高倍率长寿命P2型钠离子电池正极材料

李培才 王绪斌 张庆华 王伯文 容晓晖 胡勇胜 李忠涛

引用本文: 李培才, 王绪斌, 张庆华, 王伯文, 容晓晖, 胡勇胜, 李忠涛. 高倍率长寿命P2型钠离子电池正极材料[J]. 物理化学学报, 2026, 42(5): 100214. doi: 10.1016/j.actphy.2025.100214 shu
Citation:  Peicai Li, Xubin Wang, Qinghua Zhang, Bowen Wang, Xiaohui Rong, Yong-Sheng Hu, Zhongtao Li. High-rate and long-cycling P2-type cathode material for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(5): 100214. doi: 10.1016/j.actphy.2025.100214 shu

高倍率长寿命P2型钠离子电池正极材料

    通讯作者: Email: rong@iphy.ac.cn (容晓晖); yshu@iphy.ac.cn (胡勇胜); liztao@upc.edu.cn (李忠涛)
摘要: 钠离子电池在启动电源、储能调频等功率型应用中潜力显著,其发展亟需兼具高倍率性能和长循环稳定性的正极材料。传统P2-Na0.67Ni0.33Mn0.67O2材料虽具有高能量密度优势,但在高电压下会出现结构退化,影响其作为功率型电源的长期可靠性。在此,本研究采用多元素掺杂的策略,设计了P2-Na0.67Zn0.05Ni0.23Fe0.1Mn0.57Ti0.05O2正极材料。该材料通过抑制高电压相变,提升了结构稳定性,在3C高倍率下循环300次后仍具有85%以上的容量保持率,展现出优异的倍率和循环性能,为功率型钠离子电池正极的设计提供了思路。

English

    1. [1]

      D. Miranda, R. Goncalves, S. Wuttke, C.M. Costa, S. Lanceros-Méndez, Adv. Energy Mater. 13 (2023) 2203874, https://doi.org/10.1002/aenm.202203874. doi: 10.1002/aenm.202203874

    2. [2]

      C. Sui, Z.Y. Jiang, G. Higueros, D. Carlson, P. Hsu, Nano Res. Energy 3 (2024) e9120102, https://doi.org/10.26599/NRE.2023.9120102. doi: 10.26599/NRE.2023.9120102

    3. [3]

      Y.Y. Wang, X.Q. Zhang, M.Y. Zhou, J.Q. Huang, Nano Res. Energy 2 (2023) e9120046, https://doi.org/10.26599/NRE.2023.9120046. doi: 10.26599/NRE.2023.9120046

    4. [4]

      C. Su, X. Gao, K.J. Liu, Y.H. Dai, H.B. Dong, Y.Y. Liu, J.Y. Zhu, Q.X. Zhang, H.Z. He, G.J. He, Nano Res. Energy. 3 (2024) e9120094, https://doi.org/10.26599/NRE.2023.9120094. doi: 10.26599/NRE.2023.9120094

    5. [5]

      H. Chen, D.Y. Yang, G. Huang, X. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2305059. https://doi.org/10.3866/PKU.WHXB202305059. doi: 10.3866/PKU.WHXB202305059

    6. [6]

      X.C. Hu, Q.Y. Xia, F. Yue, X.Y. He, Z.H. Mei, J.S. Wang, H. Xia, X.D. Huang, Acta Phys. -Chim. Sin. 40 (2024) 2309046. https://doi.org/10.3866/PKU.WHXB202309046. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Z.Y. Qu, X.Y. Zhang, R. Xiao, Z.H. Sun, F. Li, Acta Phys. -Chim. Sin. 39 (2023) 2301019, https://doi.org/10.3866/PKU.WHXB202301019. doi: 10.3866/PKU.WHXB202301019

    8. [8]

      S. Chavan, B. Venkateswarlu, R. Prabakaran, M. Salman, S.W. Joo, G.S. Choi, S.C. Kim, Energy Storage 72 (2023) 108569, https://doi.org/10.1016/j.est.2023.108569. doi: 10.1016/j.est.2023.108569

