掺铬富锂锰基材料作为高性能全固态锂电池正极

高珂珂 许浩哲 刘兴坤 孙春文

引用本文: 高珂珂, 许浩哲, 刘兴坤, 孙春文. 掺铬富锂锰基材料作为高性能全固态锂电池正极[J]. 物理化学学报, 2026, 42(3): 100200. doi: 10.1016/j.actphy.2025.100200 shu
Citation:  Keke Gao,  Haozhe Xu,  Xingkun Liu,  Chunwen Sun. Cr-doped lithium-rich manganese-based materials as a cathode for high-performance all-solid-state lithium batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100200. doi: 10.1016/j.actphy.2025.100200 shu

掺铬富锂锰基材料作为高性能全固态锂电池正极

    通讯作者: 孙春文,Email:csun@cumtb.edu.cn
  • 基金项目:

    The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 52472271) and the National Key R&D Program of China (No. 2023YFE0115800).

摘要: 具有富锂锰基材料(LRMs)的全固态锂离子电池(ASSLBs)因其高能量密度和安全性被视为下一代储能体系。然而,不可逆的氧释放导致的卤化物固态电解质(SEs)严重的界面降解问题亟待解决。本研究合成了兼具高容量与稳定性的铬掺杂LRMs材料。Cr3+/Cr6+的可逆氧化还原反应提升了额外的容量,同时Cr6+离子在八面体与四面体位点间的可逆迁移有效维持了材料结构稳定性。此外,强Cr-O键能稳定晶格氧,构建稳定的正极/电解质界面并缓解电压衰减。因此,采用LRMs-Cr0.1正极与卤化物电解质的ASSLBs在0.5C倍率下循环500圈,每圈容量衰减率仅为0.065%。值得注意的是,LRMs-Cr0.1//Li21Si5@Si/C全电池在0.3C倍率下循环1000圈,容量保持率接近100%,对应的能量密度为413.11 Wh kg-1。该研究为开发高能量密度的固态电池提供了指导。

English

    1. [1]

      Y.-K. Sun, ACS Energy Lett. 5(10) (2020) 3221. https://doi.org/10.1021/acsenergylett.0c01977.Y.-K. Sun, ACS Energy Lett. 5(10) (2020) 3221. https://doi.org/10.1021/acsenergylett.0c01977.

    2. [2]

      C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy 33(2017) 363. https://doi.org/10.1016/j.nanoen.2017.01.028.C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy 33(2017) 363. https://doi.org/10.1016/j.nanoen.2017.01.028.

    3. [3]

      X. Hu, Q. Xia, F. Yue, X. He, Z. Mei, J. Wang, H. Xia, X. Huang, Acta Phys. Chim. Sin. 40(2) (2024) 2309046. https://doi.org/10.3866/pku.Whxb202309046.X. Hu, Q. Xia, F. Yue, X. He, Z. Mei, J. Wang, H. Xia, X. Huang, Acta Phys. Chim. Sin. 40(2) (2024) 2309046. https://doi.org/10.3866/pku.Whxb202309046.

    4. [4]

      K. Wang, K. Liu, H. Wu, Acta Phys. Chim. Sin. 39(12) (2023) 2301009. https://doi.org/10.3866/pku.Whxb202301009.K. Wang, K. Liu, H. Wu, Acta Phys. Chim. Sin. 39(12) (2023) 2301009. https://doi.org/10.3866/pku.Whxb202301009.

    5. [5]

      G. Xue, J. Li, J. Chen, D. Chen, C. Hu, L. Tang, B. Chen, R. Yi, Y. Shen, L. Chen, Acta Phys. Chim. Sin. 2023, 39(8) (2022) 2205012. https://doi.org/10.3866/pku.Whxb202205012.G. Xue, J. Li, J. Chen, D. Chen, C. Hu, L. Tang, B. Chen, R. Yi, Y. Shen, L. Chen, Acta Phys. Chim. Sin. 2023, 39(8) (2022) 2205012. https://doi.org/10.3866/pku.Whxb202205012.

    6. [6]

      G. Assat, J.-M. Tarascon, Nat. Energy 3(5) (2018) 373. https://doi.org/10.1038/s41560-018-0097-0.G. Assat, J.-M. Tarascon, Nat. Energy 3(5) (2018) 373. https://doi.org/10.1038/s41560-018-0097-0.

