碳球上碱金属氧化物的界面稳定化用于高性能CO2化学吸附

赵非凡 徐飞燕 余家国

引用本文: 赵非凡, 徐飞燕, 余家国. 碳球上碱金属氧化物的界面稳定化用于高性能CO2化学吸附[J]. 物理化学学报, 2026, 42(5): 100234. doi: 10.1016/j.actphy.2025.100234 shu
Citation:  Feifan Zhao, Feiyan Xu, Jiaguo Yu. Interfacial stabilization of alkali metal oxides on carbon spheres for high-performance CO2 chemisorption[J]. Acta Physico-Chimica Sinica, 2026, 42(5): 100234. doi: 10.1016/j.actphy.2025.100234 shu

碳球上碱金属氧化物的界面稳定化用于高性能CO2化学吸附

    通讯作者: Email: xufeiyan@cug.edu.cn (徐飞燕); yujiaguo93@cug.edu.cn (余家国)
摘要: 高效捕集低浓度二氧化碳(CO2)需要兼具强反应活性与长期结构稳定性的化学吸附剂。碱金属氧化物虽具潜力,但存在快速烧结问题,会严重减少可接触活性位点。本研究开发了一种普适性界面策略,将Li2O、Na2O和K2O以高度分散的非晶态域形式锚定于空心碳球(分别命名为Li-HCS、Na-HCS和K-HCS),形成稳定的M–O–C键合位点。这种界面结构既可阻止氧化物迁移,又能增强表面碱性,显著强化CO2结合能力。在碱金属负载空心碳球中,K-HCS表现出最优异的CO2吸附容量(273 K、1 bar (1 bar = 105 Pa)条件下4.9 mmol g−1)、最快吸附动力学(313 K、1 bar条件下13.56 mol kg−1 h−1),以及最佳低压脱除效率(273 K、0.15 bar条件下44%)。密度泛函理论计算进一步揭示,随着电子给体能力与极化率从Li到Na再到K的增强,其吸附强度与分子活化能呈现单调递增规律。该研究为稳定碱金属氧化物提供了普适性方案,并为发展低压CO2捕集材料提供了机理层面的新见解。

English

    1. [1]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    2. [2]

      J.M. Kolle, M. Fayaz, A. Sayari, Chem. Rev. 121 (2021) 7280, https://doi.org/10.1021/acs.chemrev.0c00762. doi: 10.1021/acs.chemrev.0c00762

    3. [3]

      F. Xu, W. Mei, P. Hu, L. Zheng, J. Zhang, H. Cao, H. García, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202513364, https://doi.org/10.1002/anie.202513364. doi: 10.1002/anie.202513364

    4. [4]

      D.G. Boer, J. Langerak, P.P. Pescarmona, ACS Appl. Energy Mater. 6 (2023) 2634, https://doi.org/10.1021/acsaem.2c03605. doi: 10.1021/acsaem.2c03605

    5. [5]

      Y. He, L. Zheng, W. Mei, J. Zhang, C. Bie, J. Yu, H. García, F. Xu, Adv. Funct. Mater. 35 (2025) e18330, https://doi.org/10.1002/adfm.202518330. doi: 10.1002/adfm.202518330

    6. [6]

      M. Jahandar Lashaki, S. Khiavi, A. Sayari, Chem. Soc. Rev. 48 (2019) 3320, https://doi.org/10.1039/C8CS00877A. doi: 10.1039/C8CS00877A

    7. [7]

      Y. Belmabkhout, P.M. Bhatt, K. Adil, R.S. Pillai, A. Cadiau, A. Shkurenko, G. Maurin, G. Liu, W.J. Koros, M. Eddaoudi, Nat. Energy 4 (2019) 83, https://doi.org/10.1038/s41560-018-0299-5. doi: 10.1038/s41560-018-0299-5

    8. [8]

      P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, et al., Nature 495 (2013) 80, https://doi.org/10.1038/nature11893. doi: 10.1038/nature11893

    9. [9]