    9. [9]

      L.S.D. Vasconcelos, R. Xu, Z. Xu, J. Zhang, N. Sharma, R.S. Shah, J.X. Han, X.M. He, X.Y. Wu, H. Sun, et al., Chem. Rev. 122 (2022) 13043, https://doi.org/10.1021/acs.chemrev.2c00002. doi: 10.1021/acs.chemrev.2c00002

    10. [10]

      J.Y. Hwang, S.K. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529, https://doi.org/10.1039/C6CS00776G. doi: 10.1039/C6CS00776G

    11. [11]

      Y.H. Liu, Y.H. Zhang, J. Ma, J.W. Zhao, X. Li, G.L. Cui, Chem. Mater. 36 (2024) 54, https://doi.org/10.1021/acs.chemmater.3c02115. doi: 10.1021/acs.chemmater.3c02115

    12. [12]

      W.H. Zuo, A. Innocenti, M. Zarrabeitia, D. Bresser, Y. Yang, S. Passerini, Acc. Chem. Res. 56 (2023) 284, https://doi.org/10.1021/acs.accounts.2c00690. doi: 10.1021/acs.accounts.2c00690

    13. [13]

      L. Li, Y. Zheng, S.L. Zhang, J.P. Yang, Z.P. Shao, Z.P. Guo, Energy Environ. Sci. 11 (2018), 2310, https://doi.org/10.1039/c8ee01023d. doi: 10.1039/c8ee01023d

    14. [14]

      D.H. Lee, J. Xu, Y.S. Meng, Phys. Chem. Chem. Phys. 15 (2013) 3304, https://doi.org/10.1039/c2cp44467d. doi: 10.1039/c2cp44467d

    15. [15]

      J.L. Zhang, W.H. Wang, W. Wang, W.S. Wang, B.H. Li, ACS Appl. Mater. Interfaces 11 (2019) 22051, https://doi.org/10.1021/acsami.9b03937. doi: 10.1021/acsami.9b03937

    16. [16]

      P.F. Wang, H.R. Yao, X.Y. Liu, Y.X. Yin, J.N. Zhang, Y.R. Wen, X.Q. Yu, L. Gu, Y.G. Guo, Sci. Adv. 4 (2018) eaar6018, https://doi.org/10.1126/sciadv.aar6018. doi: 10.1126/sciadv.aar6018

    17. [17]

      P.F. Wang, Y. You, Y.X. Yin, Y.S. Wang, L.J. Wan, L. Gu, Y.G. Guo, Angew. Chem. Int. Ed. 55 (2016) 7445, https://doi.org/10.1002/anie.201602202. doi: 10.1002/anie.201602202

    18. [18]

      S. B, Ma, P.C. Zou, H.L. Xin, Mater. Today Energy 38 (2023) 101446, https://doi.org/10.1016/j.mtener.2023.101446. doi: 10.1016/j.mtener.2023.101446

    19. [19]

      W.H. Zuo, F.C. Ren, Q.H. Li, X.H. Wu, F. Fang, X.Q. Yu, H. Li, Y. Yang, Nano Energy 78 (2020) 105285, https://doi.org/10.1016/j.nanoen.2020.105285. doi: 10.1016/j.nanoen.2020.105285

    20. [20]

      M. Ren, S. Zhao, S.N. Gao, T. Zhang, M.C. Hou, W. Zhang, K. Feng, J. Zhong, W.B. Hua, S. Indris, et al., J. Am. Chem. Soc. 145 (2022) 224, https://doi.org/10.1021/jacs.2c09725. doi: 10.1021/jacs.2c09725

    21. [21]

      R. Zhang, C.Y. Wang, P.C. Zou, R.Q. Lin, L. Ma, L. Yin, T.Y. Li, W.Q. Xu, H. Jia, Q.Y. Li, et al., Nature 610 (2022) 67, https://doi.org/10.1038/s41586-022-05115-z. doi: 10.1038/s41586-022-05115-z