    7. [7]

      K. Gao, C. Sun, Z. Wang, Mater. Chem. Front. 8(2024) 3082. https://doi.org/10.1039/D4QM00513A.K. Gao, C. Sun, Z. Wang, Mater. Chem. Front. 8(2024) 3082. https://doi.org/10.1039/D4QM00513A.

    8. [8]

      W. Du, Q. Shao, Y. Wei, C. Yan, P. Gao, Y. Lin, Y. Jiang, Y. Liu, X. Yu, M. Gao, et al., ACS Energy Lett. 7(9) (2022) 3006. https://doi.org/10.1021/acsenergylett.2c01637.W. Du, Q. Shao, Y. Wei, C. Yan, P. Gao, Y. Lin, Y. Jiang, Y. Liu, X. Yu, M. Gao, et al., ACS Energy Lett. 7(9) (2022) 3006. https://doi.org/10.1021/acsenergylett.2c01637.

    9. [9]

      Y. Liu, T. Yu, S. Guo, H. Zhou, Acta Phys. Chim. Sin. 39(8) (2023) 2301027. https://doi.org/10.3866/pku.Whxb202301027.Y. Liu, T. Yu, S. Guo, H. Zhou, Acta Phys. Chim. Sin. 39(8) (2023) 2301027. https://doi.org/10.3866/pku.Whxb202301027.

    10. [10]

      Y. Yang, N. Hu, Y.-H. Zhang, Y. Zheng, Z. Hu, C.-Y. Kuo, H.-J. Lin, C.-T. Chen, T.-S. Chan, C.-W. Kao, et al., ACS Appl. Mater. Interfaces 15(25) (2023) 30060. https://doi.org/10.1021/acsami.3c01876.Y. Yang, N. Hu, Y.-H. Zhang, Y. Zheng, Z. Hu, C.-Y. Kuo, H.-J. Lin, C.-T. Chen, T.-S. Chan, C.-W. Kao, et al., ACS Appl. Mater. Interfaces 15(25) (2023) 30060. https://doi.org/10.1021/acsami.3c01876.

    11. [11]

      Y. Wu, K. Zhou, F. Ren, Y. Ha, Z. Liang, X. Zheng, Z. Wang, W. Yang, M. Zhang, M. Luo, et al., Energy Environ. Sci. 15(8) (2022) 3470. https://doi.org/10.1039/d2ee01067d.Y. Wu, K. Zhou, F. Ren, Y. Ha, Z. Liang, X. Zheng, Z. Wang, W. Yang, M. Zhang, M. Luo, et al., Energy Environ. Sci. 15(8) (2022) 3470. https://doi.org/10.1039/d2ee01067d.

    12. [12]

      R. Yu, C. Wang, H. Duan, M. Jiang, A. Zhang, A. Fraser, J. Zuo, Y. Wu, Y. Sun, Y. Zhao, et al., Adv. Mater. 35(5) (2023) e2207234. https://doi.org/10.1002/adma.202207234.R. Yu, C. Wang, H. Duan, M. Jiang, A. Zhang, A. Fraser, J. Zuo, Y. Wu, Y. Sun, Y. Zhao, et al., Adv. Mater. 35(5) (2023) e2207234. https://doi.org/10.1002/adma.202207234.

    13. [13]

      S. Sun, C.Z. Zhao, G.Y. Liu, S.C. Wang, Z.H. Fu, W.J. Kong, J.L. Li, X. Chen, X. Zhao, Q. Zhang, Adv. Mater. 37(2024) 2414195. https://doi.org/10.1002/adma.202414195.S. Sun, C.Z. Zhao, G.Y. Liu, S.C. Wang, Z.H. Fu, W.J. Kong, J.L. Li, X. Chen, X. Zhao, Q. Zhang, Adv. Mater. 37(2024) 2414195. https://doi.org/10.1002/adma.202414195.

    14. [14]

      S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen, Y. Lu, Y.-F. Li, J.-K. Hu, J. Dong, J.-Q. Huang, et al., Sci. Adv. 8(47) (2022) eadd5189. https://doi.org/10.1126/sciadv.add5189.S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen, Y. Lu, Y.-F. Li, J.-K. Hu, J. Dong, J.-Q. Huang, et al., Sci. Adv. 8(47) (2022) eadd5189. https://doi.org/10.1126/sciadv.add5189.

