Na2S/Na2SO3溶液促进NiS2/Mn0.5Cd0.5S肖特基/S型孪晶同质结光催化转化H2S

肖子翼 马心怡 王林平 胡浩斌 刘恩周

引用本文: 肖子翼, 马心怡, 王林平, 胡浩斌, 刘恩周. Na2S/Na2SO3溶液促进NiS2/Mn0.5Cd0.5S肖特基/S型孪晶同质结光催化转化H2S[J]. 物理化学学报, 2026, 42(4): 100171. doi: 10.1016/j.actphy.2025.100171 shu
Citation:  Ziyi Xiao, Xinyi Ma, Linping Wang, Haobin Hu, Enzhou Liu. Efficient photocatalytic conversion H2S over NiS2/twinned-Mn0.5Cd0.5S Schottky/S-scheme homojunction in Na2S/Na2SO3 solution[J]. Acta Physico-Chimica Sinica, 2026, 42(4): 100171. doi: 10.1016/j.actphy.2025.100171 shu

Na2S/Na2SO3溶液促进NiS2/Mn0.5Cd0.5S肖特基/S型孪晶同质结光催化转化H2S

    通讯作者: Email: hhb-88@126.com (胡浩斌); liuenzhou@nwu.edu.cn (刘恩周)
摘要: 将硫化氢(H2S)有毒废气转化为氢气(H2)和高附加值含硫化学品一直是光催化分解H2S领域的重要研究目标。本文借助孪晶Mn0.5Cd0.5S (T-MCS)固溶体的结构优势促进光催化剂体相电荷分离,并将导电性能优异的二硫化镍(NiS2)负载于T-MCS表面,构建了NiS2/T-MCS界面肖特基结与体相S型孪晶同质结复合光催化剂。研究表明,NiS2不仅引入了大量活性位点,而且显著改善了表面电荷分离效率。以0.1 mol L−1 (M)硫化钠(Na2S)与0.6 M无水亚硫酸钠(Na2SO3)吸收H2S后的饱和溶液作为反应液,8 wt% NiS2/T-MCS复合材料产氢速率可达59.95 mmol h−1 g−1。傅里叶变换红外光谱(FTIR)与紫外-可见吸收光谱(UV-Vis)证实反应液中硫化合物几乎完全转化为硫代硫酸钠(Na2S2O3),并通过滴定法对S2O32−含量进行了定量测定。本文制备的肖特基结与固溶体孪晶同质结复合材料为开发高效H2S光催化转化体系,以及同时获得H2和Na2S2O3提供了重要实验参考。

English

    1. [1]

      A. K. Gupta, S. Ibrahim, A. Al Shoaibi, Prog. Energy Combust. Sci. 54 (2016) 65, https://doi.org/10.1016/j.pecs.2015.11.001. doi: 10.1016/j.pecs.2015.11.001

    2. [2]

      H. Oladipo, A. Yusuf, S. Al Jitan, G. Palmisano, Catal. Today 380 (2021) 125, https://doi.org/10.1016/j.cattod.2021.03.021. doi: 10.1016/j.cattod.2021.03.021

    3. [3]

      T. Sun, C. Li, Y. Bao, J. Fan, E. Liu, Acta Phys.-Chim. Sin. 39 (2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009. doi: 10.3866/PKU.WHXB202212009

    4. [4]

      E. Borgarello, K. Kalyanasundaram, M. Grätzel, E. Pelizzetti, Helv. Chim. Acta. 65 (1982) 243, https://doi.org/10.1002/hlca.19820650123. doi: 10.1002/hlca.19820650123

    5. [5]

      N. Buehler, K. Meier, J. F. Reber, J. Phys. Chem. 88 (1984) 3261, https://doi.org/10.1021/j150659a025. doi: 10.1021/j150659a025

    6. [6]

      X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao, Z. Lou, Acta Phys.-Chim. Sin. 39 (2023) 2302017, https://doi.org/10.3866/PKU.WHXB202302017. doi: 10.3866/PKU.WHXB202302017

    7. [7]

      M. Dan, Q. Zhang, S. Yu, A. Prakash, Y. Lin, Y. Zhou, Appl. Catal. B Environ. 217 (2017) 530, https://doi.org/10.1016/j.apcatb.2017.06.019. doi: 10.1016/j.apcatb.2017.06.019

    8. [8]

      Y. Li, S. Yu, J. Xiang, F. Zhang, A. Jiang, Y. Duan, C. Tang, Y. Cao, H. Guo, Y. Zhou, ACS Catal. 13 (2023) 8281, https://doi.org/10.1021/acscatal.3c01210. doi: 10.1021/acscatal.3c01210