    22. [22]

      X.B. Wang; W.F. Yang, Y. Yang, J. Zhang, H. Guo, B.W. Wang, Y.X. Lu, R. Yu, L.Q. Chen, Y.S. Hu, Adv. Mater. 37 (2025) e09032, https://doi.org/10.1002/adma.202509032. doi: 10.1002/adma.202509032

    23. [23]

      N. Ahmad, L. Yu, M. Muzaffar, B. Peng, Z. Tao, S. Khan, A. Rahman, J.C. Liang, Z.X. Jiang, X.Y. Ma, et al., Adv. Energy Mater. 15 (2025) 2404093, https://doi.org/10.1002/aenm.202404093. doi: 10.1002/aenm.202404093

    24. [24]

      C. Cheng, H.L. Hu, C. Yuan, X. Xia, J. Mao, K.H. Dai, L. Zhang, Energy Storage Mater. 52 (2022) 10, https://doi.org/10.1016/j.ensm.2022.07.030. doi: 10.1016/j.ensm.2022.07.030

    25. [25]

      T. Zhang, M. Ren, Y.H. Huang, F. Li, W.B. Hua, S. Indris, F.J. Li, Angew. Chem. Int. Ed. 63 (2024) e202316949, https://doi.org/10.1002/anie.202316949. doi: 10.1002/anie.202316949

    26. [26]

      D. Chen, H.L. Zhang, H.Y. Yang, C.Y. Yu, Y. Bai, Appl. Phys. Lett. 124 (2024) 083904, https://doi.org/10.1063/5.0188032. doi: 10.1063/5.0188032

    27. [27]

      Y.X. Zou, X.G. Fu, Z.B. Zhao, B.Q. Chen, Z.B. Zhu, W.Y. Zuo, L. Zhang, W.X. Guo, Q.C. Xu, M.D. Ye, Nano Energy 142 (2025) 111179, https://doi.org/10.1016/j.nanoen.2025.111179. doi: 10.1016/j.nanoen.2025.111179

    28. [28]

      B. Peng, Y.X. Chen, F. Wang, Z.H. Sun, L.P. Zhao, X.L. Zhang, W.T. Wang, G.Q. Zhang, Adv. Mater. 34 (2022) 2103210, https://doi.org/10.1002/adma.202103210. doi: 10.1002/adma.202103210

    29. [29]

      P. Liu, T.T. Zhan, X.C. Chen, H.X. Li, Q.L. Wang, W.B. Lu, L.F. Jiao, J. Phys. Chem. C 127 (2023) 20632, https://doi.org/10.1021/acs.jpcc.3c05873. doi: 10.1021/acs.jpcc.3c05873

    30. [30]

      G.L. Wan, Y.X. Chen, B. Peng, L. Yu, X.Y. Ma, N. Ahmad, G.Q. Zhang, Battery Energy 2 (2023) 20230022, https://doi.org/10.1002/bte2.20230022. doi: 10.1002/bte2.20230022

    31. [31]

      S. Sun, X. Zhu, H.J. Dong, Y.H. Feng, Y.W. Tang, M.Y. Li, S.W. Xu, H.S. Xin, C.S. Ma, G.X. Wei, et al., Adv. Funct. Mater. 35 (2025) 2503900, https://doi.org/10.1002/adfm.202503900. doi: 10.1002/adfm.202503900

    32. [32]

      S.W. Jeong, I.K. Kim, S. Eom, H. Hwang, Y.H. Jung, J.H. Kim, Energy Storage Mater. 75 (2025) 104041, https://doi.org/10.1016/j.ensm.2025.104041. doi: 10.1016/j.ensm.2025.104041

    33. [33]

      S.Y. Chu, C.C. Zhang, H. Xu, S.H. Guo, P. Wang, H.S. Zhou, Angew. Chem. Int. Ed. 60 (2021) 13366, https://doi.org/10.1002/anie.202100917. doi: 10.1002/anie.202100917