    15. [15]

      Y. Wang, D. Wu, P. Chen, P. Lu, X. Wang, L. Chen, H. Li, F. Wu, Adv. Funct. Mater. 34(2023) 2309822. https://doi.org/10.1002/adfm.202309822.Y. Wang, D. Wu, P. Chen, P. Lu, X. Wang, L. Chen, H. Li, F. Wu, Adv. Funct. Mater. 34(2023) 2309822. https://doi.org/10.1002/adfm.202309822.

    16. [16]

      W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.-L. Li, J.-Q. Huang, et al., J. Am. Chem. Soc. 41(146) (2024) 28190. https://doi.org/10.1021/jacs.4c08115.W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.-L. Li, J.-Q. Huang, et al., J. Am. Chem. Soc. 41(146) (2024) 28190. https://doi.org/10.1021/jacs.4c08115.

    17. [17]

      B. Li, H. Yan, J. Ma, P. Yu, D. Xia, W. Huang, W. Chu, Z. Wu, Adv. Funct. Mater. 24(32) (2014) 5112. https://doi.org/10.1002/adfm.201400436.B. Li, H. Yan, J. Ma, P. Yu, D. Xia, W. Huang, W. Chu, Z. Wu, Adv. Funct. Mater. 24(32) (2014) 5112. https://doi.org/10.1002/adfm.201400436.

    18. [18]

      R.-P. Qing, J.-L. Shi, D.-D. Xiao, X.-D. Zhang, Y.-X. Yin, Y.-B. Zhai, L. Gu, Y.-G. Guo, Adv. Energy Mater. 6(6) (2016) 1501914. https://doi.org/10.1002/aenm.201501914.R.-P. Qing, J.-L. Shi, D.-D. Xiao, X.-D. Zhang, Y.-X. Yin, Y.-B. Zhai, L. Gu, Y.-G. Guo, Adv. Energy Mater. 6(6) (2016) 1501914. https://doi.org/10.1002/aenm.201501914.

    19. [19]

      Y. Lyu, N. Zhao, E. Hu, R. Xiao, X. Yu, L. Gu, X.-Q. Yang, H. Li, Chem. Mater. 27(15) (2015) 5238. https://doi.org/10.1021/acs.chemmater.5b01362.Y. Lyu, N. Zhao, E. Hu, R. Xiao, X. Yu, L. Gu, X.-Q. Yang, H. Li, Chem. Mater. 27(15) (2015) 5238. https://doi.org/10.1021/acs.chemmater.5b01362.

    20. [20]

      S. Liu, J. Wang, Z. Tian, Q. Li, X. Tian, Y. Cui, Y. Yang, Chem. Commun. 53(87) (2017) 11913. https://doi.org/10.1039/c7cc07545f.S. Liu, J. Wang, Z. Tian, Q. Li, X. Tian, Y. Cui, Y. Yang, Chem. Commun. 53(87) (2017) 11913. https://doi.org/10.1039/c7cc07545f.

    21. [21]

      G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159(4) (2012) A410. https://doi.org/10.1149/2.059204jes.G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159(4) (2012) A410. https://doi.org/10.1149/2.059204jes.

    22. [22]

      Z. Zhang, Z. Sun, X. Han, Y. Liu, S. Pei, Y. Li, L. Luo, P. Su, C. Lan, Z. Zhang, et al., Energy Environ. Sci. 17(3) (2024) 1061. https://doi.org/10.1039/d3ee03877g.Z. Zhang, Z. Sun, X. Han, Y. Liu, S. Pei, Y. Li, L. Luo, P. Su, C. Lan, Z. Zhang, et al., Energy Environ. Sci. 17(3) (2024) 1061. https://doi.org/10.1039/d3ee03877g.

    23. [23]

      R. Song, J. Yao, R. Xu, Z. Li, X. Yan, C. Yu, Z. Huang, L. Zhang, Adv. Energy Mater. 13(9) (2023) 2203631. https://doi.org/10.1002/aenm.202203631.R. Song, J. Yao, R. Xu, Z. Li, X. Yan, C. Yu, Z. Huang, L. Zhang, Adv. Energy Mater. 13(9) (2023) 2203631. https://doi.org/10.1002/aenm.202203631.

    24. [24]

      D. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 13(1) (2022) 1909. https://doi.org/10.1038/s41467-022-29596-8.D. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 13(1) (2022) 1909. https://doi.org/10.1038/s41467-022-29596-8.