      Y. Huo, X. Zhou, F. Zhao, C. Ai, Z. Wu, Z. Chang, B. Zhu, Acta Phys. Chim. Sin. 41 (2025) 100148, https://doi.org/10.1016/j.actphy.2025.100148. doi: 10.1016/j.actphy.2025.100148

    10. [10]

      F. Kolahdouzan, N. Goodarzi, M. Setayeshmehr, D.S. Mousavi, A.Z. Moshfegh, Chin. J. Catal. 70 (2025) 230, https://doi.org/10.1016/S1872-2067(24)60214-7. doi: 10.1016/S1872-2067(24)60214-7

    11. [11]

      S.Y. Lim, S.A. Younis, K.-H. Kim, J. Lee, Chem. Soc. Rev. 53 (2024) 9976, https://doi.org/10.1039/D4CS00564C. doi: 10.1039/D4CS00564C

    12. [12]

      F. Zhao, B. Zhu, L. Wang, J. Yu, J. Colloid Interface Sci. 659 (2024) 486, https://doi.org/10.1016/j.jcis.2023.12.173. doi: 10.1016/j.jcis.2023.12.173

    13. [13]

      F. Zhao, F. Xu, H. García, J. Yu, J. Colloid Interface Sci. 700 (2025) 138532, https://doi.org/10.1016/j.jcis.2025.138532. doi: 10.1016/j.jcis.2025.138532

    14. [14]

      Y. Peng, E. Alberico, H. Junge, M. Beller, Chem. Soc. Rev. 54 (2025) 5551, https://doi.org/10.1039/D5CS00186B. doi: 10.1039/D5CS00186B

    15. [15]

      K.D. Cocon, P. Luis, Prog. Energy Combust. Sci. 105 (2024) 101184, https://doi.org/10.1016/j.pecs.2024.101184. doi: 10.1016/j.pecs.2024.101184

    16. [16]

      K. Bian, Y. Liu, L. Zhou, B. Li, H. Zhang, C. Wang, F. Peng, H. Li, S. Yao, C. Wang, et al., Renew. Sust. Energ. Rev. 214 (2025) 115560, https://doi.org/10.1016/j.rser.2025.115560. doi: 10.1016/j.rser.2025.115560

    17. [17]

      C. Zhao, L. Wang, L. Huang, N.M. Musyoka, T. Xue, J. Rabeah, Q. Wang, J. Energy Chem. 90 (2024) 435, https://doi.org/10.1016/j.jechem.2023.11.024. doi: 10.1016/j.jechem.2023.11.024

    18. [18]

      S.-Y. Ahn, K.-J. Kim, B.-J. Kim, G.-R. Hong, W.-J. Jang, J.W. Bae, Y.-K. Park, B.-H. Jeon, H.-S. Roh, Renew. Sust. Energ. Rev. 186 (2023) 113635, https://doi.org/10.1016/j.rser.2023.113635. doi: 10.1016/j.rser.2023.113635

    19. [19]

      B. Dziejarski, J. Serafin, K. Andersson, R. Krzyżyńska, Mater. Today Sustain. 24 (2023) 100483, https://doi.org/10.1016/j.mtsust.2023.100483. doi: 10.1016/j.mtsust.2023.100483

    20. [20]

      H.M. Polat, S. Kavak, H. Kulak, A. Uzun, S. Keskin, Chem. Eng. J. 394 (2020) 124916, https://doi.org/10.1016/j.cej.2020.124916. doi: 10.1016/j.cej.2020.124916

    21. [21]

      E. Shi, X. Wang, M. Zhang, X. Wang, J. Gao, Y. Zheng, Environ. Chem. Lett. 20 (2022) 2253, https://doi.org/10.1007/s10311-022-01428-7. doi: 10.1007/s10311-022-01428-7

    22. [22]

      D. Wei, H. Chen, P. He, B. Wei, J. Tian, W. Pi, P. Wang, J. Wang, R. Kueasook, X. Xu, et al., Adv. Funct. Mater. 35 (2025) e22953, https://doi.org/10.1002/adfm.202522953. doi: 10.1002/adfm.202522953

    23. [23]

