锂离子电池中环保型富镍正极浆料系统的最新进展与挑战

王荣荣 李晨 任祥 张克良 孙宇 孙现众 王凯 张熊 马衍伟

引用本文: 王荣荣, 李晨, 任祥, 张克良, 孙宇, 孙现众, 王凯, 张熊, 马衍伟. 锂离子电池中环保型富镍正极浆料系统的最新进展与挑战[J]. 物理化学学报, 2026, 42(4): 100222. doi: 10.1016/j.actphy.2025.100222 shu
Citation:  Rongrong Wang, Chen Li, Xiang Ren, Keliang Zhang, Yu Sun, Xianzhong Sun, Kai Wang, Xiong Zhang, Yanwei Ma. Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(4): 100222. doi: 10.1016/j.actphy.2025.100222 shu

锂离子电池中环保型富镍正极浆料系统的最新进展与挑战

    通讯作者: Email: lichen@mail.iee.ac.cn (李晨); chm_renx@ujn.edu.cn (任祥); zhangxiong@mail.iee.ac.cn (张熊); ywma@mail.iee.ac.cn (马衍伟)
摘要: 为满足日益增长的高能量锂离子电池(LIBs)需求,富镍正极已成为主流选择。这类电极通常需使用高极性N-甲基吡咯烷酮(NMP)溶解聚合物粘结剂,形成流变稳定的浆料以确保电极内部强机械粘附。然而,NMP对环境与健康的潜在危害使其面临日益严格的监管限制,推动产业向更绿色、安全的浆料体系转型。本综述首先系统建立了绿色溶剂筛选与浆料性质评估的理论框架,涵盖溶剂-粘结剂相容性、溶解度理论、汉森溶解度参数、Flory-Huggins相互作用参数以及关键的流变学表征方法。在此基础上,重点回顾了近年来绿色溶剂体系的浆料制备进展,包括内酯类、亚砜类、磷酸酯类、酰胺类以及多种生物基替代溶剂,随后聚焦绿色浆料在涂布与干燥等加工环节中的行为特征,揭示其对电极微结构形成路径的深层影响,以及随之在机械内聚力、界面黏附性、容量保持与循环寿命等关键指标上的性能决定作用。通过分析粘结剂溶解性、分散稳定性、流变特性及干燥动力学对电极形貌、机械内聚力、容量保持率和循环稳定性的影响,指出当前绿色浆料体系仍面临粘结剂溶解不充分、干燥过程迁移、高固含量配方适应性有限等实际障碍,并提出基于热力学的溶剂筛选、流变学优化及干燥动力学控制等解决方案。最后,结合人工智能技术的最新发展,展望了数据驱动的溶解度预测、流变行为建模以及干燥过程仿真等前沿方向在构建绿色浆料体系中的潜在价值。本综述融合经典理论框架与智能化计算工具,旨在为下一代高能量密度锂离子电池的可持续制造提供新的思路与方向。

English

    1. [1]

      J. Li, J. Fleetwood, W. B. Hawley, W. Kays, Chem. Rev. 122 (2021) 903, https://doi.org/10.1021/acs.chemrev.1c00565. doi: 10.1021/acs.chemrev.1c00565

    2. [2]

      Y. Tang, X. -Y. Wang, J. -C. Ren, B. -W. Chen, Z. -Y. Huang, W. Wang, Y. -L. Huang, B. -H. Zhang, S. Lan, Z. -L. He, et al., Rare Met. 43 (2024) 41, https://doi.org/10.1007/s12598-023-02454-2. doi: 10.1007/s12598-023-02454-2

    3. [3]

      Y. Fang, J. Zhao, Y. Su, J. Dong, Y. Lu, N. Li, H. Wang, F. Wu, L. Chen, Energy Mater. Adv. 5 (2024) 0115, https://doi.org/10.34133/energymatadv.0115. doi: 10.34133/energymatadv.0115

    4. [4]

      Y. Huang, M. Tao, L. Mo, L. Zheng, D. Su, J. Jiang, Q. Pan, S. Hu, H. Wang, Q. Li, et al., Chem. Eng. J. 493 (2024) 152525, https://doi.org/10.1016/j.cej.2024.152525. doi: 10.1016/j.cej.2024.152525

    5. [5]

      Y. Ma, J. Ma, G. Cui, Energy Storage Mater. 20 (2019) 146, https://doi.org/10.1016/j.ensm.2018.11.013. doi: 10.1016/j.ensm.2018.11.013

    6. [6]

      S. Rajeevan, S. John, S. C. George, J. Power Sources 504 (2021) 230037, https://doi.org/10.1016/j.jpowsour.2021.230037. doi: 10.1016/j.jpowsour.2021.230037

    7. [7]

      C. Huang, H. Zheng, N. Qin, C. Wang, L. Wang, J. Lu, Acta Phys. Chim. Sin. 40 (2024) 2308051, https://doi.org/10.3866/PKU.WHXB202308051. doi: 10.3866/PKU.WHXB202308051

