi: 10.1039/C7QO00311K

    39. [39]

      Y. Nanaji, S. Kirar, S.V. Pawar, A.K. Yadav, RSC Adv. 10 (2020) 7628-7634 doi: 10.1039/c9ra10397j

    40. [40]

      M. Couturier, L. Caron, S. Tumidajski, K. Jones, T. D. White, Org. Lett. 8 (2006) 1929-1932 doi: 10.1021/ol060473w

    41. [41]

      A.T. Londregan, S. Jennings, W. Liuqing, Org. Lett. 12 (2010) 5254-5257 doi: 10.1021/ol102301u

    42. [42]

      P.J. Manley, M.T. Bilodeau, Org. Lett. 4 (2002) 3127-3129 doi: 10.1021/ol0264556

    43. [43]

      L.Y. Xie, S. Peng, L.L. Jiang, et al., Org. Chem. Front. 6 (2019) 167-171 doi: 10.1039/c8qo01128a

    44. [44]

      S. Huang, H. Li, X. Sun, et al., Org. Lett. 21 (2019) 5570-5574 doi: 10.1021/acs.orglett.9b01902

    45. [45]

      Y. Li, C. Jia, H. Li, et al., Org. Lett. 20 (2018) 4930-4933 doi: 10.1021/acs.orglett.8b02057

    46. [46]

      Y. Li, Z. Qi, H. Wang, X. Yang, X. Li, Angew. Chem. Int. Ed. 55 (2016) 11877-11881 doi: 10.1002/anie.201606316

    47. [47]

      Z. Qi, S. Yu, X. Li, Org. Lett. 18 (2016) 700-703 doi: 10.1021/acs.orglett.5b03669

    48. [48]

      X. Song, Q. Zhou, J. Zhao, et al., Org. Lett. 22 (2020) 9506-9512 doi: 10.1021/acs.orglett.0c03515

    49. [49]

      F. Xu, Y. Song, W. Zhu, et al., Chem. Commun. 56 (2020) 11227-11230 doi: 10.1039/d0cc04885b

    50. [50]

      L. Xu, L. Wang, Y. Feng, et al., Org. Lett. 19 (2017) 4343-4346 doi: 10.1021/acs.orglett.7b02028

    51. [51]

      J. Zhou, J. Li, Y. Li, et al., Org. Lett. 20 (2018) 7645-7649 doi: 10.1021/acs.orglett.8b03383

    52. [52]

      X. Zhou, Z. Qi, S. Yu, et al., Adv. Synth. Catal. 359 (2017) 1620-1625 doi: 10.1002/adsc.201601278

    53. [53]

      J. Ren, Y. Huang, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 32 (2021) 2592–2596. doi: 10.1016/j.cclet.2021.02.061

    54. [54]

      J. Li, Z. Zhang, M. Tang, X. Zhang, J. Jin, Org. Lett. 18 (2016) 3898-3901 doi: 10.1021/acs.orglett.6b01916

    55. [55]

      Y. Zuo, X. He, Y. Ning, Y. Wu, Y. Shang, J. Org. Chem. 83 (2018) 13463-13472 doi: 10.1021/acs.joc.8b02286

    56. [56]

      J. Li, M. Tang, L. Zang, et al., Org. Lett. 18 (2016) 2742-2745 doi: 10.1021/acs.orglett.6b01199

    57. [57]

      Q. Yang, C. Wu, J. Zhou, et al., Org. Chem. Front. 6 (2019) 393-398 doi: 10.1039/c8qo01148f

    58. [58]

      C. Li, H.B. Xu, J. Zhang, M. Liu, L. Dong, Org. Biomol. Chem. 18 (2020) 1412-1416 doi: 10.1039/c9ob02553g

    59. [59]

      J. Li, M. John, L. Ackermann, Chem. Eur. J. 20 (2014) 5403-5408 doi: 10.1002/chem.201304944

    60. [60]

      X. Wei, M. Zhao, Z. Du, X. Li, Org. Lett. 13 (2011) 4636-4639 doi: 10.1021/ol2018505

    61. [61]

      G. Zheng, M. Tian, Y. Xu, X. Chen, X. Li, Org. Chem. Front. 5 (2018) 998-1002 doi: 10.1039/C7QO01033H

    62. [62]

      C. Wu, J. Zhou, G. He, et al., Org. Chem. Front. 6 (2019) 1183-1188 doi: 10.1039/c9qo00048h

    63. [63]

      K. Ghosh, Y. Nishii, M. Miura, ACS Catal. 9 (2019) 11455-11460 doi: 10.1021/acscatal.9b04254

    64. [64]

      K. Ghosh, Y. Nishii, M. Miura, Org. Lett. 22 (2020) 3547-3550 doi: 10.1021/acs.orglett.0c00975

    65. [65]

      Y. Nishii, M. Miura, ACS Catal. 10 (2020) 9747-9757 doi: 10.1021/acscatal.0c02972

    66. [66]

      Z.H. Wang, H. Wang, H. Wang, L. Li, M.D. Zhou, Org. Lett. 23 (2021) 995-999 doi: 10.1021/acs.orglett.0c04200

    67. [67]

      X. Li, T. Huang, Y. Song, et al., Org. Lett. 22 (2020) 5925-5930 doi: 10.1021/acs.orglett.0c02016

    68. [68]

      G. Mihara, K. Ghosh, Y. Nishii, M. Miura, Org. Lett. 22 (2020) 5706-5711 doi: 10.1021/acs.orglett.0c02112

  • Figure 1  Selected examples of bioactive aminoisoquinolines.

    Scheme 1  Synthesis of aminoisoquinolines and other heterocycles via C-H activation/annulation.

    Scheme 2  Substrate scope of benzamidines. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), [Cp*RhCl2]2 (5 mol%), AgOTf (20 mol%), KOPiv (20 mol%), Toluene (1.5 mL), Ar, 100 ℃, 24 h.

    Scheme 3  Substrate scope of N-phenylbenzimidamides.

    Scheme 4  Ten-fold-scale synthesis of aminoisoquinolines.

    Scheme 5  Mechanistic studies.

    Scheme 6  Plausible reaction mechanism.

    Table 1.  Optimization of reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  592
  • HTML全文浏览量:  103
文章相关
  • 发布日期:  2021-11-15
  • 收稿日期:  2021-03-04
  • 接受日期:  2021-04-30
  • 修回日期:  2021-04-22
  • 网络出版日期:  2021-05-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章