BiOCl表面掺杂石墨烯用于可见光下高效光催化胺偶联

张小菲 徐山浩 王志远 何龙 黄天成 徐永明 卞玉翠 李一珂 陈海军 李中军

引用本文: 张小菲, 徐山浩, 王志远, 何龙, 黄天成, 徐永明, 卞玉翠, 李一珂, 陈海军, 李中军. BiOCl表面掺杂石墨烯用于可见光下高效光催化胺偶联[J]. 物理化学学报, 2026, 42(5): 100202. doi: 10.1016/j.actphy.2025.100202 shu
Citation:  Xiaofei Zhang, Shanhao Xu, Zhiyuan Wang, Long He, Tiangcheng Huang, Yongming Xu, Yucui Bian, Yike Li, Haijun Chen, Zhongjun Li. Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light[J]. Acta Physico-Chimica Sinica, 2026, 42(5): 100202. doi: 10.1016/j.actphy.2025.100202 shu

BiOCl表面掺杂石墨烯用于可见光下高效光催化胺偶联

    通讯作者: liyike@zzu.edu.cn (李一珂); Email: chenhaijun@zzu.edu.cn (陈海军)
摘要: 以葡萄糖为碳源制备了碳掺杂BiOCl。碳掺杂剂主要富集于晶体表面或浅层晶格中,部分与氧原子成键。在室温可见光条件下,以分子氧为绿色氧化剂,碳掺杂BiOCl催化苄胺自偶联转化率(> 99%)是纯BiOCl的12倍。该掺杂催化剂对胺类底物具有良好官能团耐受性,并表现出晶面依赖的光催化活性。综合表征证实:碳掺杂在晶体原带隙中形成掺杂能级,使BiOCl吸收范围拓宽至可见光区并降低其功函数;同时增强了BiOCl内部电场,其中单层/双层石墨烯为最有效掺杂形态,可捕获经电子-空穴分离后跃迁至高能级的导带电子,从而抑制电子-空穴复合,提高光生载流子分离效率;此外还促进了O2活化。本研究为光催化剂理性设计及实现高效定向有机转化提供了参考。

English

    1. [1]

      M. Largeron, M. -B. Fleury, Science 339 (2013) 43, https://www.science.org/doi/10.1126/science.1232220. doi: 10.1126/science.1232220

    2. [2]

      T. Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 3 (2012) 3249, https://doi.org/10.1039/C2SC20699D. doi: 10.1039/C2SC20699D

    3. [3]

      Y. X. Guo, B. Liu, J. W. Zhang, C. T. Wang, G. L. Wang, C. S. Pan, H. Zhao, Y. M. Dong, Y. F. Zhu, Appl. Catal., B: Environ. Energy 350 (2024) 123915, https://doi.org/10.1016/j.apcatb.2024.123915. doi: 10.1016/j.apcatb.2024.123915

    4. [4]

      L. J. Yang, Z. X. Chen, Q. C. Cao, H. R. Liao, J. Gao, L. Zhang, W. Y. Wei, H. Li, J. M. Lu, Adv. Mater. 36 (2024) 2306758, https://doi.org/10.1002%2Fadma.202306758.

    5. [5]

      Y. X. Liu, H. Tan, J. Z. Sun, Y. N. Wei, M. H. Liu, J. X. Hong, S. C. Shang, X. Y. Wang, L. Li, Y. Gu, et al., Adv. Funct. Mater. 33 (2023) 2302874, https://doi.org/10.1002/adfm.202302874. doi: 10.1002/adfm.202302874

    6. [6]

      B. Chen, L. Y. Wang, S. Gao, ACS Catal. 5 (2015) 5851, https://doi.org/10.1021/acscatal.5b01479. doi: 10.1021/acscatal.5b01479

    7. [7]

      X. Wang, C. Wang, H. -Q. Tan, T. -Y. Qiu, Y. -M. Xing, Q. -K. Shang, Y. -N. Zhao, X. -Y. Zhao, X. -Y. Zhao, Y. -G. Li, Chem. Eng. J. 431 (2022) 134051, https://doi.org/10.1016/j.cej.2021.134051. doi: 10.1016/j.cej.2021.134051

    8. [8]

      B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 49 (2010) 1468, https://doi.org/10.1002/ANIE.200907018. doi: 10.1002/ANIE.200907018

    9. [9]

      L. Blackburn, R. J. K. Taylor, Org. Lett. 3 (2001) 1637, https://doi.org/10.1021/ol015819b. doi: 10.1021/ol015819b

    10. [10]