    8. [8]

      B. -R. Hu, Y. -Y. Yuan, Y. -C. Wang, X. -H. Xiong, Rare Met. 43 (2024) 87, https://doi.org/10.1007/s12598-023-02388-9. doi: 10.1007/s12598-023-02388-9

    9. [9]

      S. -J. Tan, J. Yue, Z. Chen, X. -X. Feng, J. Zhang, Y. -X. Yin, L. Zhang, J. -C. Zheng, Y. Luo, S. Xin, et al., Energy Mater. Adv. 5 (2024) 0076, https://doi.org/10.34133/energymatadv.0076. doi: 10.34133/energymatadv.0076

    10. [10]

      P. Molaiyan, S. Bhattacharyya, G. S. dos Reis, R. Sliz, A. Paolella, U. Lassi, Green Chem. 26 (2024) 7508, https://doi.org/10.1039/d3gc05027k. doi: 10.1039/d3gc05027k

    11. [11]

      R. Sahore, M. Wood, A. Kukay, Z. Du, K. M. Livingston, D. L. Wood, J. Li, J. Electrochem. Soc. 169 (2022) 040567, https://doi.org/10.1149/1945-7111/ac682d. doi: 10.1149/1945-7111/ac682d

    12. [12]

      L. Zhong, Y. Sun, K. Shen, F. Li, H. Liu, L. Sun, D. Xie, Small 20 (2024) 2407297, https://doi.org/10.1002/smll.202407297. doi: 10.1002/smll.202407297

    13. [13]

      H. Isozumi, K. Kubota, R. Tatara, T. Horiba, K. Hida, T. Matsuyama, S. Yasuno, S. Komaba, ACS Appl. Energy Mater. 3 (2020) 7978, https://doi.org/10.1021/acsaem.0c01334. doi: 10.1021/acsaem.0c01334

    14. [14]

      L. Ibing, T. Gallasch, A. Friesen, P. Niehoff, A. Hintennach, M. Winter, M. Börner, J. Power Sources 475 (2020) 228608, https://doi.org/10.1016/j.jpowsour.2020.228608. doi: 10.1016/j.jpowsour.2020.228608

    15. [15]

      J. -H. Kuo, C. -C. Li, J. Electrochem. Soc. 167 (2020) 100504, https://doi.org/10.1149/1945-7111/ab95c5. doi: 10.1149/1945-7111/ab95c5

    16. [16]

      S. Radloff, R. G. Scurtu, M. Hölzle, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 168 (2021) 100506, https://doi.org/10.1149/1945-7111/ac2861. doi: 10.1149/1945-7111/ac2861

    17. [17]

      H. Lee, J. Seok, C. Chung, S. Park, J. Kim, W. -S. Yoon, Chem. Eng. J. 498 (2024) 154903, https://doi.org/10.1016/j.cej.2024.154903. doi: 10.1016/j.cej.2024.154903

    18. [18]

      W. Xiao, J. -L. Wang, Z. -C. Yi, C. -J. Liu, C. Miao, Y. Xin, S. -Q. Nie, Rare Met. 43 (2024) 3007, https://doi.org/10.1007/s12598-024-02692-y. doi: 10.1007/s12598-024-02692-y

    19. [19]

      F. Hong, Y. Li, X. Zhou, X. Zhu, Y. Zhai, C. Yang, Q. Huang, L. Chen, Y. Lu, L. Wang, et al., Nano Research Energy 4 (2025) e9120185, https://doi.org/10.26599/nre.2025.9120185. doi: 10.26599/nre.2025.9120185

    20. [20]

      W. Hawley, H. Meyer III, J. Li, Electrochim. Acta. 380 (2021) 138203, https://doi.org/10.1016/j.electacta.2021.138203. doi: 10.1016/j.electacta.2021.138203

    21. [21]

      B. Schumm, A. Dupuy, M. Lux, C. Girsule, S. Dörfler, F. Schmidt, M. Fiedler, M. Rosner, F. Hippauf, S. Kaskel, Adv. Energy Mater. 15 (2025) 2406011, https://doi.org/10.1002/aenm.202406011. doi: 10.1002/aenm.202406011

    22. [22]

      N. -Y. Kim, J. -H. Kim, H. Koo, J. Oh, J. -H. Pang, K. -D. Kang, S. -S. Chae, J. Lim, K. W. Nam, S. -Y. Lee, ACS Energy Lett. 9 (2024) 5688, https://doi.org/10.1021/acsenergylett.4c01690. doi: 10.1021/acsenergylett.4c01690

    23. [23]

      X. Hu, Q. Xia, F. Yue, X. He, Z. Mei, J. Wang, H. Xia, X. Huang, Acta Phys. Chim. Sin. 40 (2024) 2309046, https://doi.org/10.3866/pku.Whxb202309046. doi: 10.3866/pku.Whxb202309046

    24. [24]

