一石三鸟:路易斯酸热诱导改性Li5FeO4

李孟修 毛佳辉 倪江锋 李亮

引用本文: 李孟修, 毛佳辉, 倪江锋, 李亮. 一石三鸟:路易斯酸热诱导改性Li5FeO4[J]. 物理化学学报, 2026, 42(4): 100189. doi: 10.1016/j.actphy.2025.100189 shu
Citation:  Mengxiu Li, Jiahui Mao, Jiangfeng Ni, Liang Li. Three birds with one stone: modification of Li5FeO4 with thermal induction of Lewis acid[J]. Acta Physico-Chimica Sinica, 2026, 42(4): 100189. doi: 10.1016/j.actphy.2025.100189 shu

一石三鸟:路易斯酸热诱导改性Li5FeO4

    通讯作者: Email: jeffni@suda.edu.cn (倪江锋); lli@suda.edu.cn (李亮)
摘要: 铁酸锂(Li5FeO4)是一种极具前景的锂离子电池正极预锂化添加剂,但其易与空气中的二氧化碳和水分发生副反应而导致失效。针对这一问题,本研究提出了一种基于PF5热诱导改性的高效路易斯酸再生策略。该策略可有效去除Li5FeO4表面惰性杂质,并原位构建Li3PO4与LiF的复合包覆层。再生后的Li5FeO4表现出优异的分散性、空气稳定性和电解液界面相容性,能有效抑制浆料凝胶化和界面副反应。当添加1.5% (wt)再生Li5FeO4时,LiFePO4正极在200次循环后仍保持135.0 mAh g−1的容量和95.3%的保持率;而对照组(未添加Li5FeO4)仅保留113.7 mAh g−1容量(保持率92.2%)。该研究为Li5FeO4的实际应用提供了新思路,将在长循环锂离子电池领域获得广泛应用。

English

    1. [1]

      F. Degen, M. Winter, D. Bendig, J. Tübke, Nat. Energy 8 (2023) 1284, https://doi.org/10.1038/s41560-023-01355-z. doi: 10.1038/s41560-023-01355-z

    2. [2]

      C. P. Grey, D. S. Hall, Nat. Commun. 11 (2020) 6279, https://doi.org/10.1038/s41467-020-19991-4. doi: 10.1038/s41467-020-19991-4

    3. [3]

      V. Viswanathan, A. H. Epstein, Y. -M. Chiang, E. Takeuchi, M. Bradley, J. Langford, M. Winter, Nature 601 (2022) 519, https://doi.org/10.1038/s41586-021-04139-1. doi: 10.1038/s41586-021-04139-1

    4. [4]

      S. Link, A. Stephan, D. Speth, P. Plötz, Nat. Energy 9 (2024) 1032, https://doi.org/10.1038/s41560-024-01531-9. doi: 10.1038/s41560-024-01531-9

    5. [5]

      L. Song, H. Liang, S. Li, B. Qiu, Z. Liu, Acta Phys. Chim. Sin. 41 (2025) 100085, https://doi.org/10.1016/j.actphy.2025.100085. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      J. Wu, Y. Wu, L. Wang, H. Ye, J. Lu, Y. Li, Adv. Mater. 36 (2023) 2308193, https://doi.org/10.1002/adma.202308193. doi: 10.1002/adma.202308193

    7. [7]

      J. Zhu, W. Hu, J. Ni, L. Li, Nat. Sci. Open 3 (2024) 20230078, https://doi.org/10.1360/nso/20230078. doi: 10.1360/nso/20230078

    8. [8]

      S. Zhu, Q. Wang, J. Ni, EnergyChem 5 (2023) 100097, https://doi.org/10.1016/j.enchem.2022.100097. doi: 10.1016/j.enchem.2022.100097

    9. [9]

      K. Zhang, Z. Wang, Z. Xu, X. Zhou, G. Li, Z. Mei, Y. Yu, Y. Wang, C. Wang, G. Zhu, et al., Energy Stor. Mater. 75 (2025) 104081, https://doi.org/10.1016/j.ensm.2025.104081. doi: 10.1016/j.ensm.2025.104081

