MolUNet++:自适应粒度显式子结构与互作感知分子表示学习

徐凡丁 杨志伟 武思睿 苏武 王力卓 孟德宇 龙建刚

引用本文: 徐凡丁, 杨志伟, 武思睿, 苏武, 王力卓, 孟德宇, 龙建刚. MolUNet++:自适应粒度显式子结构与互作感知分子表示学习[J]. 物理化学学报, 2026, 42(5): 100209. doi: 10.1016/j.actphy.2025.100209 shu
Citation:  Fanding Xu, Zhiwei Yang, Sirui Wu, Wu Su, Lizhuo Wang, Deyu Meng, Jiangang Long. MolUNet++: Adaptive-grained explicit substructure and interaction aware molecular representation learning[J]. Acta Physico-Chimica Sinica, 2026, 42(5): 100209. doi: 10.1016/j.actphy.2025.100209 shu

MolUNet++:自适应粒度显式子结构与互作感知分子表示学习

    通讯作者: yzws-123@xjtu.edu.cn (杨志伟); dymeng@mail.xjtu.edu.cn (孟德宇); Email: jglong@xjtu.edu.cn (龙建刚)
摘要: 分子表示学习是人工智能驱动药物研发中的关键任务。尽管图神经网络(GNN)在该领域已表现出优异性能并被广泛应用,但高效提取并显式解析官能团仍是一项挑战。为此,我们提出了MolUNet++模型,该模型通过分子边收缩池化(Molecular Edge Shrinkage Pooling,MESPool)实现分层子结构提取,利用嵌套式UNet框架进行多粒度特征融合,并结合子结构掩蔽解释器实现分子片段的定量分析。我们在分子性质预测、药物-药物相互作用(Drug-Drug Interaction,DDI)预测及药物-靶标相互作用(Drug-Target Interaction,DTI)预测等任务上对MolUNet++进行了评估。实验结果表明,MolUNet++不仅在预测性能上优于传统GNN模型,同时展现出显式、直观且符合化学逻辑的可解释性,为药物设计与优化领域的研究者提供了有价值的启示与工具。

English

    1. [1]

      Z. Guo, K. Guo, B. Nan, Y. Tian, R.G. Iyer, Y. Ma, O. Wiest, X. Zhang, W. Wang, C. Zhang, et al., arXiv: 2207.04869, https://doi.org/10.48550/arXiv.2207.04869.

    2. [2]

      T.-H. Nguyen-Vo, P. Teesdale-Spittle, J.E. Harvey, B.P. Nguyen, Memetic Comput. 16 (2024) 519, https://doi.org/10.1007/s12293-024-00414-6. doi: 10.1007/s12293-024-00414-6

    3. [3]

      L. David, A. Thakkar, R. Mercado, O. Engkvist, J. Cheminform. 12 (2020) 56, https://doi.org/10.1186/s13321-020-00460-5. doi: 10.1186/s13321-020-00460-5

    4. [4]

      Y. Harnik, A. Milo, Chem. Sci. 15 (2024) 5052, https://doi.org/10.1039/d4sc90043j. doi: 10.1039/d4sc90043j

    5. [5]

      N. Wen, G. Liu, J. Zhang, R. Zhang, Y. Fu, X. Han, J. Cheminform. 14 (2022) 71, https://doi.org/10.1186/s13321-022-00650-3. doi: 10.1186/s13321-022-00650-3

    6. [6]

      D. Baptista, J. Correia, B. Pereira, M. Rocha, J. Integr. Bioinform. 19 (2022) 20220006, https://doi.org/10.1515/jib-2022-0006. doi: 10.1515/jib-2022-0006

    7. [7]

      R. Zhang, Y. Lin, Y. Wu, L. Deng, H. Zhang, M. Liao, Y. Peng, Brief. Bioinform. 25 (2024) bbae298, https://doi.org/10.1093/bib/bbae298. doi: 10.1093/bib/bbae298

    8. [8]