      Y. Zheng, Y. Shen, J. Guo, J. Li, J. Wang, D. Ning, Y. Liu, Y. Huang, Y. Tang, Y. Deng, et al., Nano Research Energy 3 (2024) e9120118, https://doi.org/10.26599/nre.2024.9120118. doi: 10.26599/nre.2024.9120118

    25. [25]

      Z. Fang, Q. Duan, Q. Peng, Z. Wei, L. Jiang, J. Sun, Q. Wang, Green Chem. 25 (2023) 1546, https://doi.org/10.1039/D2GC04436F. doi: 10.1039/D2GC04436F

    26. [26]

      D. Kunwar, I. R. Vazquez, N. Jackson, Thin Solid Films 757 (2022) 139414, https://doi.org/10.1016/j.tsf.2022.139414. doi: 10.1016/j.tsf.2022.139414

    27. [27]

      H. -R. Yang, Y. -H. Huang, C. -F. Wang, T. -S. Chung, Desalination 566 (2023) 116934, https://doi.org/10.1016/j.desal.2023.116934. doi: 10.1016/j.desal.2023.116934

    28. [28]

      F. Aricò, Curr. Opin. Green Sustain. 21 (2020) 82, https://doi.org/10.1016/j.cogsc.2020.02.002. doi: 10.1016/j.cogsc.2020.02.002

    29. [29]

      E. Tocci, C. Rizzuto, F. Macedonio, E. Drioli, Ind. Eng. Chem. Res. 59 (2020) 5267, https://doi.org/10.1021/acs.iecr.9b06701. doi: 10.1021/acs.iecr.9b06701

    30. [30]

      N. A. Stini, P. L. Gkizis, C. G. Kokotos, Green Chem. 24 (2022) 6435, https://doi.org/10.1039/d2gc02332f. doi: 10.1039/d2gc02332f

    31. [31]

      W. Qiao, R. Zhang, Y. Wen, X. Wang, Z. Wang, G. Tang, M. Liu, H. Kang, Z. Said, J. -Y. Hwang, et al., J. Mater. Chem. A 12 (2024) 11235, https://doi.org/10.1039/D3TA07905H. doi: 10.1039/D3TA07905H

    32. [32]

      R. Gonçalves, S. Lanceros-Méndez, C. M. Costa, Electrochem. Commun. 135 (2022) 107210, https://doi.org/10.1016/j.elecom.2022.107210. doi: 10.1016/j.elecom.2022.107210

    33. [33]

      S. Lee, H. Koo, H. S. Kang, K. H. Oh, K. W. Nam, Polyms. 15 (2023) 4477, https://doi.org/10.3390/polym15234477. doi: 10.3390/polym15234477

    34. [34]

      W. Tang, N. Shen, X. Xiong, H. Liu, X. Sun, J. Guo, F. Jiang, T. Wang, Y. Ma, Y. Zhong, et al., Energy Mater. Adv. 5 (2024) 0084, https://doi.org/10.34133/energymatadv.0084. doi: 10.34133/energymatadv.0084

    35. [35]

      A. Figoli, T. Marino, S. Simone, E. Di Nicolò, X. M. Li, T. He, S. Tornaghi, E. Drioli, Green Chem. 16 (2014) 4034, https://doi.org/10.1039/C4GC00613E. doi: 10.1039/C4GC00613E

    36. [36]

      J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung, J. B. Ko, Y. M. Lee, C. Kim, Nano-Micro Lett. 15 (2023) 97, https://doi.org/10.1007/s40820-023-01072-y. doi: 10.1007/s40820-023-01072-y

    37. [37]

      J. H. Chang, M. W. Pin, I. Kim, S. Kim, S. Kim, S. Moon, J. Cho, S. Choi, B. Heo, Z. A. Chandio, et al., J. Energy Storage 83 (2024) 110729, https://doi.org/10.1016/j.est.2024.110729. doi: 10.1016/j.est.2024.110729

    38. [38]

      N. Kumano, Y. Yamaguchi, Y. Akimoto, A. Ohshima, H. Nakamura, M. Yamamura, J. Power Sources 591 (2024) 233883, https://doi.org/10.1016/j.jpowsour.2023.233883. doi: 10.1016/j.jpowsour.2023.233883

    39. [39]

      Y. Yang, Y. Jing, G. Liu, Coat. 15 (2025) 582, https://doi.org/10.3390/coatings15050582. doi: 10.3390/coatings15050582

    40. [40]

      Z. Liu, T. Dong, P. Mu, H. Zhang, W. Liu, G. Cui, Chem. Eng. J. 446 (2022) 136798, https://doi.org/10.1016/j.cej.2022.136798. doi: 10.1016/j.cej.2022.136798

    41. [41]

      J. Ethier, E. R. Antoniuk, B. Brettmann, Soft Matter 20 (2024) 5652, https://doi.org/10.1039/d4sm00590b. doi: 10.1039/d4sm00590b

    42. [42]