    9. [9]

      M. Dan, S. Yu, W. Lin, M. Abdellah, Z. Guo, Z. Liu, T. Pullerits, K. Zheng, Y. Zhou, Adv. Mater. 37 (2025) 2415138, https://doi.org/10.1002/adma.202415138. doi: 10.1002/adma.202415138

    10. [10]

      M. Dan, J. Xiang, J. Yang, F. Wu, C. Han, Y. Zhong, K. Zheng, S. Yu, Y. Zhou, Appl. Catal. B Environ. 284 (2021) 119706, https://doi.org/10.1016/j.apcatb.2020.119706. doi: 10.1016/j.apcatb.2020.119706

    11. [11]

      C. Duan, C. Tang, Y. Du, S. Yu, H. Guo, Y. Bai, Y. Zhou, Appl. Catal. B Environ. Energy 355 (2024) 124146, https://doi.org/10.1016/j.apcatb.2024.124146. doi: 10.1016/j.apcatb.2024.124146

    12. [12]

      W. Pan, Y. Zhang, S. Yu, X. Liu, D. Zhang, Sens. Actuators B Chem. 344 (2021) 130221, https://doi.org/10.1016/j.snb.2021.130221. doi: 10.1016/j.snb.2021.130221

    13. [13]

      F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, S. Wang, J. Colloid Interface Sci. 532 (2018) 321, https://doi.org/10.1016/j.jcis.2018.07.131. doi: 10.1016/j.jcis.2018.07.131

    14. [14]

      A. Prakash, M. Dan, S. Yu, S. Wei, Y. Li, F. Wang, Y. Zhou, Sol. Energy Mater. Sol. Cells 180 (2018) 205, https://doi.org/10.1016/j.solmat.2018.03.011. doi: 10.1016/j.solmat.2018.03.011

    15. [15]

      A. Jiang, H. Guo, S. Yu, F. Zhang, T. Shuai, Y. Ke, P. Yang, Y. Zhou, Appl. Catal. B Environ. 332 (2023) 122747, https://doi.org/10.1016/j.apcatb.2023.122747. doi: 10.1016/j.apcatb.2023.122747

    16. [16]

      Y. Li, D. Bahamon, M. Sinnokrot, K. Al-Ali, G. Palmisano, L. F. Vega, J. Photochem. Photobiol. C Photochem. Rev. 49 (2021) 100456, https://doi.org/10.1016/j.jphotochemrev.2021.100456. doi: 10.1016/j.jphotochemrev.2021.100456

    17. [17]

      G. Sun, J. Zhang, B. Cheng, H. Yu, J. Yu, J. Xu, Chem. Eng. J. 476 (2023) 146818, https://doi.org/10.1016/j.cej.2023.146818. doi: 10.1016/j.cej.2023.146818

    18. [18]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys.-Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      H. Li, J. Zhang, X. Zhou, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 231 (2025) 1, https://doi.org/10.1016/j.jmst.2024.12.076. doi: 10.1016/j.jmst.2024.12.076

    20. [20]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600. doi: 10.1002/adma.202310600

    21. [21]

      K. Ikeue, S. Shiiba, M. Machida, Chem. Mater. 22 (2010) 743, https://doi.org/10.1021/cm9026013. doi: 10.1021/cm9026013

    22. [22]

      Q. Zhang, Z. Wang, Y. Song, J. Fan, T. Sun, E. Liu, J. Mater. Sci. Technol. 169 (2024) 148, https://doi.org/10.1016/j.jmst.2023.05.066. doi: 10.1016/j.jmst.2023.05.066

    23. [23]

      H. Wen, W. Duan, L. Guo, Q. Wang, X. Fu, Y. Wang, R. Li, B. Jin, R. Du, C. Yang, D. Wang, Appl. Catal. B Environ. Energy 345 (2024) 123641, https://doi.org/10.1016/j.apcatb.2023.123641. doi: 10.1016/j.apcatb.2023.123641

    24. [24]

      Z. Lei, W. Wang, T. Sun, E. Liu, T. Gao, J. Mater. Sci. Technol. 216 (2025) 81, https://doi.org/10.1016/j.jmst.2024.07.034. doi: 10.1016/j.jmst.2024.07.034

    25. [25]