      K.V. Chuang, L.M. Gunsalus, M.J. Keiser, J. Med. Chem. 63 (2020) 8705, https://doi.org/10.1021/acs.jmedchem.0c00385. doi: 10.1021/acs.jmedchem.0c00385

    9. [9]

      D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen, D. Cao, J. Wu, T. Hou, J. Cheminform. 13 (2021) 12, https://doi.org/10.1186/s13321-020-00479-8. doi: 10.1186/s13321-020-00479-8

    10. [10]

      Y. Wang, Z. Li, A. Barati Farimani, Graph Neural Networks for Molecules, in Machine Learning in Molecular Sciences, C. Qu, H. Liu, Eds., Springer: Cham, Switzerland, 2023, pp. 21–66, https://doi.org/10.1007/978-3-031-37196-7_2.

    11. [11]

      O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, T. Langer, Drug Discov. Today Technol. 37 (2020) 1, https://doi.org/10.1016/j.ddtec.2020.11.009. doi: 10.1016/j.ddtec.2020.11.009

    12. [12]

      Z. Li, K. Meidani, P. Yadav, A. Barati Farimani, J. Chem. Phys. 156 (2022) 144103, https://doi.org/10.1063/5.0083060. doi: 10.1063/5.0083060

    13. [13]

      Z. Zhang, L. Chen, F. Zhong, D. Wang, J. Jiang, S. Zhang, H. Jiang, M. Zheng, X. Li, Curr. Opin. Struct. Biol. 73 (2022) 102327, https://doi.org/10.1016/j.sbi.2021.102327. doi: 10.1016/j.sbi.2021.102327

    14. [14]

      Z. Wu, J. Wang, H. Du, D. Jiang, Y. Kang, D. Li, P. Pan, Y. Deng, D. Cao, C.-Y. Hsieh, et al., Nat. Commun. 14 (2023) 2585, https://doi.org/10.1038/s41467-023-38192-3. doi: 10.1038/s41467-023-38192-3

    15. [15]

      A.Z. Dudek, T. Arodz, J. Gálvez, Comb. Chem. High Throughput Screen. 9 (2006) 213, https://doi.org/10.2174/138620706776055539. doi: 10.2174/138620706776055539

    16. [16]

      Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Energy Storage Mater. 31 (2020) 434, https://doi.org/10.1016/j.ensm.2020.06.033. doi: 10.1016/j.ensm.2020.06.033

    17. [17]

      Y. Liu, X. Zou, Z. Yang, S. Shi, J. Chin. Ceram. Soc. 50 (2022) 863, https://doi.org/10.14062/j.issn.0454-5648.20220093. doi: 10.14062/j.issn.0454-5648.20220093

    18. [18]

      Y. Wang, W. Hou, N. Sheng, Z. Zhao, J. Liu, L. Huang, J. Wang, Artif. Intell. Rev. 57 (2024) 294, https://doi.org/10.1007/s10462-024-10918-9. doi: 10.1007/s10462-024-10918-9

    19. [19]

      D. Mesquita, A. Souza, S. Kaski, Adv. Neural Inf. Process. Syst. 33 (2020) 2220, https://doi.org/10.48550/arXiv.2010.11418. doi: 10.48550/arXiv.2010.11418

    20. [20]

      D. Grattarola, D. Zambon, F.M. Bianchi, C. Alippi, IEEE Trans. Neural Netw. Learn. Syst. 35 (2022) 2708, https://doi.org/10.1109/TNNLS.2022.3190922. doi: 10.1109/TNNLS.2022.3190922

    21. [21]

      C. Liu, Y. Zhan, J. Wu, C. Li, B. Du, W. Hu, T. Liu, D. Tao, Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities, in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI 2023), 2023, pp. 6712–6722, https://doi.org/10.24963/ijcai.2023/752.