    34. [34]

      H.J. Kim, N. Voronina, J.H. Yu, V.A. Shevchenko, O.A. Drozhzhin, K.E. Ryou, E.Y. Jeong, A.Y. Kim, H.J. Shin, H.J. Jung, et al., Energy Storage Mater. 74 (2025) 103924, https://doi.org/10.1016/j.ensm.2024.103924. doi: 10.1016/j.ensm.2024.103924

    35. [35]

      Z.L. Hu, Y.S. Niu, X.H. Rong, Y.S. Hu, Acta Phys. -Chim. Sin. 40 (2024), 2306005, https://doi.org/10.3866/PKU.WHXB202306005. doi: 10.3866/PKU.WHXB202306005

    36. [36]

      Q. Pei, M.L. Lu, Z.L. Liu, D. Li, X.F. Rao, X.L. Liu, S.W. Zhong, ACS Appl. Energy Mater. 5 (2022), 1953, https://doi.org/10.1021/acsaem.1c03466. doi: 10.1021/acsaem.1c03466

    37. [37]

      Z.Y. Li, R. Gao, L.M. Sun, Z.B. Hu, X.F. Liu, Electrochim. Acta. 223 (2017) 92, https://doi.org/10.1016/j.electacta.2016.12.019. doi: 10.1016/j.electacta.2016.12.019

    38. [38]

      G.Y. Pang, Y. Gu, H.X. Zhuo, M. Li, K. Wang, J. Wang, D.N. Wang, J.T. Hu, B. Xiao, W. Zhuang, Adv. Funct. Mater. 35 (2025) 2505824, https://doi.org/10.1002/adfm.202505824. doi: 10.1002/adfm.202505824

    39. [39]

      X. Wang, H.S. Li, Z.Q. Dai, J.M. Li, Y.D. Song, B.Y. Han, X.X. Wang, J.J. Chen, C.L. Dong, Z.Y. Mao, et al., Energy Storage Mater. 79 (2025) 104345, https://doi.org/10.1016/j.ensm.2025.104345. doi: 10.1016/j.ensm.2025.104345

    40. [40]

      X.X. Yin, L.T. Yang, W.G. Zhao, Z.Y. Hu, J. Xu, Y.Y. Du, Z.Q. Liu, Y.N. Sun, Y.H. Deng, J. Wang, et al., Adv. Energy Mater. (2025) 2406184, https://doi.org/10.1002/aenm.202406184. doi: 10.1002/aenm.202406184

    41. [41]

      H.J. Dong, H.L. Liu, Y.J. Guo, Y.H. Feng, X. Zhu, S.W. Xu, F.X. Sui, L.Z. Yu, M.T. Liu, J.Z. Guo, et al., J. Am. Chem. Soc. 146 (2024) 22335, https://doi.org/10.1021/jacs.4C04814. doi: 10.1021/jacs.4C04814

    42. [42]

      Z. Lian, H. Wang, Z. Chen, C.L. Xu, H. Yu, F.X. Ding, H.C. Mao, D. Yu, Y. Yang, B. Wang, et al., ACS Energy Lett. 10 (2025) 1517, https://doi.org/10.1021/acsenergylett.4c03332. doi: 10.1021/acsenergylett.4c03332

    43. [43]

      Y.H. Feng, M.T. Liu, J.X. Wu, C. Yang, Q. Liu, Y.W. Tang, X. Zhu, G.X. Wei, H.J. Dong, X.Y. Fan, et al., Angew. Chem. Int. Ed. 63 (2024), e202403585, https://doi.org/10.1002/anie.202403585. doi: 10.1002/anie.202403585

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  349
  • HTML全文浏览量:  32
文章相关
  • 发布日期:  2026-05-15
  • 收稿日期:  2025-08-19
  • 接受日期:  2025-10-28
  • 修回日期:  2025-10-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章