    25. [25]

      H. Yan, J. Yao, Z. Ye, Q. Lin, Z. Zhang, S. Li, D. Song, Z. Wang, C. Yu, L. Zhang, Chin. Chem. Lett. 36(1) (2025) 109568. https://doi.org/10.1016/j.cclet.2024.109568.H. Yan, J. Yao, Z. Ye, Q. Lin, Z. Zhang, S. Li, D. Song, Z. Wang, C. Yu, L. Zhang, Chin. Chem. Lett. 36(1) (2025) 109568. https://doi.org/10.1016/j.cclet.2024.109568.

    26. [26]

      H. Yan, R. Song, R. Xu, S. Li, Q. Lin, X. Yan, Z. Wang, C. Yu, L. Zhang, J. Energy Chem. 86(2023) 499. https://doi.org/10.1016/j.jechem.2023.07.028.H. Yan, R. Song, R. Xu, S. Li, Q. Lin, X. Yan, Z. Wang, C. Yu, L. Zhang, J. Energy Chem. 86(2023) 499. https://doi.org/10.1016/j.jechem.2023.07.028.

    27. [27]

      T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 184(2015) 483. https://doi.org/10.1016/j.electacta.2015.09.097.T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 184(2015) 483. https://doi.org/10.1016/j.electacta.2015.09.097.

    28. [28]

      C. Zhang, M. Yan, W. Li, C. Han, J. Li, H. Zhao, G. Jia, S. An, X. Qiu, ACS Appl. Mater. Interfaces 13(41) (2021) 48653. https://doi.org/10.1021/acsami.1c13462.C. Zhang, M. Yan, W. Li, C. Han, J. Li, H. Zhao, G. Jia, S. An, X. Qiu, ACS Appl. Mater. Interfaces 13(41) (2021) 48653. https://doi.org/10.1021/acsami.1c13462.

    29. [29]

      X. Chen, X. Zhai, Y. Wu, X. Wang, L. Zhang, C. Shang, H. Zhang, C. Zhao, J. Shang, D. Liu, J. Energy Storage 114(2025) 115826. https://doi.org/10.1016/j.est.2025.115826.X. Chen, X. Zhai, Y. Wu, X. Wang, L. Zhang, C. Shang, H. Zhang, C. Zhao, J. Shang, D. Liu, J. Energy Storage 114(2025) 115826. https://doi.org/10.1016/j.est.2025.115826.

    30. [30]

      J. Song, H. Wang, Y. Zuo, K. Zhang, T. Yang, Y. Yang, C. Gao, T. Chen, G. Feng, Z. Jiang, et al., Electrochem. Energy Rev. 6(1) (2023) 20. https://doi.org/10.1007/s41918-023-00184-8.J. Song, H. Wang, Y. Zuo, K. Zhang, T. Yang, Y. Yang, C. Gao, T. Chen, G. Feng, Z. Jiang, et al., Electrochem. Energy Rev. 6(1) (2023) 20. https://doi.org/10.1007/s41918-023-00184-8.

    31. [31]

      G. Singh, S.L. Gupta, R. Prasad, S. Auluck, R. Gupta, A. Sil, J. Phys. Chem. Solids 70(8) (2009) 1200. https://doi.org/10.1016/j.jpcs.2009.07.001.G. Singh, S.L. Gupta, R. Prasad, S. Auluck, R. Gupta, A. Sil, J. Phys. Chem. Solids 70(8) (2009) 1200. https://doi.org/10.1016/j.jpcs.2009.07.001.

    32. [32]

      S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed 60(5) (2021) 2208. https://doi.org/10.1002/anie.202000262.S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed 60(5) (2021) 2208. https://doi.org/10.1002/anie.202000262.

    33. [33]

      D. Luo, X. Ding, J. Fan, Z. Zhang, P. Liu, X. Yang, J. Guo, S. Sun, Z. Lin, Angew. Chem. Int. Ed 59(51) (2020) 23061. https://doi.org/10.1002/anie.202010531.D. Luo, X. Ding, J. Fan, Z. Zhang, P. Liu, X. Yang, J. Guo, S. Sun, Z. Lin, Angew. Chem. Int. Ed 59(51) (2020) 23061. https://doi.org/10.1002/anie.202010531.