    22. [22]

      F. Xu, Z. Yang, L. Wang, D. Meng, J. Long, Brief. Bioinform. 25 (2024) bbad423, https://doi.org/10.1093/bib/bbad423. doi: 10.1093/bib/bbad423

    23. [23]

      Z. Zhou, M.M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, UNet++: A Nested U-Net Architecture for Medical Image Segmentation, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer: Cham, Switzerland, 2018, pp. 3–11, https://link.springer.com/chapter/10.1007/978-3-030-00889-5_1.

    24. [24]

      D.J. Pearce, An Improved Algorithm for Finding the Strongly Connected Components of a Directed Graph, (2005), https://api.semanticscholar.org/CorpusID:7781255.

    25. [25]

      O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, Springer: Cham, Switzerland, 2015, pp. 234–241, https://doi.org/10.1007/978-3-319-24574-4_28.

    26. [26]

      H. Gao, S. Ji, IEEE Trans. Pattern Anal. Mach. Intell. 44 (2022) 4948, https://doi.org/10.1109/TPAMI.2021.3081010. doi: 10.1109/TPAMI.2021.3081010

    27. [27]

      C. Cangea, P. Veličković, N. Jovanović, T. Kipf, P. Liò, arXiv: 1811.01287, https://doi.org/10.48550/arXiv.1811.01287.

    28. [28]

      G. Corso, L. Cavalleri, D. Beaini, P. Liò, P. Veličković, Adv. Neural Inf. Process. Syst. 33 (2020) 13260, https://doi.org/10.48550/arXiv.2004.05718. doi: 10.48550/arXiv.2004.05718

    29. [29]

      W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, J. Leskovec, arXiv: 1905.12265, https://doi.org/10.48550/arXiv.1905.12265.

    30. [30]

      Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, Y. Shen, Adv. Neural Inf. Process. Syst. 33 (2020) 5812, https://proceedings.neurips.cc/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf. https://proceedings.neurips.cc/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf

    31. [31]

      R. Sun, H. Dai, A.W. Yu, Adv. Neural Inf. Process. Syst. 35 (2022) 12096, https://dl.acm.org/doi/10.5555/3600270.3601149. doi: 10.5555/3600270.3601149

    32. [32]

      S. Zhang, Z. Yan, Y. Huang, L. Liu, D. He, W. Wang, X. Fang, X. Zhang, F. Wang, H. Wu, et al., Bioinformatics 38 (2022) 3444, https://doi.org/10.1093/bioinformatics/btac342. doi: 10.1093/bioinformatics/btac342

    33. [33]

      W. Lin, C.C.A. Fung, ACS Omega 9 (2024) 20832, https://doi.org/10.1021/acsomega.3c09512. doi: 10.1021/acsomega.3c09512

    34. [34]

      E. Inae, G. Liu, M. Jiang, arXiv: 2309.04589, https://doi.org/10.48550/arXiv.2309.04589.

    35. [35]

      B. Fabian, T. Edlich, H. Gaspar, M. Segler, J. Meyers, M. Fiscato, M. Ahmed, arXiv: 2011.13230, https://doi.org/10.48550/arXiv.2011.13230.

    36. [36]

      Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Natl. Sci. Rev. 10 (2023) nwad125, https://doi.org/10.1093/nsr/nwad125. doi: 10.1093/nsr/nwad125

    37. [37]

      Y. Liu, S. Ma, Z. Yang, X. Zou, S. Shi, J. Chin. Ceram. Soc. 51 (2023) 427, https://doi.org/10.14062/j.issn.0454-5648.20220991. doi: 10.14062/j.issn.0454-5648.20220991

    38. [38]

      Y. Liu, Z. Yang, X. Zou, Y. Lin, S. Ma, W. Zuo, Z. Zou, H. Wang, M. Avdeev, S. Shi, Mater. Sci. Eng.: R: Rep. 166 (2025) 101050, https://doi.org/10.1016/j.mser.2025.101050. doi: 10.1016/j.mser.2025.101050

    39. [39]

      Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, J. Tang, GraphMAE: Self-Supervised Masked Graph Autoencoders, in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery: New York, NY, USA, 2022, pp. 594–604, https://doi.org/10.1145/3534678.3539321.