      H. Lv, Y. Kong, Z. Gong, J. Zheng, Y. Liu, G. Wang, Appl. Surf. Sci. 604 (2022) 154513, https://doi.org/10.1016/j.apsusc.2022.154513. doi: 10.1016/j.apsusc.2022.154513

    26. [26]

      Z. Wang, M. Li, J. Li, Y. Ma, J. Fan, E. Liu, J. Environ. Chem. Eng. 10 (2022) 107375, https://doi.org/10.1016/j.jece.2022.107375. doi: 10.1016/j.jece.2022.107375

    27. [27]

      Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60253-6. doi: 10.1016/S1872-2067(24)60253-6

    28. [28]

      M. Liu, L. Wang, G. Lu, X. Yao, L. Guo, Energy Environ. Sci. 4 (2011) 1372, https://doi.org/10.1039/C0EE00604A. doi: 10.1039/C0EE00604A

    29. [29]

      C. Wang, X. Ma, Z. Fu, X. Hu, J. Fan, E. Liu, J. Colloid Interface Sci. 592 (2021) 66, https://doi.org/10.1016/j.jcis.2021.02.041. doi: 10.1016/j.jcis.2021.02.041

    30. [30]

      K. Zhang, Y. Dai, Z. Zhou, S. U. Jan, L. Guo, J. R. Gong, Nano Energy 41 (2017) 101, https://doi.org/10.1016/j.nanoen.2017.09.021. doi: 10.1016/j.nanoen.2017.09.021

    31. [31]

      P. Su, J. Yu, P. Deng, D. Qu, T. Liang, H. Zhao, N. Yang, D. F. Zhang, B. Ge, X. Pu, J. Liaocheng Univ. (Nat. Sci.) 37 (2024) 123, https://doi.org/10.19728/j.issn1672-6634.2024010012. doi: 10.19728/j.issn1672-6634.2024010012

    32. [32]

      W. Fu, S. Wang, Y. Zhang, B. Cheng, Y. Wu, J. Mater. Sci. Technol. 232 (2025) 181, https://doi.org/10.1016/j.jmst.2024.12.081. doi: 10.1016/j.jmst.2024.12.081

    33. [33]

      J. Yu, X. Li, J. Fu, K. Dai, Sci. China Mater. 67 (2024) 379, https://doi.org/10.1007/s40843-024-2779-5. doi: 10.1007/s40843-024-2779-5

    34. [34]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    35. [35]

      X. Ma, S. Xing, M. Lu, E. Liu, Chem. Res. Chin. Univ. 41 (2025) 781, https://doi.org/10.1007/s40242-025-5072-2. doi: 10.1007/s40242-025-5072-2

    36. [36]

      D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2108475, https://doi.org/10.1002/adma.202108475. doi: 10.1002/adma.202108475

    37. [37]

      X. Zhu, Z. Pan, W. Lu, Int. J. Hydrog. Energy 48 (2023) 26740, https://doi.org/10.1016/j.ijhydene.2023.03.369. doi: 10.1016/j.ijhydene.2023.03.369

    38. [38]

      L. Zhang, J. Rong, Y. Yang, H. Zhu, X. Yu, C. Chen, H. Cheng, G. Liu, Small 19 (2023) 2207472, https://doi.org/10.1002/smll.202207472. doi: 10.1002/smll.202207472

    39. [39]

      H. Yuan, W. Xiao, X. Zhang, J. Bao, W. Li, B. Huang, G. He, J. Power Sources 606 (2024) 234588, https://doi.org/10.1016/j.jpowsour.2024.234588. doi: 10.1016/j.jpowsour.2024.234588

    40. [40]

      J. Zhou, H. Zhu, R. Ding, H. Luo, L. Yu, Y. Zhang, Int. J. Hydrog. Energy 67 (2024) 532, https://doi.org/10.1016/j.ijhydene.2024.04.165. doi: 10.1016/j.ijhydene.2024.04.165

    41. [41]

      J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, https://doi.org/10.1016/j.jmst.2024.12.102. doi: 10.1016/j.jmst.2024.12.102

    42. [42]

      X. Li, T. Gao, H. Ma, E. Liu, B. Zhao, T. Sun, Appl. Surf. Sci. 678 (2024) 161127, https://doi.org/10.1016/j.apsusc.2024.161127. doi: 10.1016/j.apsusc.2024.161127

    43. [43]

      H. Lv, C. Zhou, Q. Shen, Y. Kong, B. Wan, Z. Suo, G. Wang, G. Wang, Y. Liu, J. Colloid Interface Sci. 677 (2025) 365, https://doi.org/10.1016/j.jcis.2024.08.072. doi: 10.1016/j.jcis.2024.08.072