      W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou, S. Zhuo, Z. Yan, H. Gao, G. Wang, S.Z. Qiao, Energy Environ. Sci. 5 (2012) 7323, https://doi.org/10.1039/C2EE21653A. doi: 10.1039/C2EE21653A

    24. [24]

      J. Zhou, M. Deissenroth-Uhrig, M. Gallei, Adv. Funct. Mater. 35 (2025) e20959, https://doi.org/10.1002/adfm.202520959. doi: 10.1002/adfm.202520959

    25. [25]

      J. Hastings, Z. Wang, J. Liu, F. Formalik, H. Xie, T. Lassitter, O.K. Farha, R.Q. Snurr, J.T. Hupp, T.G. Glover, J. Am. Chem. Soc. 147 (2025) 37999, https://doi.org/10.1021/jacs.5c08171. doi: 10.1021/jacs.5c08171

    26. [26]

      S. Liu, Z. Sun, B. Liao, H. Zhang, L. Zhang, Y. Huang, L. Wan, M. Wang, S. Wei, B. Wei, et al., J. Energy Chem. 114 (2026) 136, https://doi.org/10.1016/j.jechem.2025.09.070. doi: 10.1016/j.jechem.2025.09.070

    27. [27]

      M. Umar, B.O. Yusuf, M. Aliyu, I. Hussain, A.M. Alhassan, M.M. Awad, O.A. Taialla, B. Ali, K.R. Alhooshani, S.A. Ganiyu, Coord. Chem. Rev. 526 (2025) 216380, https://doi.org/10.1016/j.ccr.2024.216380. doi: 10.1016/j.ccr.2024.216380

    28. [28]

      Y.S. Kim, S.G. Kang, Appl. Surf. Sci. 486 (2019) 571, https://doi.org/10.1016/j.apsusc.2019.04.137. doi: 10.1016/j.apsusc.2019.04.137

    29. [29]

      K. Wu, L. Wang, Q. Ye, F. Meng, Z. Zhao, H. Dai, J. Solid State Chem. 353 (2026) 125620, https://doi.org/10.1016/j.jssc.2025.125620. doi: 10.1016/j.jssc.2025.125620

    30. [30]

      G.H. Byun, G. Leverick, L. Cartocci, T.A. Hatton, B.M. Gallant, Energy Fuels 39 (2025) 18935, https://doi.org/10.1021/acs.energyfuels.5c03412. doi: 10.1021/acs.energyfuels.5c03412

    31. [31]

      C.J. Keturakis, F. Ni, M. Spicer, M.G. Beaver, H.S. Caram, I.E. Wachs, ChemSusChem 7 (2014) 3459, https://doi.org/10.1002/cssc.201402474. doi: 10.1002/cssc.201402474

    32. [32]

      C. Yong, G. Lu, X. Wang, G. Shi, Y. Wang, X. Xie, J. Sun, ACS Appl. Eng. Mater. 3 (2025) 1513, https://doi.org/10.1021/acsaenm.5c00076. doi: 10.1021/acsaenm.5c00076

    33. [33]

      J. Serafin, U. Narkiewicz, A.W. Morawski, R.J. Wróbel, B. Michalkiewicz, J. CO2 Util. 18 (2017) 73, https://doi.org/10.1016/j.jcou.2017.01.006. doi: 10.1016/j.jcou.2017.01.006

    34. [34]

      J. Li, X. Meng, W. Zhou, Y. Feng, J. Li, N. Xue, Z. Liu, J. Gao, F. Sun, G. Zhao, J. Clean. Prod. 530 (2025) 146835, https://doi.org/10.1016/j.jclepro.2025.146835. doi: 10.1016/j.jclepro.2025.146835

    35. [35]

      P. Liu, J. Wang, M. Yao, G. Yu, X. Song, P. Lv, Y. Bai, J. Environ. Chem. Eng. 11 (2023) 109660, https://doi.org/10.1016/j.jece.2023.109660. doi: 10.1016/j.jece.2023.109660

    36. [36]

      L. Yue, Q. Xia, L. Wang, L. Wang, H. DaCosta, J. Yang, X. Hu, J. Colloid Interface Sci. 511 (2018) 259, https://doi.org/10.1016/j.jcis.2017.09.040. doi: 10.1016/j.jcis.2017.09.040