    34. [34]

      C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1(35) (2013) 10209. https://doi.org/10.1039/c3ta11703k.C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1(35) (2013) 10209. https://doi.org/10.1039/c3ta11703k.

    35. [35]

      B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80(2012) 187. https://doi.org/10.1016/j.electacta.2012.06.118.B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80(2012) 187. https://doi.org/10.1016/j.electacta.2012.06.118.

    36. [36]

      G. Ceder, MRS Bull. 35(9) (2010) 693. https://doi.org/10.1557/mrs2010.681.G. Ceder, MRS Bull. 35(9) (2010) 693. https://doi.org/10.1557/mrs2010.681.

    37. [37]

      G. Cao, X. Yang, Z. Yin, Y. Lei, H. Wang, J. Li, Bull. Chem. Soc. Jpn. 92(7) (2019) 1205. https://doi.org/10.1246/bcsj.20190061.G. Cao, X. Yang, Z. Yin, Y. Lei, H. Wang, J. Li, Bull. Chem. Soc. Jpn. 92(7) (2019) 1205. https://doi.org/10.1246/bcsj.20190061.

    38. [38]

      X. Ding, Y. Wen, C. Qing, Y. Wei, P. Wang, J. Liu, Z. Peng, Y. Song, H. Chen, Q. Rong, J. Alloys Compd. 986(2024) 174041. https://doi.org/10.1016/j.jallcom.2024.174041.X. Ding, Y. Wen, C. Qing, Y. Wei, P. Wang, J. Liu, Z. Peng, Y. Song, H. Chen, Q. Rong, J. Alloys Compd. 986(2024) 174041. https://doi.org/10.1016/j.jallcom.2024.174041.

    39. [39]

      W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. 2017(1) (2017) 9378349. https://doi.org/10.1155/2017/9378349.W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. 2017(1) (2017) 9378349. https://doi.org/10.1155/2017/9378349.

    40. [40]

      J. Liu, J. Wang, Y. Ni, Y. Zhang, J. Luo, F. Cheng, J. Chen, Small Methods 3(12) (2019) 1900350. https://doi.org/10.1002/smtd.201900350.J. Liu, J. Wang, Y. Ni, Y. Zhang, J. Luo, F. Cheng, J. Chen, Small Methods 3(12) (2019) 1900350. https://doi.org/10.1002/smtd.201900350.

    41. [41]

      J. Li, F.L. Deepak, Chem. Rev. 122(23) (2022) 16911. https://doi.org/10.1021/acs.chemrev.1c01067.J. Li, F.L. Deepak, Chem. Rev. 122(23) (2022) 16911. https://doi.org/10.1021/acs.chemrev.1c01067.

    42. [42]

      H. Yamauchi, J. Ikejiri, K. Tsunoda, A. Tanaka, F. Sato, T. Honma, T. Komatsu, Sci. Rep. 10(1) (2020) 9453. https://doi.org/10.1038/s41598-020-66410-1.H. Yamauchi, J. Ikejiri, K. Tsunoda, A. Tanaka, F. Sato, T. Honma, T. Komatsu, Sci. Rep. 10(1) (2020) 9453. https://doi.org/10.1038/s41598-020-66410-1.

    43. [43]

      I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, L. Nazar, Energy Environ. Sci. 15(9) (2022) 3933. https://doi.org/10.1039/D2EE00803C.I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, L. Nazar, Energy Environ. Sci. 15(9) (2022) 3933. https://doi.org/10.1039/D2EE00803C.

    44. [44]

      K. Gao, F. Yin, F. Mi, C. Sun, ACS Appl. Mater. Interfaces 17(22) (2025) 32511. https://doi.org/10.1021/acsami.5c05879.K. Gao, F. Yin, F. Mi, C. Sun, ACS Appl. Mater. Interfaces 17(22) (2025) 32511. https://doi.org/10.1021/acsami.5c05879.

    45. [45]

      B. Li, M.T. Sougrati, G. Rousse, A.V. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L. Zhang, A.M. Abakumov, M.-L. Doublet, et al., Nat. Chem. 13(11) (2021) 1070. https://doi.org/10.1038/s41557-021-00775-2.B. Li, M.T. Sougrati, G. Rousse, A.V. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L. Zhang, A.M. Abakumov, M.-L. Doublet, et al., Nat. Chem. 13(11) (2021) 1070. https://doi.org/10.1038/s41557-021-00775-2.