      N. Park, M. Lee, H. Jung, J. Nam, J. Power Sources 608 (2024) 234607, https://doi.org/10.1016/j.jpowsour.2024.234607. doi: 10.1016/j.jpowsour.2024.234607

    43. [43]

      D. Zapata Dominguez, J. Xu, Y. Boudjema, S. Ben Hadj Ali, F. M. Zanotto, A. A. Franco, J. Power Sources Adv. 26 (2024) 100141, https://doi.org/10.1016/j.powera.2024.100141. doi: 10.1016/j.powera.2024.100141

    44. [44]

      A. Huang, J. Xu, Y. Huang, G. Chu, M. Wang, L. Wang, Y. Sun, Z. Jiang, X. Zhu, Acta Phys. Chim. Sin. 41 (2025) 100037, https://doi.org/10.3866/pku.Whxb202408007. doi: 10.3866/pku.Whxb202408007

    45. [45]

      E. Favre, Q. T. Nguyen, R. Clement, J. Neel, Eur. Polym. J. 32 (1996) 303, https://doi.org/10.1016/0014-3057(95)00146-8. doi: 10.1016/0014-3057(95)00146-8

    46. [46]

      M. Okabe, R. Wada, M. Tazaki, T. Homma, Polym. J. 35 (2003) 798, https://doi.org/10.1295/polymj.35.798. doi: 10.1295/polymj.35.798

    47. [47]

      F. Gao, R. Bai, F. Ferlin, L. Vaccaro, M. Li, Y. Gu, Green Chem. 22 (2020) 6240, https://doi.org/10.1039/d0gc02149k. doi: 10.1039/d0gc02149k

    48. [48]

      Hansen, C. M. Hansen Solubility Parameters: A User's Handbook, 2nd Ed.; CRC Press: Boca Raton, 2007; pp. 6–7.

    49. [49]

      C. M. Hansen, Prog. Org. Coat. 51 (2004) 77, https://doi.org/10.1016/j.porgcoat.2004.05.004. doi: 10.1016/j.porgcoat.2004.05.004

    50. [50]

      V. R. Ravikumar, A. Schröder, S. Köhler, F. A. Çetinel, M. Schmitt, A. Kondrakov, F. Eberle, J. -O. Eichler-Haeske, D. Klein, B. Schmidt-Hansberg, ACS Appl. Energy Mater. 4 (2021) 696, https://doi.org/10.1021/acsaem.0c02575. doi: 10.1021/acsaem.0c02575

    51. [51]

      M. Lv, R. Zhao, Z. Hu, J. Yang, X. Han, Y. Wang, C. Wu, Y. Bai, Energy Environ. Sci. 17 (2024) 4871, https://doi.org/10.1039/D4EE00791C. doi: 10.1039/D4EE00791C

    52. [52]

      D. Zeng, C. Zhang, H. Chen, A. Zeng, J. Xu, Z. Shi, J. Xia, P. Chen, Z. Wang, K. Guo, Adv. Funct. Mater. 35 (2025) 2507831, https://doi.org/10.1002/adfm.202507831. doi: 10.1002/adfm.202507831

    53. [53]

      N. C. Hoyt, R. F. Savinell, J. S. Wainright, Chem. Eng. Sci. 144 (2016) 288, https://doi.org/10.1016/j.ces.2016.01.048. doi: 10.1016/j.ces.2016.01.048

    54. [54]

      M. Mourshed, H. Q. Nguyen, B. Shabani, Mater. Sci. Energy Technol. 6 (2023) 290, https://doi.org/10.1016/j.mset.2023.02.003. doi: 10.1016/j.mset.2023.02.003

    55. [55]

      C. A. Ramírez, Chem. Eng. Sci. 168 (2017) 339, https://doi.org/10.1016/j.ces.2017.04.037. doi: 10.1016/j.ces.2017.04.037

    56. [56]

      C. Li, X. Zhang, Z. Lv, K. Wang, X. Sun, X. Chen, Y. Ma, Chem. Eng. J. 414 (2021) 128781, https://doi.org/10.1016/j.cej.2021.128781. doi: 10.1016/j.cej.2021.128781

    57. [57]

      C. Gao, M. Guo, Y. Liu, D. Zhang, F. Gao, L. Sun, J. Li, X. Chen, M. Terrones, Y. Wang, Carbon 212 (2023) 118133, https://doi.org/10.1016/j.carbon.2023.118133. doi: 10.1016/j.carbon.2023.118133

    58. [58]

      M. E. Rosti, S. Takagi, Phys. Fluids 33 (2021) 083319, https://doi.org/10.1063/5.0063180. doi: 10.1063/5.0063180

    59. [59]

      C. Bao, H. Zhang, C. A. Wilkie, S. Bi, X. -Z. Tang, J. Wu, J. Yang, Carbon 107 (2016) 774, https://doi.org/10.1016/j.carbon.2016.06.097. doi: 10.1016/j.carbon.2016.06.097

    60. [60]