    37. [37]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867. doi: 10.1002/smll.202402867

    38. [38]

      C. Jiao, J. Lu, X. Gu, Z. Majeed, H. Jiang, New J. Chem. 42 (2018) 5674, https://doi.org/10.1039/C7NJ04398H. doi: 10.1039/C7NJ04398H

    39. [39]

      C. Li, W. Ni, X. Zang, H. Wang, Y. Zhou, Z. Yang, Y.-M. Yan, Chem. Commun. 56 (2020) 6062, https://doi.org/10.1039/D0CC00929F. doi: 10.1039/D0CC00929F

    40. [40]

      X. Li, S. Bai, Z. Zhu, J. Sun, X. Jin, X. Wu, J. Liu, Langmuir 33 (2017) 1248, https://doi.org/10.1021/acs.langmuir.6b04131. doi: 10.1021/acs.langmuir.6b04131

    41. [41]

      Z. Zhang, L. Zhang, Q. Gao, N. Sun, W. Wei, J. CO2 Util. 75 (2023) 102570, https://doi.org/10.1016/j.jcou.2023.102570. doi: 10.1016/j.jcou.2023.102570

    42. [42]

      F. Su, X. Li, Y. Wang, Z. He, L. Fan, H. Wang, J. Xie, Y. Zheng, D. Yao, Sep. Purif. Technol. 277 (2021) 119410, https://doi.org/10.1016/j.seppur.2021.119410. doi: 10.1016/j.seppur.2021.119410

    43. [43]

      R. Li, C.-W. Tung, B. Zhu, Y. Lin, F.-Z. Tian, T. Liu, H.M. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176. doi: 10.1016/j.jcis.2024.06.176

    44. [44]

      A. Ejsmont, K. Kadela, G. Grzybek, T. Darvishzad, G. Słowik, M. Lofek, J. Goscianska, A. Kotarba, P. Stelmachowski, ACS Appl. Mater. Interfaces 15 (2023) 5148, https://doi.org/10.1021/acsami.2c18403. doi: 10.1021/acsami.2c18403

    45. [45]

      H. Xu, H. Li, X. An, W. Li, R. Liu, X. Zhao, G. Li, Catalysts, 15 (2025) 704, https://doi.org/10.3390/catal15080704. doi: 10.3390/catal15080704

    46. [46]

      A. Aksoylu, M. Madalena, M. Freitas, M. Pereira, J. Figueiredo, Carbon 39 (2001) 175, https://doi.org/10.1016/S0008-6223(00)00102-0. doi: 10.1016/S0008-6223(00)00102-0

    47. [47]

      H. Hu, S. Lu, T. Li, Y. Zhang, C. Guo, H. Zhu, Y. Jin, M. Du, W. Zhang, Nanoscale Adv. 3 (2021) 1865, https://doi.org/10.1039/D1NA00025J. doi: 10.1039/D1NA00025J

    48. [48]

      A.J. van Dillen, R.J.A.M. Terörde, D.J. Lensveld, J.W. Geus, K.P. de Jong, J. Catal. 216 (2003) 257, https://doi.org/10.1016/S0021-9517(02)00130-6. doi: 10.1016/S0021-9517(02)00130-6

    49. [49]

      P. Munnik, P.E. de Jongh, K.P. de Jong, Chem. Rev. 115 (2015) 6687, https://doi.org/10.1021/cr500486u. doi: 10.1021/cr500486u

    50. [50]

      L. Mo, E.T. Saw, Y. Du, A. Borgna, M.L. Ang, Y. Kathiraser, Z. Li, W. Thitsartarn, M. Lin, S. Kawi, Int. J. Hydrogen Energy 40 (2015) 13388, https://doi.org/10.1016/j.ijhydene.2015.07.105. doi: 10.1016/j.ijhydene.2015.07.105

    51. [51]

      A. Lekhal, B.J. Glasser, J.G. Khinast, Chem. Eng. Sci. 56 (2001) 4473, https://doi.org/10.1016/S0009-2509(01)00120-8. doi: 10.1016/S0009-2509(01)00120-8