    46. [46]

      J.R. Croy, K.G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D.W. Dees, M.M. Thackeray, J. Phys. Chem. C 117(13) (2013) 6525. https://doi.org/10.1021/jp312658q.J.R. Croy, K.G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D.W. Dees, M.M. Thackeray, J. Phys. Chem. C 117(13) (2013) 6525. https://doi.org/10.1021/jp312658q.

    47. [47]

      Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H. Fu, X. Chen, J.-Q. Huang, Q. Zhang, Sci. Adv. 7(38) (2021) eabi5520. https://doi.org/doi: 10.1126/sciadv.abi5520.Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H. Fu, X. Chen, J.-Q. Huang, Q. Zhang, Sci. Adv. 7(38) (2021) eabi5520. https://doi.org/doi: 10.1126/sciadv.abi5520.

    48. [48]

      Y. Zhang, Y. Chen, M. Yan, F. Chen, J. Power Sources 283(2015) 464. https://doi.org/10.1016/j.jpowsour.2015.02.107.Y. Zhang, Y. Chen, M. Yan, F. Chen, J. Power Sources 283(2015) 464. https://doi.org/10.1016/j.jpowsour.2015.02.107.

    49. [49]

      Y. Yang, C. Gao, T. Luo, J. Song, T. Yang, H. Wang, K. Zhang, Y. Zuo, W. Xiao, Z. Jiang, et al., Adv. Mater. 35(52) (2023) 2307138. https://doi.org/10.1002/adma.202307138.Y. Yang, C. Gao, T. Luo, J. Song, T. Yang, H. Wang, K. Zhang, Y. Zuo, W. Xiao, Z. Jiang, et al., Adv. Mater. 35(52) (2023) 2307138. https://doi.org/10.1002/adma.202307138.

    50. [50]

      J. Ahn, J.H. Kim, B.W. Cho, K.Y. Chung, S. Kim, J.W. Choi, S.H. Oh, Nano Lett. 17(12) (2017) 7869. https://doi.org/10.1021/acs.nanolett.7b04158.J. Ahn, J.H. Kim, B.W. Cho, K.Y. Chung, S. Kim, J.W. Choi, S.H. Oh, Nano Lett. 17(12) (2017) 7869. https://doi.org/10.1021/acs.nanolett.7b04158.

    51. [51]

      Y. Liu, Z. Yang, J. Li, B. Niu, K. Yang, F. Kang, J. Mater. Chem. A 6(28) (2018) 13883. https://doi.org/10.1039/c8ta04568b.Y. Liu, Z. Yang, J. Li, B. Niu, K. Yang, F. Kang, J. Mater. Chem. A 6(28) (2018) 13883. https://doi.org/10.1039/c8ta04568b.

    52. [52]

      Y. Liu, Z. Zhang, Y. Gao, G. Yang, C. Li, J. Zheng, A. Dou, Q. Wang, M. Su, J. Alloys Compd. 657(2016) 37. https://doi.org/10.1016/j.jallcom.2015.10.060.Y. Liu, Z. Zhang, Y. Gao, G. Yang, C. Li, J. Zheng, A. Dou, Q. Wang, M. Su, J. Alloys Compd. 657(2016) 37. https://doi.org/10.1016/j.jallcom.2015.10.060.

    53. [53]

      M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, J. Cho, Nat. Energy 6(4) (2021) 362. https://doi.org/10.1038/s41560-021-00782-0.M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, J. Cho, Nat. Energy 6(4) (2021) 362. https://doi.org/10.1038/s41560-021-00782-0.

    54. [54]

      Z. Yu, B. Singh, Y. Yu, L.F. Nazar, Nat. Mater. 24(7) (2025) 1082. https://doi.org/10.1038/s41563-025-02238-2.Z. Yu, B. Singh, Y. Yu, L.F. Nazar, Nat. Mater. 24(7) (2025) 1082. https://doi.org/10.1038/s41563-025-02238-2.

    55. [55]

      W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, et al., Nat. Energy 8(8) (2023) 800. https://doi.org/10.1038/s41560-023-01279-8.W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, et al., Nat. Energy 8(8) (2023) 800. https://doi.org/10.1038/s41560-023-01279-8.