    40. [40]

      J. Xia, C. Zhao, B. Hu, Z. Gao, C. Tan, Y. Liu, S. Li, S. Z. Li, Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules, in the Eleventh International Conference on Learning Representations (ICLR2023), 2023 poster, https://openreview.net/forum?id=jevY-DtiZTR.

    41. [41]

      Z. Zhang, Q. Liu, H. Wang, C. Lu, C.-K. Lee, Motif-based Graph Self-Supervised Learning for Molecular Property Prediction, in Proceedings of the 35th International Conference on Neural Information Processing Systems (NIPS2021), Curran Associates Inc. : Red Hook, NY, USA, 2021 pp. 15870–15882, https://dl.acm.org/doi/10.5555/3540261.3541475.

    42. [42]

      G.W. Bemis, M.A. Murcko, J. Med. Chem. 39 (1996) 2887, https://doi.org/10.1021/jm9602928. doi: 10.1021/jm9602928

    43. [43]

      Y. Liu, S. Ma, Z. Yang, D. Wu, Y. Zhao, M. Avdeev, S. Shi, J. Materiomics 11 (2025) 101066, https://doi.org/10.1016/j.jmat.2025.101066. doi: 10.1016/j.jmat.2025.101066

    44. [44]

      H. Zhu, T.M. Martin, L. Ye, A. Sedykh, D.M. Young, A. Tropsha, Chem. Res. Toxicol. 22 (2009) 1913, https://doi.org/10.1021/tx900189p. doi: 10.1021/tx900189p

    45. [45]

      M.L. Landry, J.J. Crawford, ACS Med. Chem. Lett. 11 (2019) 72, https://doi.org/10.1021/acsmedchemlett.9b00489. doi: 10.1021/acsmedchemlett.9b00489

    46. [46]

      A.K. Nyamabo, H. Yu, J.-Y. Shi, Brief. Bioinform. 22 (2021) bbab133, https://doi.org/10.1093/bib/bbab133. doi: 10.1093/bib/bbab133

    47. [47]

      P. Bai, F. Miljković, B. John, H. Lu, Nat. Mach. Intell 5 (2023) 126, https://doi.org/10.1038/s42256-022-00605-1. doi: 10.1038/s42256-022-00605-1

    48. [48]

      M. Nickel, V. Tresp, H.-P. Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, in Proceedings of the 28th International Conference on Machine Learning PMLR97 (ICML2021), Omnipress: Madison, WI, USA, 2011 pp. 809–816, https://dl.acm.org/doi/10.5555/3104482.3104584.

    49. [49]

      J. Lee, I. Lee, J. Kang, Self-Attention Graph Pooling, in Proceedings of the 36th International Conference on Machine Learning (ICML2019), PMLR, 2019, pp. 3734-3743, https://proceedings.mlr.press/v97/lee19c/lee19c.pdf.

    50. [50]

      T. Liu, Y. Lin, X. Wen, R.N. Jorissen, M.K. Gilson, Nucleic Acids Res. 35 (2007) D198, https://doi.org/10.1093/nar/gkl999. doi: 10.1093/nar/gkl999

    51. [51]

      M. Zitnik, R. Sosic, S. Maheshwari, J. Leskovec, BioSNAP Datasets: Stanford Biomedical Network Dataset Collection, (2018), https://snap.stanford.edu/biodata/.

    52. [52]

      H. Liu, J. Sun, J. Guan, J. Zheng, S. Zhou, Bioinformatics 31 (2015) i221, https://doi.org/10.1093/bioinformatics/btv256. doi: 10.1093/bioinformatics/btv256

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  144
  • HTML全文浏览量:  13
文章相关
  • 发布日期:  2026-05-15
  • 收稿日期:  2025-08-22
  • 接受日期:  2025-10-22
  • 修回日期:  2025-10-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章