      K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am. Chem. Soc. 126 (2004) 5192, https://doi.org/10.1021/ja0400382. doi: 10.1021/ja0400382

    11. [11]

      T. Mukaiyama, A. Kawana, Y. Fukuda, J. -I. Matsuo, Chem. Lett. 30 (2001) 390, https://doi.org/10.1246/cl.2001.390. doi: 10.1246/cl.2001.390

    12. [12]

      S. -I. Naya, K. Kimura, H. Tada, ACS Catal. 3 (2013) 10, https://doi.org/10.1021/cs300682d. doi: 10.1021/cs300682d

    13. [13]

      G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin, J. -E. Bäckvall, J. Org. Chem. 67 (2002) 1657, https://doi.org/10.1021/jo0163750. doi: 10.1021/jo0163750

    14. [14]

      S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano, M. Ueshima, A. Ogawa, Tetra. Lett. 1 (2010) 2450, https://doi.org/10.1016/j.tetlet.2010.02.150. doi: 10.1016/j.tetlet.2010.02.150

    15. [15]

      M. Largeron, M. -B. Fleury, Angew. Chem. Int. Ed. 51 (2012) 5409, https://doi.org/10.1002/anie.201200587. doi: 10.1002/anie.201200587

    16. [16]

      H. Shechter, S. S. Rawalay, M. Tubis, J. Am. Chem. Soc. 86 (1964) 1701, https://doi.org/10.1021/ja01063a012. doi: 10.1021/ja01063a012

    17. [17]

      R. Yamaguchi, C. Ikeda, Y. Takahashi, K. -I. Fujita, J. Am. Chem. Soc. 131 (2009) 8410, https://doi.org/10.1021/ja9022623. doi: 10.1021/ja9022623

    18. [18]

      B. L. Zhu, M. Lazar, B. G. Trewyn, R. J. Angelici, J. Catal. 260 (2008) 1, https://doi.org/10.1016/j.jcat.2008.08.012. doi: 10.1016/j.jcat.2008.08.012

    19. [19]

      H. Huang, J. Huang, Y. -M. Liu, H. -Y. He, Y. Cao, K. -N. Fan, Green Chem. 14 (2012) 930, https://doi.org/10.1039/C2GC16681J. doi: 10.1039/C2GC16681J

    20. [20]

      S. Biswas, B. Dutta, K. Mullick, C. -H. Kuo, A. S. Poyraz, S. L. Suib, ACS Catal. 5 (2015) 4394, https://doi.org/10.1021/acscatal.5b00325. doi: 10.1021/acscatal.5b00325

    21. [21]

      B. Dutta, S. March, L. Achola, S. Sahoo, J. K. He, A. S. Amin, Y. Wu, S. Poges, S. P. Alpay, S. L. Suib, Green Chem. 20 (2018) 3180, https://doi.org/10.1039/C8GC00862K. doi: 10.1039/C8GC00862K

    22. [22]

      B. Chen, L. Wang, W. Dai, S. Shang, Y. Lv, S. Gao, ACS Catal. 5 (2015) 2788, https://doi.org/10.1021/acscatal.5b00244. doi: 10.1021/acscatal.5b00244

    23. [23]

      Z. J. Gu, Z. Shan, Y. L. Wang, J. J. Wang, T. T. Liu, X. M. Li, Z. Y. Yu, J. Su, G. Zhang, Chin. Chem. Lett. 35 (2024) 108356, https://doi.org/10.1016/j.cclet.2023.108356. doi: 10.1016/j.cclet.2023.108356

    24. [24]

      R. Sakamoto, R. Toyoda, G. Jingyan, Y. Nishina, K. Kamiya, H. Nishihara, T. Ogoshi, Coord. Chem. Rev. 466 (2022) 214577, https://doi.org/10.1016/j.ccr.2022.214577. doi: 10.1016/j.ccr.2022.214577

    25. [25]

      S. -L. Meng, C. Ye, X. -B. Li, C. -H. Tung, L. -Z. Wu, J. Am. Chem. Soc. 144 (2022) 16219, https://doi.org/10.1021/jacs.2c02341. doi: 10.1021/jacs.2c02341

    26. [26]

      H. J. Chen, R. H. Xu, D. Chen, T. L Lu, H. J. Li, M. Wang, ACS Catal. 14 (2024) 1977, https://doi.org/10.1021/acscatal.3c05263. doi: 10.1021/acscatal.3c05263

    27. [27]

      W. J. Cao, W. J. Zhang, L. Dong, Z. Ma, J. S. Xu, X. L. Gu, Z. P. Chen, Exploration 3 (2023) 20220169, https://doi.org/10.1002/EXP.20220169. doi: 10.1002/EXP.20220169