    44. [44]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867. doi: 10.1002/smll.202402867

    45. [45]

      W. Deng, X. Hao, Y. Wang, Y. Fan, Z. Jin, Fuel 363 (2024) 130964, https://doi.org/10.1016/j.fuel.2024.130964. doi: 10.1016/j.fuel.2024.130964

    46. [46]

      Z. Lei, X. Cao, J. Fan, X. Hu, J. Hu, N. Li, T. Sun, E. Liu, Chem. Eng. J. 457 (2023) 141249, https://doi.org/10.1016/j.cej.2022.141249. doi: 10.1016/j.cej.2022.141249

    47. [47]

      H. Gong, D. Zhang, T. Liu, P. Kuang, J. Yu, Small 21 (2025) 2407790, https://doi.org/10.1002/smll.202407790. doi: 10.1002/smll.202407790

    48. [48]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X. doi: 10.1016/S1872-2067(24)60077-X

    49. [49]

      J. Tian, X. Cao, T. Sun, J. Fan, H. Miao, Z. Chen, D. Li, E. Liu, Y. Zhu, Chem. Eng. J. 471 (2023) 144587, https://doi.org/10.1016/j.cej.2023.144587. doi: 10.1016/j.cej.2023.144587

    50. [50]

      Y. Liu, Z. Wang, L. Yao, L. Shi, Mater. Chem. Phys. 297 (2023) 127410, https://doi.org/10.1016/j.matchemphys.2023.127410. doi: 10.1016/j.matchemphys.2023.127410

    51. [51]

      H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3. doi: 10.1016/S1872-2067(22)64201-3

    52. [52]

      Y. Liu, X. Wang, L. Shi, Y. Zhang, Z. Yang, Int. J. Hydrog. Energy 51 (2024) 531, https://doi.org/10.1016/j.ijhydene.2023.06.281. doi: 10.1016/j.ijhydene.2023.06.281

    53. [53]

      R. Ding, H. Zhu, J. Zhou, H. Luo, K. Xue, L. Yu, Y. Zhang, ACS Appl. Mater. Interfaces 15 (2023) 36477, https://doi.org/10.1021/acsami.3c08614. doi: 10.1021/acsami.3c08614

    54. [54]

      W. Xiao, H. Yuan, J. Bao, X. Zhang, B. Huang, G. He, Surf. Interfaces 72 (2025) 107035, https://doi.org/10.1016/j.surfin.2025.107035. doi: 10.1016/j.surfin.2025.107035

    55. [55]

      N. Li, G. Zhao, Y. Wu, Y. Li, K. Zhao, W. Fu, S. Zhang, J. Ma, ACS Appl. Nano Mater. 7 (2024) 26952, https://doi.org/10.1021/acsanm.4c04947. doi: 10.1021/acsanm.4c04947

    56. [56]

      H. Qian, L. Cao, X. Lu, S. Liao, F. Jia, S. Xie, X. Xiong, J. Zou, X. Zeng, Colloids Surf. A 682 (2024) 132935, https://doi.org/10.1016/j.colsurfa.2023.132935. doi: 10.1016/j.colsurfa.2023.132935

    57. [57]

      Y. Hu, P. Deng, W. Wang, L. Zhang, Y. Hou, ACS Appl. Energy Mater. 6 (2023) 11135, https://doi.org/10.1021/acsaem.3c01941. doi: 10.1021/acsaem.3c01941

    58. [58]

      Y. Chen, S. Yu, Y. Zhong, Y. Wang, J. Ye, Y. Zhou, Processes 11 (2023) 3160, https://doi.org/10.3390/pr11113160. doi: 10.3390/pr11113160

    59. [59]

      S. Yu, Z. Xie, M. Ran, F. Wu, Y. Zhong, M. Dan, Y. Zhou, J. Colloid Interface Sci. 573 (2020) 71, https://doi.org/10.1016/j.jcis.2020.03.110. doi: 10.1016/j.jcis.2020.03.110

    60. [60]

      Z. Xie, S. Yu, X. Fan, S. Wei, L. Yu, Y. Zhong, X. Gao, F. Wu, Y. Zhou, J. Energy Chem. 52 (2021) 234, https://doi.org/10.1016/j.jechem.2020.04.051. doi: 10.1016/j.jechem.2020.04.051

    61. [61]