      M. Wang, D. Dang, A. Meyer, R. Arsenault, Y. -T. Cheng, J. Electrochem. Soc. 167 (2020) 100518, https://doi.org/10.1149/1945-7111/ab95c6. doi: 10.1149/1945-7111/ab95c6

    61. [61]

      J. Klemens, L. Schneider, E. C. Herbst, N. Bohn, M. Müller, W. Bauer, P. Scharfer, W. Schabel, Energy Technol. 10 (2022) 2100985, https://doi.org/10.1002/ente.202100985. doi: 10.1002/ente.202100985

    62. [62]

      J. Kumberg, M. Müller, R. Diehm, S. Spiegel, C. Wachsmann, W. Bauer, P. Scharfer, W. Schabel, Energy Technol. 7 (2019) 1900722, https://doi.org/10.1002/ente.201900722. doi: 10.1002/ente.201900722

    63. [63]

      V. Deprédurand, G. Castanet, F. Lemoine, Int. J. Heat Mass Transf. 53 (2010) 3495, https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.010. doi: 10.1016/j.ijheatmasstransfer.2010.04.010

    64. [64]

      M. G. Nugraha, R. Andersson, B. Andersson, Chem. Eng. Sci. 249 (2022) 117292, https://doi.org/10.1016/j.ces.2021.117292. doi: 10.1016/j.ces.2021.117292

    65. [65]

      P. Albrand, B. Lalanne, Chem. Eng. Sci. 280 (2023) 119011, https://doi.org/10.1016/j.ces.2023.119011. doi: 10.1016/j.ces.2023.119011

    66. [66]

      J. Lee, A. R. Jeon, H. J. Lee, U. Shin, Y. Yoo, H. -D. Lim, C. Han, H. Lee, Y. J. Kim, J. Baek, et al., Energy Environ. Sci. 16 (2023) 2924, https://doi.org/10.1039/D3EE00157A. doi: 10.1039/D3EE00157A

    67. [67]

      T. Lombardo, A. C. Ngandjong, A. Belhcen, A. A. Franco, Energy Storage Mater. 43 (2021) 337, https://doi.org/10.1016/j.ensm.2021.09.015. doi: 10.1016/j.ensm.2021.09.015

    68. [68]

      S. Jaiser, F. Anatolij, B. Michael, S. Philip, W. and Schabel, Dry. Technol. 35 (2017) 1266, https://doi.org/10.1080/07373937.2016.1248975. doi: 10.1080/07373937.2016.1248975

    69. [69]

      W. Pfleging, Nanophotonics 7 (2018) 549, https://doi.org/doi: 10.1515/nanoph-2017-0044.

    70. [70]

      K. Park, M. Ryu, Y. Jung, H. E. Yoo, S. Myeong, D. Lee, S. C. Kim, C. Kim, J. Kim, J. Kwon, et al., Batter. Supercaps 6 (2023) e202300170, https://doi.org/10.1002/batt.202300170. doi: 10.1002/batt.202300170

    71. [71]

      J. Hu, Y. Wang, D. Li, Y. -T. Cheng, J. Power Sources 397 (2018) 223, https://doi.org/10.1016/j.jpowsour.2018.06.103. doi: 10.1016/j.jpowsour.2018.06.103

    72. [72]

      X. Lu, A. Bertei, D. P. Finegan, C. Tan, S. R. Daemi, J. S. Weaving, K. B. O'Regan, T. M. M. Heenan, G. Hinds, E. Kendrick, et al., Nat. Commun. 11 (2020) 2079, https://doi.org/10.1038/s41467-020-15811-x. doi: 10.1038/s41467-020-15811-x

    73. [73]

      M. Nikpour, B. Liu, P. Minson, Z. Hillman, B. Mazzeo, D. Wheeler, Batteries 8 (2022) 107, https://doi.org/10.3390/batteries8090107. doi: 10.3390/batteries8090107

    74. [74]

      C. Li, Y. An, L. Wang, K. Wang, X. Sun, H. Zhang, X. Zhang, Y. Ma, Chem. Eng. J. 485 (2024) 149880, https://doi.org/10.1016/j.cej.2024.149880. doi: 10.1016/j.cej.2024.149880

    75. [75]

      A. M. Gaikwad, A. C. Arias, ACS Appl. Mater. Interfaces 9 (2017) 6390, https://doi.org/10.1021/acsami.6b14719. doi: 10.1021/acsami.6b14719

    76. [76]

      J. Zhang, Y. Zhai, Z. Zhao, J. He, W. Wei, J. Xiao, S. Wu, Q. -H. Yang, Acta Phys. Chim. Sin. 40 (2024) 2306006, https://doi.org/10.3866/PKU.WHXB202306006. doi: 10.3866/PKU.WHXB202306006

    77. [77]

      Z. Guo, C. Liu, B. Lu, J. Feng, Carbon 150 (2019) 32, https://doi.org/10.1016/j.carbon.2019.04.114. doi: 10.1016/j.carbon.2019.04.114