    10. [10]

      Y. Zhu, Y. Chen, J. Chen, J. Yin, Z. Sun, G. Zeng, X. Wu, L. Chen, X. Yu, H. Luo, et al., Adv. Mater. 36 (2023) 2312159, https://doi.org/10.1002/adma.202312159. doi: 10.1002/adma.202312159

    11. [11]

      B. Roy, U. Pal, D. Simondson, C. Nguyen, B. V. Kerr, R. K. Hocking, D. Al-Masri, P. C. Howlett, M. Forsyth, M. Kar, et al., Adv. Funct. Mater. 35 (2025) 2417317, https://doi.org/10.1002/adfm.202417317. doi: 10.1002/adfm.202417317

    12. [12]

      L. Lu, G. Jiang, C. Gu, J. Ni, Funct. Mater. Lett. 14 (2021) 2130006, https://doi.org/10.1142/s1793604721300061. doi: 10.1142/s1793604721300061

    13. [13]

      V. Nguyen-Tien, C. Zhang, E. Strobl, R. J. R. Elliott, Nat. Energy 10 (2025) 354, https://doi.org/10.1038/s41560-024-01698-1. doi: 10.1038/s41560-024-01698-1

    14. [14]

      S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang, Z. Liu, M. Cao, M. N. Ateş, Y. Li, L. Chen, Z. Wang, X. Wang, Nano-Micro Lett. 15 (2023) 215, https://doi.org/10.1007/s40820-023-01183-6. doi: 10.1007/s40820-023-01183-6

    15. [15]

      Y. Yang, Z. Li, M. Zhang, J. Wang, Y. Wang, J. Qiu, H. Zhao, Adv. Mater. 37 (2025) 2417981, https://doi.org/10.1002/adma.202417981. doi: 10.1002/adma.202417981

    16. [16]

      Y. Peng, M. Ding, K. Zhang, H. Zhang, Y. Hu, Y. Lin, W. Hu, Y. Liao, S. Tang, J. Liang, et al., ACS Energy Lett. 9 (2024) 6022, https://doi.org/10.1021/acsenergylett.4c02898. doi: 10.1021/acsenergylett.4c02898

    17. [17]

      E. W. C. Spotte-Smith, R. L. Kam, D. Barter, X. Xie, T. Hou, S. Dwaraknath, S. M. Blau, K. A. Persson, ACS Energy Lett. 7 (2022) 1446, https://doi.org/10.1021/acsenergylett.2c00517. doi: 10.1021/acsenergylett.2c00517

    18. [18]

      C. An, T. Liu, Acta Phys. Chim. Sin. 41 (2025) 100101, https://doi.org/10.1016/j.actphy.2025.100101. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      C. Yang, H. Ma, R. Yuan, K. Wang, K. Liu, Y. Long, F. Xu, L. Li, H. Zhang, Y. Zhang, et al., Nat. Energy 8 (2023) 703, https://doi.org/10.1038/s41560-023-01272-1. doi: 10.1038/s41560-023-01272-1

    20. [20]

      W. Zhong, Z. Zeng, S. Cheng, J. Xie, Adv. Funct. Mater. 34 (2023) 2307860, https://doi.org/10.1002/adfm.202307860. doi: 10.1002/adfm.202307860

    21. [21]

      Y. Sun, H. -W. Lee, Z. W. Seh, N. Liu, J. Sun, Y. Li, Y. Cui, Nat. Energy 1 (2016) 15008, https://doi.org/10.1038/nenergy.2015.8. doi: 10.1038/nenergy.2015.8

    22. [22]

      H. Zhang, J. Cheng, H. Liu, D. Li, Z. Zeng, Y. Li, F. Ji, Y. Guo, Y. Wei, S. Zhang, et al., Adv. Energy Mater. 13 (2023) 2300466, https://doi.org/10.1002/aenm.202300466. doi: 10.1002/aenm.202300466