      M. Dan, J. Li, C. Chen, J. Xiang, Y. Zhong, F. Wu, Z. Wang, Z. Liu, Y. Zhou, Energy Technol. 10 (2022) 2100188, https://doi.org/10.1002/ente.202100188. doi: 10.1002/ente.202100188

    62. [62]

      C. Duan, C. Tang, S. Yu, L. Li, J. Li, Y. Zhou, Appl. Catal. B Environ. 324 (2023) 122255, https://doi.org/10.1016/j.apcatb.2022.122255. doi: 10.1016/j.apcatb.2022.122255

    63. [63]

      Y. Xiao, J. Tian, H. Miao, E. Liu, Int. J. Hydrog. Energy 88 (2024) 441, https://doi.org/10.1016/j.ijhydene.2024.09.242. doi: 10.1016/j.ijhydene.2024.09.242

    64. [64]

      X. Wei, Y. Yang, Z. Ma, Q. Li, Q. Sun, D. Zhang, E. Liu, H. Miao, Surf. Interfaces 52 (2024) 104931, https://doi.org/10.1016/j.surfin.2024.104931. doi: 10.1016/j.surfin.2024.104931

    65. [65]

      A. Gordanshekan, S. Arabian, A. R. Solaimany Nazar, M. Farhadian, S. Tangestaninejad, Int. J. Hydrog. Energy 451 (2023) 139067, https://doi.org/10.1016/j.cej.2022.139067. doi: 10.1016/j.cej.2022.139067

    66. [66]

      H. Yuan, J. Xiao, A. Zhang, Z. Fang, T. Liu, EnergyChem 7 (2025) 100151, https://doi.org/10.1016/j.enchem.2025.100151. doi: 10.1016/j.enchem.2025.100151

    67. [67]

      J. Wang, Z. Lei, T. Sun, J. Fan, E. Liu, ACS Appl. Nano Mater. 7 (2024) 16842, https://doi.org/10.1021/acsanm.4c02912. doi: 10.1021/acsanm.4c02912

    68. [68]

      C. Li, Y. Bao, E. Liu, B. Zhao, T. Sun, Molecules 28 (2023) 1475, https://doi.org/10.3390/molecules28031475. doi: 10.3390/molecules28031475

    69. [69]

      Y. Xia, B. Zhu, X. Qin, W. Ho, J. Yu, Chem. Eng. J. 467 (2023) 143528, https://doi.org/10.1016/j.cej.2023.143528. doi: 10.1016/j.cej.2023.143528

    70. [70]

      A. H. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys.-Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020. doi: 10.3866/PKU.WHXB202406020

    71. [71]

      J. Cai, X. Li, B. Su, B. Guo, X. Lin, W. Xing, X. Lu, S. Wang, J. Mater. Sci. Technol. 234 (2025) 82, https://doi.org/10.1016/j.jmst.2025.01.050. doi: 10.1016/j.jmst.2025.01.050

    72. [72]

      M. Li, X. Li, J. B. Ghasemi, Chin. J. Catal. 73 (2025) 12, https://doi.org/10.1016/S1872-2067(25)64709-7. doi: 10.1016/S1872-2067(25)64709-7

    73. [73]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036. doi: 10.1016/j.jmst.2025.01.036

    74. [74]

      T. Long, Y. Zheng, T. Gao, H. Kong, Q. Yang, W. Xu, S. Xiao, L. Ye, L. Wang, J. Catal. (2025) 116329, https://doi.org/10.1016/j.jcat.2025.116329. doi: 10.1016/j.jcat.2025.116329

    75. [75]

      R. Kavitha, C. Manjunatha, J. Yu, S. G. Kumar, EnergyChem 7 (2025) 100159, https://doi.org/10.1016/j.enchem.2025.100159. doi: 10.1016/j.enchem.2025.100159

    76. [76]

      T. Zhou, X. Liu, L. Zhao, M. Qiao, W. Lei, Acta Phys.-Chim. Sin. 40 (2024) 2309020, https://doi.org/10.3866/PKU.WHXB202309020. doi: 10.3866/PKU.WHXB202309020

    77. [77]

      N. Lu, T. Pang, X. Jing, Y. Zhu, L. Yu, S. Ben, Y. Song, S. Du, W. Lu, Z. Zhang, Chin. J. Struct. Chem. 44 (2025) 100633, https://doi.org/10.1016/j.cjsc.2025.100633. doi: 10.1016/j.cjsc.2025.100633

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  22
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2026-04-15
  • 收稿日期:  2025-07-26
  • 接受日期:  2025-08-20
  • 修回日期:  2025-08-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章