    78. [78]

      W. Haselrieder, B. Westphal, H. Bockholt, A. Diener, S. Höft, A. Kwade, Int. J. Adhes. Adhes. 60 (2015) 1, https://doi.org/10.1016/j.ijadhadh.2015.03.002. doi: 10.1016/j.ijadhadh.2015.03.002

    79. [79]

      J. Guo, S. Jin, X. Sui, X. Huang, Y. Xu, Y. Li, P. K. Kristensen, D. Wang, K. Pedersen, L. Gurevich, et al., J. Mater. Chem. A 11 (2023) 41, https://doi.org/10.1039/d2ta05960f. doi: 10.1039/d2ta05960f

    80. [80]

      F. Font, B. Protas, G. Richardson, J. M. Foster, J. Power Sources 393 (2018) 177, https://doi.org/10.1016/j.jpowsour.2018.04.097. doi: 10.1016/j.jpowsour.2018.04.097

    81. [81]

      R. Yang, H. Li, Q. Meng, W. Li, J. Wu, Y. Fang, C. Huang, Y. Cao, Acta Phys. Chim. Sin. 40 (2024) 2308053, https://doi.org/10.3866/pku.Whxb202308053. doi: 10.3866/pku.Whxb202308053

    82. [82]

      T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y. -S. Kang, J. -H. Park, S. M. Oh, J. Power Sources 215 (2012) 312, https://doi.org/10.1016/j.jpowsour.2012.04.103. doi: 10.1016/j.jpowsour.2012.04.103

    83. [83]

      Y. Kong, C. Li, Y. Xu, Y. An, S. Zhao, X. Zhang, S. Yi, Y. Gong, X. Sun, K. Wang, et al., Energy Mater. Adv. 6 (2025) 0180, https://doi.org/10.34133/energymatadv.0180. doi: 10.34133/energymatadv.0180

    84. [84]

      D. H. S. Tan, A. Banerjee, Z. Chen, Y. S. Meng, Nat. Nanotechnol. 15 (2020) 170, https://doi.org/10.1038/s41565-020-0657-x. doi: 10.1038/s41565-020-0657-x

    85. [85]

      A. Sarkar, R. May, Z. Valmonte, L. E. Marbella, Energy Adv. 1 (2022) 671, https://doi.org/10.1039/d2ya00161f. doi: 10.1039/d2ya00161f

    86. [86]

      L. Hille, M. P. Noecker, B. Ko, J. Kriegler, J. Keilhofer, S. Stock, M. F. Zaeh, J. Power Sources 556 (2023) 232478, https://doi.org/10.1016/j.jpowsour.2022.232478. doi: 10.1016/j.jpowsour.2022.232478

    87. [87]

      X. Zhu, B. Cao, C. Yan, C. Tang, A. Chen, Q. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100096, https://doi.org/10.1016/j.actphy.2025.100096. doi: 10.1016/j.actphy.2025.100096

    88. [88]

      Z. Tashrifi, M. M. Khanaposhtani, B. Larijani, M. Mahdavi, Adv. Synth. Catal. 362 (2020) 65, https://doi.org/10.1002/adsc.201901021. doi: 10.1002/adsc.201901021

    89. [89]

      G. Nyongombe, I. T. Bello, K. O. Otun, G. L. Kabongo, B. M. Mothudi, L. L. Noto, M. S. Dhlamini, Electrochim. Acta 419 (2022) 140386, https://doi.org/10.1016/j.electacta.2022.140386. doi: 10.1016/j.electacta.2022.140386

    90. [90]

      M. Wang, X. Dong, I. C. Escobar, Y. -T. Cheng, ACS Sustain. Chem. Eng. 8 (2020) 11046, https://doi.org/10.1021/acssuschemeng.0c02884. doi: 10.1021/acssuschemeng.0c02884

    91. [91]

      F. Heim, F. Langer, A. Paulus, T. Kreher, P. Birke, J. Power Sources 558 (2023) 232546, https://doi.org/10.1016/j.jpowsour.2022.232546. doi: 10.1016/j.jpowsour.2022.232546

    92. [92]

      C. Kang, C. Kim, S. -M. Lee, Y. Liu, J. -K. Kim, Electrochim. Acta 526 (2025) 146209, https://doi.org/10.1016/j.electacta.2025.146209. doi: 10.1016/j.electacta.2025.146209

    93. [93]

      O. Chernysh, V. Khomenko, I. Makyeyeva, V. Barsukov, Mater. Today 6 (2019) 42, https://doi.org/10.1016/j.matpr.2018.10.073. doi: 10.1016/j.matpr.2018.10.073

    94. [94]

      C. Liu, T. Li, H. Zhang, Z. Song, C. Qu, G. Hou, H. Zhang, C. Ni, X. Li, Sci. Bull. 65 (2020) 434, https://doi.org/10.1016/j.scib.2019.11.014. doi: 10.1016/j.scib.2019.11.014