    23. [23]

      Y. Chen, Y. Zhu, Z. Sun, X. Kuai, J. Chen, B. Zhang, J. Yin, H. Luo, Y. Tang, G. Zeng, et al., Adv. Mater. 36 (2024) 2407720, https://doi.org/10.1002/adma.202407720. doi: 10.1002/adma.202407720

    24. [24]

      M. Diaz‐Lopez, P. A. Chater, P. Bordet, M. Freire, C. Jordy, O. I. Lebedev, V. Pralong, Adv. Energy Mater. 10 (2020) 1902788, https://doi.org/10.1002/aenm.201902788. doi: 10.1002/aenm.201902788

    25. [25]

      Y. Sun, H. W. Lee, Z. W. Seh, G. Zheng, J. Sun, Y. Li, Y. Cui, Adv. Energy Mater. 6 (2016) 1600154, https://doi.org/10.1002/aenm.201600154. doi: 10.1002/aenm.201600154

    26. [26]

      Z. Rao, J. Wu, B. He, W. Chen, H. Wang, Q. Fu, Y. Huang, ACS Appl. Mater. Interfaces 13 (2021) 38194, https://doi.org/10.1021/acsami.1c06703. doi: 10.1021/acsami.1c06703

    27. [27]

      Y. Chen, Y. Zhu, W. Zuo, X. Kuai, J. Yao, B. Zhang, Z. Sun, J. Yin, X. Wu, H. Zhang, et al., Angew. Chem. Int. Ed. 63 (2023) e202316112, https://doi.org/10.1002/anie.202316112. doi: 10.1002/anie.202316112

    28. [28]

      W. Zhong, S. Li, M. Liu, Q. Wu, Z. Zeng, S. Cheng, J. Xie, Nano Energy 115 (2023) 108757, https://doi.org/10.1016/j.nanoen.2023.108757. doi: 10.1016/j.nanoen.2023.108757

    29. [29]

      H. Kobayashi, Y. Nakamura, M. Nakayama, S. Kodaki, R. Matsuo, I. Honma, Adv. Energy Mater. 13 (2023) 2203441, https://doi.org/10.1002/aenm.202203441. doi: 10.1002/aenm.202203441

    30. [30]

      Y. Zhu, R. Xu, Y. Zheng, Y. Chen, J. Yin, J. Xue, B. Zhang, L. Li, G. Zeng, H. Luo, et al., Angew. Chem. Int. Ed. 64 (2025) e202502126, https://doi.org/10.1002/anie.202502126. doi: 10.1002/anie.202502126

    31. [31]

      J. Jung, Y. S. Byeon, D. Kim, S. H. Jeong, C. H. Song, E. -J. Lee, S. -M. Oh, M. -S. Park, J. Mater. Chem. A 13 (2025) 1313, https://doi.org/10.1039/d4ta07513g. doi: 10.1039/d4ta07513g

    32. [32]

      N. Yao, F. Liu, A. Shao, R. Xue, Q. Jia, Y. Liu, H. Wang, X. Wang, Y. Zhang, M. Zhang, et al., Adv. Mater. 36 (2024) 2408268, https://doi.org/10.1002/adma.202408268. doi: 10.1002/adma.202408268

    33. [33]

      L. Feng, J. Guo, C. Sun, X. Xiao, L. Feng, Y. Hao, G. Sun, Z. Tian, T. Li, Y. Li, et al., Small 20 (2024) 2403084, https://doi.org/10.1002/smll.202403084. doi: 10.1002/smll.202403084

    34. [34]

      Y. Xia, A. Chen, K. Wang, Q. Mao, H. Huang, J. Zhang, X. He, Y. Gan, Z. Xiao, W. Zhang, Chem. Eng. J. 450 (2022) 138382, https://doi.org/10.1016/j.cej.2022.138382. doi: 10.1016/j.cej.2022.138382

    35. [35]