    56. [56]

      Z. Wang, Q. Su, H. Deng, Y. Fu, ChemElectroChem 2(9) (2015) 1292. https://doi.org/10.1002/celc.201500201.Z. Wang, Q. Su, H. Deng, Y. Fu, ChemElectroChem 2(9) (2015) 1292. https://doi.org/10.1002/celc.201500201.

    57. [57]

      M.-J. Wang, A.-F. Shao, F.-D. Yu, G. Sun, D.-M. Gu, Z.-B. Wang, ACS Sustainable Chem. Eng. 7(15) (2019) 12825. https://doi.org/10.1021/acssuschemeng.9b01719.M.-J. Wang, A.-F. Shao, F.-D. Yu, G. Sun, D.-M. Gu, Z.-B. Wang, ACS Sustainable Chem. Eng. 7(15) (2019) 12825. https://doi.org/10.1021/acssuschemeng.9b01719.

    58. [58]

      G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J.M. Tarascon, Nat. Commun. 8(1) (2017) 2219. https://doi.org/10.1038/s41467-017-02291-9.G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J.M. Tarascon, Nat. Commun. 8(1) (2017) 2219. https://doi.org/10.1038/s41467-017-02291-9.

    59. [59]

      W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, et al., ACS Appl. Mater. Interfaces 9(21) (2017) 17835. https://doi.org/10.1021/acsami.7b01137.W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, et al., ACS Appl. Mater. Interfaces 9(21) (2017) 17835. https://doi.org/10.1021/acsami.7b01137.

    60. [60]

      A. Zhang, J. Wang, R. Yu, H. Zhuo, C. Wang, Z. Ren, J. Wang, ACS Appl. Mater. Interfaces 15(6) (2023) 8190. https://doi.org/10.1021/acsami.2c21569.A. Zhang, J. Wang, R. Yu, H. Zhuo, C. Wang, Z. Ren, J. Wang, ACS Appl. Mater. Interfaces 15(6) (2023) 8190. https://doi.org/10.1021/acsami.2c21569.

    61. [61]

      G.G. Khan, S. Ghosh, A. Sarkar, G. Mandal, G.D. Mukherjee, U. Manju, N. Banu, B.N. Dev, J. Appl. Phys. 118(7) (2015) 074303. https://doi.org/10.1063/1.4928952.G.G. Khan, S. Ghosh, A. Sarkar, G. Mandal, G.D. Mukherjee, U. Manju, N. Banu, B.N. Dev, J. Appl. Phys. 118(7) (2015) 074303. https://doi.org/10.1063/1.4928952.

    62. [62]

      C.H. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M.C. Holland, M.L. Huang, C.H. Lin, C.H. Hsieh, Y.S. Chang, et al., AIP Adv. 4(4) (2014) 047108. https://doi.org/10.1063/1.4871187.C.H. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M.C. Holland, M.L. Huang, C.H. Lin, C.H. Hsieh, Y.S. Chang, et al., AIP Adv. 4(4) (2014) 047108. https://doi.org/10.1063/1.4871187.

    63. [63]

      X. Li, Q. Ye, Z. Wu, W. Zhang, H. Huang, Y. Xia, Y. Gan, X. He, X. Xia, J. Zhang, Electrochim. Acta 453(2023) 142361. https://doi.org/10.1016/j.electacta.2023.142361.X. Li, Q. Ye, Z. Wu, W. Zhang, H. Huang, Y. Xia, Y. Gan, X. He, X. Xia, J. Zhang, Electrochim. Acta 453(2023) 142361. https://doi.org/10.1016/j.electacta.2023.142361.

    64. [64]

      D. Foix, M. Sathiya, E. McCalla, J.-M. Tarascon, D. Gonbeau, J. Phys. Chem. C 120(2) (2016) 862. https://doi.org/10.1021/acs.jpcc.5b10475.D. Foix, M. Sathiya, E. McCalla, J.-M. Tarascon, D. Gonbeau, J. Phys. Chem. C 120(2) (2016) 862. https://doi.org/10.1021/acs.jpcc.5b10475.

    65. [65]

      L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, D. Gonbeau, Chem. Mater. 20(2) (2008) 583. https://doi.org/10.1021/cm702546s.L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, D. Gonbeau, Chem. Mater. 20(2) (2008) 583. https://doi.org/10.1021/cm702546s.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  101
  • HTML全文浏览量:  7
文章相关
  • 收稿日期:  2025-07-08
  • 接受日期:  2025-10-14
  • 修回日期:  2025-09-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章