    95. [95]

      R. Sliz, J. Valikangas, H. Silva Santos, P. Vilmi, L. Rieppo, T. Hu, U. Lassi, T. Fabritius, ACS Appl. Energy Mater. 5 (2022) 4047, https://doi.org/10.1021/acsaem.1c02923. doi: 10.1021/acsaem.1c02923

    96. [96]

      G. Yang, M. Zhang, I. Majeed, W. Fan, J. Zhao, Z. Zeng, ACS Sustain. Chem. Eng. 11 (2023) 14582, https://doi.org/10.1021/acssuschemeng.3c04231. doi: 10.1021/acssuschemeng.3c04231

    97. [97]

      J. Muzart, Tetrahedron 65 (2009) 8313, https://doi.org/10.1016/j.tet.2009.06.091. doi: 10.1016/j.tet.2009.06.091

    98. [98]

      D. L. Chinaglia, R. Gregorio Jr., J. C. Stefanello, R. A. Pisani Altafim, W. Wirges, F. Wang, R. Gerhard, J. Appl. Polym. Sci. 116 (2010) 785, https://doi.org/10.1002/app.31488. doi: 10.1002/app.31488

    99. [99]

      S. Perrone, F. Messa, A. Salomone, Eur. J. Org. Chem. 26 (2023) e202201494, https://doi.org/10.1002/ejoc.202201494. doi: 10.1002/ejoc.202201494

    100. [100]

      F. Valentini, G. Brufani, B. Di Erasmo, L. Vaccaro, Curr. Opin. Green Sustain. 36 (2022) 100634, https://doi.org/10.1016/j.cogsc.2022.100634. doi: 10.1016/j.cogsc.2022.100634

    101. [101]

      S. M. Aschmann, E. C. Tuazon, R. Atkinson, J. Phys. Chem. A 109 (2005) 2282, https://doi.org/10.1021/jp0446938. doi: 10.1021/jp0446938

    102. [102]

      M. R. Gumbmann, W. E. Gagne, S. N. Williams, Toxicol. Appl. Pharmacol. 12 (1968) 360, https://doi.org/10.1016/0041-008x(68)90145-2. doi: 10.1016/0041-008x(68)90145-2

    103. [103]

      J. Chang, J. Zuo, L. Zhang, G. S. O'Brien, T. -S. Chung, J. Membrane Sci. 539 (2017) 295, https://doi.org/10.1016/j.memsci.2017.06.002. doi: 10.1016/j.memsci.2017.06.002

    104. [104]

      C. Chen, V. Reddy Tatagari, H. Lin, L. Shaw, J. Energy Chem. 78 (2023) 240, https://doi.org/10.1016/j.jechem.2022.12.006. doi: 10.1016/j.jechem.2022.12.006

    105. [105]

      M. Rahman, M. Hoq, H. Shin, Electrochim. Acta 508 (2024) 145225, https://doi.org/10.1016/j.electacta.2024.145225. doi: 10.1016/j.electacta.2024.145225

    106. [106]

      A. Jordan, C. G. J. Hall, L. R. Thorp, H. F. Sneddon, Chem. Rev. 122 (2022) 6749, https://doi.org/10.1021/acs.chemrev.1c00672. doi: 10.1021/acs.chemrev.1c00672

    107. [107]

      J. Sherwood, M. De bruyn, A. Constantinou, L. Moity, C. R. McElroy, T. J. Farmer, T. Duncan, W. Raverty, A. J. Hunt, J. H. Clark, Chem. Com. 50 (2014) 9650, https://doi.org/10.1039/C4CC04133J. doi: 10.1039/C4CC04133J

    108. [108]

      D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-Shehada, P. J. Dunn, Green Chem. 18 (2016) 288, https://doi.org/10.1039/c5gc01008j. doi: 10.1039/c5gc01008j

    109. [109]

      C. Geng, X. Wu, H. Yu, X. Li, Z. Zhou, Z. Ren, Fuel 351 (2023) 128986, https://doi.org/10.1016/j.fuel.2023.128986. doi: 10.1016/j.fuel.2023.128986

    110. [110]

      H. Zhou, B. Pei, Q. Fan, F. Xin, M. S. Whittingham, J. Electrochem. Soc. 168 (2021)https://doi.org/10.1149/1945-7111/abf87d. doi: 10.1149/1945-7111/abf87d

    111. [111]

      F. Russo, F. Galiano, F. Pedace, F. Aricò, A. Figoli, ACS Sustain. Chem. Eng. 8 (2020) 659, https://doi.org/10.1021/acssuschemeng.9b06496. doi: 10.1021/acssuschemeng.9b06496

    112. [112]

      J. Hu, C. Kim, P. Halasz, J. F. Kim, J. Kim, G. Szekely, J. Membrane Sci. 619 (2021) 118513, https://doi.org/10.1016/j.memsci.2020.118513. doi: 10.1016/j.memsci.2020.118513

    113. [113]