    28. [28]

      A. Khampuanbut, S. Santalelat, A. Pankiew, D. Channei, S. Pornsuwan, K. Faungnawakij, S. Phanichphant, B. Inceesungvorn, J. Colloid Interface Sci. 560 (2020) 213, https://doi.org/10.1016/j.jcis.2019.10.057. doi: 10.1016/j.jcis.2019.10.057

    29. [29]

      Y. -D. Sun, C. Zeng, X. Zhang, Z. -Q. Zhang, B. Yang, S. -Q. Guo, Rare Met. 43 (2024) 1488, https://doi.org/10.1007/s12598-023-02569-6. doi: 10.1007/s12598-023-02569-6

    30. [30]

      Q. Chen, H. Wang, C. C. Guan, R. F. Duan, R. Fang, Y. F. Hu, Xun, Appl. Catal. B Environ. 262 (2020) 118258, https://doi.org/10.1016/j.apcatb.2019.118258. doi: 10.1016/j.apcatb.2019.118258

    31. [31]

      S. Juntrapirom, S. Anuchai, O. Thongsook, S. Pornsuwan, P. Meepowpan, P. Thavornyutikarn, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, Chem. Eng. J. 394 (2020) 124934, https://doi.org/10.1016/j.cej.2020.124934. doi: 10.1016/j.cej.2020.124934

    32. [32]

      W. Zou, X. -H. Liu, C. Xue, X. -T. Zhou, H. -Y. Yu, P. Fan, H. -B. Ji, Appl. Catal. B. Environ. 285 (2021) 119863, https://doi.org/10.1016/j.apcatb.2020.119863. doi: 10.1016/j.apcatb.2020.119863

    33. [33]

      A. Yuan, H. Lei, Z. S. Wang, X. P. Dong, J. Colloid Interface Sci. 560 (2020) 40, https://doi.org/10.1016/j.jcis.2019.10.060. doi: 10.1016/j.jcis.2019.10.060

    34. [34]

      K. -L. Zhang, C. -M. Liu, F. -Q. Huang, C. Zheng, W. -D. Wang, Appl. Catal. B Environ. 68 (2006) 125, https://doi.org/10.1016/j.apcatb.2006.08.002. doi: 10.1016/j.apcatb.2006.08.002

    35. [35]

      Y. Y. Li, J. P. Liu, J. Jiang, J. G. Yu, Dalton Trans. 40 (2011) 6632, https://doi.org/10.1039/C1DT10691K. doi: 10.1039/C1DT10691K

    36. [36]

      Y. Xu, S. C. Xu, S. Wang, Y. X. Zhang, G. H. Li, Dalton Trans. 43 (2014) 479, https://doi.org/10.1039/C3DT52004H. doi: 10.1039/C3DT52004H

    37. [37]

      J. Jiang, K. Zhao, X. Y. Xiao, L. H. Zhang, J. Am. Chem. Soc. 134 (2012) 4473, https://doi.org/10.1021/ja210484t. doi: 10.1021/ja210484t

    38. [38]

      C. -Y. Wang, Y. -J. Zhang, W. -K. Wang, D. -N. Pei, G. -X. Huang, J. -J. Chen, X. Zhang, H. -Q. Yu, Appl. Catal. B Environ. 221 (2018) 320, https://doi.org/10.1016/j.apcatb.2017.09.036. doi: 10.1016/j.apcatb.2017.09.036

    39. [39]

      J. Shang, T. Z. Chen, X. W. Wang, L. Y. Sun, Q. Q. Su, Chem. Phys. Lett. 706 (2018) 483, https://doi.org/10.1016/j.cplett.2018.06.054. doi: 10.1016/j.cplett.2018.06.054

    40. [40]

      Y. H. Ren, J. H. Zou, K. Q. Jing, Y. Y. Liu, B. B. Guo, Y. J. Song, Y. Yu, L. Wu, J. Catal. 380 (2019) 123, https://doi.org/10.1016/j.jcat.2019.10.018. doi: 10.1016/j.jcat.2019.10.018

    41. [41]

      B. X. Zhang, J. L. Zhang, R. Duan, Q. Wan, X. N. Tan, Z. Z. S, B. X. Han, L. R. Zheng, G. Mo, Nano Energy 78 (2020) 105340, https://doi.org/10.1016/j.nanoen.2020.105340. doi: 10.1016/j.nanoen.2020.105340

    42. [42]