    52. [52]

      Q. Li, W. Xu, X. Liang, B. Liu, Q. Wu, Z. Zeng, L. Li, X. Ma, Fuel 325 (2022) 124871, https://doi.org/10.1016/j.fuel.2022.124871. doi: 10.1016/j.fuel.2022.124871

    53. [53]

      A.A.-O. Ejsmont, K. Kadela, G.A.-O. Grzybek, T. Darvishzad, G. Słowik, M. Lofek, J. Goscianska, A.A.-O. Kotarba, P.A.-O. Stelmachowski, ACS Appl. Mater. Interfaces 15 (2023) 5149, https://doi.org/10.1021/acsami.2c18403. doi: 10.1021/acsami.2c18403

    54. [54]

      B. Khussain, A.A.-O. Sass, A.A.-O. Brodskiy, M.A.-O. Zhurinov, I.A.-O. Torlopov, K.A.-O. Rakhmetova, D.A.-O. Zhumadullaev, Y.A.-O. Boleubayev, A.A.-O. Khussain, A.A.-O. Kenessary, et al., Molecules 30 (2025) 2859, https://doi.org/10.3390/molecules30132859. doi: 10.3390/molecules30132859

    55. [55]

      F. Xu, F. Zhao, X. Deng, J. Zhang, J. Zhang, C. Ai, J. Yu, H. García, Nat. Commun. 16 (2025) 6882, https://doi.org/10.1038/s41467-025-60961-5. doi: 10.1038/s41467-025-60961-5

    56. [56]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    57. [57]

      K. Coenen, F. Gallucci, B. Mezari, E. Hensen, M. van Sint Annaland, J. CO2 Util. 24 (2018) 228, https://doi.org/10.1016/j.jcou.2018.01.008. doi: 10.1016/j.jcou.2018.01.008

    58. [58]

      Z. Gong, L. Xie, W. Li, H. Situ, P. Liu, W. Zhou, X. Meng, RSC Adv. 15 (2025) 44883, https://doi.org/10.1039/D5RA06428G. doi: 10.1039/D5RA06428G

    59. [59]

      L. Kong, R. Ganguly, Y. Li, R. Kinjo, Chem. Sci. 6 (2015) 2893, https://doi.org/10.1039/C5SC00404G. doi: 10.1039/C5SC00404G

    60. [60]

      S. Oswald, F. Thoss, M. Zier, M. Hoffmann, T. Jaumann, M. Herklotz, K. Nikolowski, F. Scheiba, M. Kohl, L. Giebeler, et al., Batteries, 4 (2018) 36, https://doi.org/10.3390/batteries4030036. doi: 10.3390/batteries4030036

    61. [61]

      G.O. Kayode, M.M. Montemore, J. Mater. Chem. A 9 (2021) 22325, https://doi.org/10.1039/D1TA06453C. doi: 10.1039/D1TA06453C

    62. [62]

      X. Ma, L. Li, R. Chen, C. Wang, K. Zhou, H. Li, Fuel 236 (2019) 942, https://doi.org/10.1016/j.fuel.2018.08.166. doi: 10.1016/j.fuel.2018.08.166

    63. [63]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028. doi: 10.1016/j.jmst.2023.06.028

    64. [64]

      P. Zang, J. Tang, Y. Tao, H. Zhang, X. Wang, L. Cui, S. Chen, P. Zhao, Y. Dong, Chem. Eng. J. 505 (2025) 159233, https://doi.org/10.1016/j.cej.2025.159233. doi: 10.1016/j.cej.2025.159233

    65. [65]

      L. Deng, J. Shi, Y. Zhao, D. Feng, W. Zhang, Y. Yu, S. Sun, Chem. Eng. J. 495 (2024) 153403, https://doi.org/10.1016/j.cej.2024.153403. doi: 10.1016/j.cej.2024.153403

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  177
  • HTML全文浏览量:  17
文章相关
  • 发布日期:  2026-05-15
  • 收稿日期:  2025-12-12
  • 接受日期:  2025-12-23
  • 修回日期:  2025-12-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章