      H. Wen, S. Nan, D. Wu, Q. Sun, Y. Tong, J. Zhang, S. Jin, W. Shen, Ind. Eng. Chem. Res. 62 (2023) 20473, https://doi.org/10.1021/acs.iecr.3c02305. doi: 10.1021/acs.iecr.3c02305

    114. [114]

      T. Lemaoui, A. S. Darwish, G. Almustafa, A. Boublia, P. R. Sarika, N. A. Jabbar, T. Ibrahim, P. Nancarrow, K. K. Yadav, A. M. Fallatah, et al., Energy Storage Mater. 59 (2023) 102795, https://doi.org/10.1016/j.ensm.2023.102795. doi: 10.1016/j.ensm.2023.102795

    115. [115]

      C. Xiouras, F. Cameli, G. L. Quilló, M. E. Kavousanakis, D. G. Vlachos, G. D. Stefanidis, Chem. Rev. 122 (2022) 13006, https://doi.org/10.1021/acs.chemrev.2c00141. doi: 10.1021/acs.chemrev.2c00141

    116. [116]

      A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater. 6 (2016) 1600655, https://doi.org/10.1002/aenm.201600655. doi: 10.1002/aenm.201600655

    117. [117]

      C. Sui, Z. Jiang, G. Higueros, D. Carlson, P. -C. Hsu, Nano Research Energy 3 (2024) e9120102, https://doi.org/10.26599/nre.2023.9120102. doi: 10.26599/nre.2023.9120102

    118. [118]

      Y. Li, T. Sun, C. Yang, Y. Su, C. Liu, X. Zhu, Y. Wang, S. Ma, X. Wang, Y. Zhai, et al., eScience 5 (2025) 100405, https://doi.org/10.1016/j.esci.2025.100405. doi: 10.1016/j.esci.2025.100405

    119. [119]

      C. Yang, Y. Su, W. Su, S. Ma, X. Zhu, S. Wu, Y. Li, L. Chen, D. Cao, M. Wang, et al., Energy Storage Mater. 75 (2025) 104019, https://doi.org/10.1016/j.ensm.2025.104019. doi: 10.1016/j.ensm.2025.104019

    120. [120]

      M. Ali, T. Sarwar, N. M. Mubarak, R. R. Karri, L. Ghalib, A. Bibi, S. A. Mazari, Sci. Rep. 14 (2024) 14730, https://doi.org/10.1038/s41598-024-65499-y. doi: 10.1038/s41598-024-65499-y

    121. [121]

      I. Malashin, V. Tynchenko, A. Gantimurov, V. Nelyub, A. Borodulin, Polymers 17 (2025) 491, https://doi.org/10.3390/polym17040491. doi: 10.3390/polym17040491

    122. [122]

      Y. Tian, X. Wang, Y. Liu, W. Hu, Chem. Eng. Sci. 284 (2024) 119482, https://doi.org/10.1016/j.ces.2023.119482. doi: 10.1016/j.ces.2023.119482

    123. [123]

      A. Eslamimanesh, F. Gharagheizi, A. H. Mohammadi, D. Richon, Chem. Eng. Sci. 66 (2011) 3039, https://doi.org/10.1016/j.ces.2011.03.016. doi: 10.1016/j.ces.2011.03.016

    124. [124]

      H. Ziaee, S. M. Hosseini, A. Sharafpoor, M. Fazavi, M. M. Ghiasi, A. Bahadori, J. Taiwan Inst. Chem. 46 (2015) 205, https://doi.org/10.1016/j.jtice.2014.09.015. doi: 10.1016/j.jtice.2014.09.015

    125. [125]

      S. Boobier, D. R. J. Hose, A. J. Blacker, B. N. Nguyen, Nat. Commun. 11 (2020) 5753, https://doi.org/10.1038/s41467-020-19594-z. doi: 10.1038/s41467-020-19594-z

    126. [126]

      M. Duquesnoy, T. Lombardo, F. Caro, F. Haudiquez, A. C. Ngandjong, J. Xu, H. Oularbi, A. A. Franco, NPJ Comput. Mater. 8 (2022) 161, https://doi.org/10.1038/s41524-022-00819-2. doi: 10.1038/s41524-022-00819-2

    127. [127]

      D. E. Galvez-Aranda, F. Fernandez, A. A. Franco, ACS Appl. Mater. Interfaces 17 (2025) 32150, https://doi.org/10.1021/acsami.4c23103. doi: 10.1021/acsami.4c23103

    128. [128]

      U. Vijay, D. E. Galvez-Aranda, F. M. Zanotto, T. Le-Dinh, M. Alabdali, M. Asch, A. A. Franco, Energy Storage Mater. 75 (2025) 103883, https://doi.org/10.1016/j.ensm.2024.103883. doi: 10.1016/j.ensm.2024.103883

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  11
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2026-04-15
  • 收稿日期:  2025-07-21
  • 接受日期:  2025-11-19
  • 修回日期:  2025-11-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章