      H. J. Chen, L. M. Peng, Y. C. Bian, X. Q. Shen, J. Li, H. -C. Yao, S. -Q. Zang, Z. J. Li, Appl. Catal. B Environ. 284 (2021) 119704, https://doi.org/10.1016/j.apcatb.2020.119704. doi: 10.1016/j.apcatb.2020.119704

    43. [43]

      W. X. Ouyang, F. Teng, X. S. Fang, Adv. Funct. Mater. 28 (2018) 1707178, https://doi.org/10.1002/adfm.201707178. doi: 10.1002/adfm.201707178

    44. [44]

      J. Li, K. Zhao, Y. Yu, L. Z. Zhang, Adv. Funct. Mater. 25 (2015) 2189, https://doi.org/10.1002/adfm.201404178. doi: 10.1002/adfm.201404178

    45. [45]

      R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. M. Rao, M. Ishigami, ACS Nano 5 (2011) 1594, https://doi.org/10.1021/nn1031017. doi: 10.1021/nn1031017

    46. [46]

      J. Li, L. J. Cai, J. Shang, Y. Yu, L. Z. Zhang, Adv. Mater. 28 (2016) 4059, https://doi.org/10.1002/adma.201600301. doi: 10.1002/adma.201600301

    47. [47]

      F. Guo, C. L. Mao, C. Liang, P. Xing, L. H. Yu, Y. B. Shi, S. Y. Cao, F. Y. Wang, X. Liu, Z. H. Ai, et al., Angew. Chem. Int. Ed. 62 (2023) e202314243, https://doi.org/10.1002/anie.202314243. doi: 10.1002/anie.202314243

    48. [48]

      T. L. Lu, Z. Y. Yang, H. J. Li, H. J. Chen, J. Xu, C. C. Xu, J. S. Wang, Z. J. Li, Y. S. Zhang, J. Catal. 410 (2022) 103, https://doi.org/10.1016/j.jcat.2022.04.020. doi: 10.1016/j.jcat.2022.04.020

    49. [49]

      J. Di, W. Jiang, Mater. Today Catal. 1 (2023) 100001, https://doi.org/10.1016/j.mtcata.2023.100001. doi: 10.1016/j.mtcata.2023.100001

    50. [50]

      K. Yang, X. J. Liu, J. Xu, Y. Gong, S. L. Shen, J. C. Fan, X. J. Zhang, Y. H. Xue, Prog. Nat. Sci. -Mater. 34 (2024) 102, https://doi.org/10.1016/j.pnsc.2024.02.004. doi: 10.1016/j.pnsc.2024.02.004

    51. [51]

      Q. H. Li, Y. F. Zhang, L. L. Xu, H. J. Chen, L. Zhang, M. S. Khalid, Z. W. Li, Z. J. Li, G. Li, Appl. Catal. B Environ. Energy 361 (2025) 124706, https://doi.org/10.1016/j.apcatb.2024.124706. doi: 10.1016/j.apcatb.2024.124706

    52. [52]

      J. Ning, B. H. Zhang, L. Siqin, G. H. Liu, Q. Wu, S. Q. Xue, T. T. Shao, F. C. Zhang, W. B. Zhang, X. H. Liu, Exploration 3 (2023) 20230050, https://doi.org/10.1002/EXP.20230050. doi: 10.1002/EXP.20230050

    53. [53]

      J. H. Cho, J. Ma, S. Y. Kim, Exploration 3 (2023) 20230001, https://doi.org/10.1002/EXP.20230001. doi: 10.1002/EXP.20230001

    54. [54]

      J. Di, C. Chen, Y. Wu, Y. Zhao, C. Zhu, Y. Zhang, C. Wang, H. Chen, J. Xiong, M. Xu, et al., Adv. Mater. 2022, 34, e2204959, https://doi.org/10.1002/adma.202204959. doi: 10.1002/adma.202204959

    55. [55]

      J. Di, C. Chen, Y. Wu, H. Chen, J. Xiong, R. Long, S. Z. Li, L. Song, W. Jiang, Z. Liu, Adv. Mater. 36 (2024) e2401914, https://doi.org/10.1002/adma.202401914. doi: 10.1002/adma.202401914

    56. [56]

      H. J. Chen, C. Liu, M. Wang, C. F. Zhang, N. C. Luo, Y. H. Wang, H. Abroshan, G. Li, F. Wang, ACS Catal. 7 (2017) 3632, https://doi.org/10.1021/acscatal.6b03509. doi: 10.1021/acscatal.6b03509

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  212
  • HTML全文浏览量:  16
文章相关
  • 发布日期:  2026-05-15
  • 收稿日期:  2025-08-17
  • 接受日期:  2025-10-19
  • 修回日期:  2025-10-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章