      B. Zhu, W. Zhang, Q. Wang, Y. Lai, J. Zheng, N. Wen, Z. Zhang, Adv. Funct. Mater. 34 (2024) 2315010, https://doi.org/10.1002/adfm.202315010. doi: 10.1002/adfm.202315010

    36. [36]

      S. Ramakrishnan, B. Park, J. Wu, W. Yang, B. D. McCloskey, J. Am. Chem. Soc. 142 (2020) 8522, https://doi.org/10.1021/jacs.0c02859. doi: 10.1021/jacs.0c02859

    37. [37]

      N. Wen, J. Li, B. Zhu, J. Guo, Z. Zhang, Chem. Eng. J. 497 (2024) 154536, https://doi.org/10.1016/j.cej.2024.154536. doi: 10.1016/j.cej.2024.154536

    38. [38]

      B. Zhu, N. Wen, J. Wang, Q. Wang, J. Zheng, Z. Zhang, Chem. Sci. 15 (2024) 12879, https://doi.org/10.1039/d4sc03052d. doi: 10.1039/d4sc03052d

    39. [39]

      X. Wang, D. Ren, H. Liang, Y. Song, H. Huo, A. Wang, Y. Gao, J. Liu, Y. Gao, L. Wang, X. He, Energy Environ. Sci. 16 (2023) 1200, https://doi.org/10.1039/d2ee04109j. doi: 10.1039/d2ee04109j

    40. [40]

      Y. Wu, R. Xu, Z. Xiao, Z. Wang, R. Zheng, Z. Song, Y. Liu, Adv. Funct. Mater. 35 (2025) 2423478, https://doi.org/10.1002/adfm.202423478. doi: 10.1002/adfm.202423478

    41. [41]

      S. S. Zhang, Energy Stor. Mater. 24 (2020) 247, https://doi.org/10.1016/j.ensm.2019.08.013. doi: 10.1016/j.ensm.2019.08.013

    42. [42]

      L. Niu, M. Wu, Y. Zhang, C. Gao, X. Li, H. Ding, N. He, P. Wang, J. Zhang, J. Yan, et al., Chem. Eng. J. 498 (2024) 155242, https://doi.org/10.1016/j.cej.2024.155242. doi: 10.1016/j.cej.2024.155242

    43. [43]

      L. Li, Y. Hu, J. Liu, Y. Deng, G. Chen, Chem. Eng. J. 503 (2025) 158439, https://doi.org/10.1016/j.cej.2024.158439. doi: 10.1016/j.cej.2024.158439

    44. [44]

      B. P. Thapaliya, A. Y. Borisevich, H. M. Meyer, X. G. Sun, C. A. Bridges, S. Dai, Adv. Mater. Interfaces 9 (2022) 2201600, https://doi.org/10.1002/admi.202201600. doi: 10.1002/admi.202201600

    45. [45]

      J. Chen, C. Li, J. Zhang, C. Li, J. Chen, Y. Ren, Materials 11 (2018) 1256, https://doi.org/10.3390/ma11071256. doi: 10.3390/ma11071256

    46. [46]

      Y. Chu, Y. Mu, L. Zou, Y. Hu, J. Cheng, B. Wu, M. Han, S. Xi, Q. Zhang, L. Zeng, Adv. Mater. 35 (2023) 2212308, https://doi.org/10.1002/adma.202212308. doi: 10.1002/adma.202212308

    47. [47]

      M. Sun, Z. Wang, J. Ni, L. Li, Adv. Funct. Mater. 30 (2020) 1910043, https://doi.org/10.1002/adfm.201910043. doi: 10.1002/adfm.201910043

    48. [48]

      J. Ni, Y. Zhao, J. Chen, L. Gao, L. Lu, Electrochem. Commun. 44 (2014) 4, https://doi.org/10.1016/j.elecom.2014.04.004. doi: 10.1016/j.elecom.2014.04.004

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  41
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2026-04-15
  • 收稿日期:  2025-07-10
  • 接受日期:  2025-09-16
  • 修回日期:  2025-09-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章