碳点在先进电池电解质中的应用

张英豪 刘华新 丁涵睿 郑智 邓文韬 邹国强 徐来强 侯红帅 纪效波

引用本文: 张英豪, 刘华新, 丁涵睿, 郑智, 邓文韬, 邹国强, 徐来强, 侯红帅, 纪效波. 碳点在先进电池电解质中的应用[J]. 物理化学学报, 2026, 42(3): 100170. doi: 10.1016/j.actphy.2025.100170 shu
Citation:  Yinghao Zhang,  Huaxin Liu,  Hanrui Ding,  Zhi Zheng,  Wentao Deng,  Guoqiang Zou,  Laiqiang Xu,  Hongshuai Hou,  Xiaobo Ji. The application of carbon dots in electrolytes of advanced batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100170. doi: 10.1016/j.actphy.2025.100170 shu

碳点在先进电池电解质中的应用

    通讯作者: 徐来强,Email:lq-xu@csust.edu.cn; 侯红帅,Email:hs-hou@csu.edu.cn
  • 基金项目:

    国家自然科学基金(22379165, 52325405, U21A20284, U22B2069)资助项目

摘要: 锂离子电池等二次电池顺应可再生能源发展需求,在储能与日常生活中应用日益广泛。当前,电池在追求高比能与高安全性过程中受限于电解质本体及界面反应,因而调控电解质与界面是突破瓶颈、发展下一代电池的关键。作为一种新兴的纳米材料,碳点(CDs)丰富的表面官能团和可掺杂位点使其能够通过表面化学设计同时调控本体离子动力学和界面稳定性,在应对电解质关键难题方面展现出巨大潜力。本文系统综述了功能化碳点在锂/钠/锌离子电池电解质中的前沿应用,介绍了碳点的结构特性、分类及合成方法,总结了其在液态电解质添加剂、固态电解质填料及固态复合电解质界面调控等方面的多重角色,并重点剖析了碳点在调控离子沉积、构筑功能化界面层及优化电解质微环境的作用机制。最后,展望了碳点在电解质工程中面临的挑战和未来的发展方向,为高比能、高安全电池体系的设计提供新思路与理论支撑。

English

    1. [1]

      T. Liang, A. Vecchi, K. Knobloch, A. Sciacovelli, K. Engelbrecht, Y.L. Li, Y.L. Ding, Renew. Sust. Energy Rev. 163(2022) 112478, https://doi.org/10.1016/j.rser.2022.112478.T. Liang, A. Vecchi, K. Knobloch, A. Sciacovelli, K. Engelbrecht, Y.L. Li, Y.L. Ding, Renew. Sust. Energy Rev. 163(2022) 112478, https://doi.org/10.1016/j.rser.2022.112478.

    2. [2]

      N. Nasajpour-Esfahani, H. Garmestani, M. Bagheritabar, D.J. Jasim, D. Toghraie, S. Dadkhah, H. Firoozeh, Renew. Sust. Energy Rev. 203(2024) 114783, https://doi.org/10.1016/j.rser.2024.114783.N. Nasajpour-Esfahani, H. Garmestani, M. Bagheritabar, D.J. Jasim, D. Toghraie, S. Dadkhah, H. Firoozeh, Renew. Sust. Energy Rev. 203(2024) 114783, https://doi.org/10.1016/j.rser.2024.114783.

    3. [3]

      P.X. Bai, X. Ji, J.X. Zhang, W.R. Zhang, S. Hou, H. Su, M.J. Li, T. Deng, L.S. Cao, S.F. Liu, et al., Angew. Chem. Int. Ed. 61(2022) e202202731, https://doi.org/10.1002/anie.202202731.P.X. Bai, X. Ji, J.X. Zhang, W.R. Zhang, S. Hou, H. Su, M.J. Li, T. Deng, L.S. Cao, S.F. Liu, et al., Angew. Chem. Int. Ed. 61(2022) e202202731, https://doi.org/10.1002/anie.202202731.

    4. [4]

      X.Y. Zheng, L.Q. Huang, X.L. Ye, J.X. Zhang, F.Y. Min, W. Luo, Y.H. Huang, Chem 7(2021) 2312, https://doi.org/10.1016/j.chempr.2021.02.025.X.Y. Zheng, L.Q. Huang, X.L. Ye, J.X. Zhang, F.Y. Min, W. Luo, Y.H. Huang, Chem 7(2021) 2312, https://doi.org/10.1016/j.chempr.2021.02.025.

    5. [5]

      J.J. Xu, J.X. Zhang, T.P. Pollard, Q.D. Li, S. Tan, S.Y. Hou, H.L. Wan, F. Chen, H.X. He, E.Y. Hu, et al., Nature 614(2023) 694, https://doi.org/10.1038/s41586-022-05627-8.J.J. Xu, J.X. Zhang, T.P. Pollard, Q.D. Li, S. Tan, S.Y. Hou, H.L. Wan, F. Chen, H.X. He, E.Y. Hu, et al., Nature 614(2023) 694, https://doi.org/10.1038/s41586-022-05627-8.

    6. [6]

      X.Y. Wang, M. Chen, S.Y. Li, C. Zhao, W.D. Zhang, Z.Y. Shen, Y. He, G. Feng, Y.Y. Lu, ACS Cent. Sci. 7(2021) 2029, https://doi.org/10.1021/acscentsci.1c01014.X.Y. Wang, M. Chen, S.Y. Li, C. Zhao, W.D. Zhang, Z.Y. Shen, Y. He, G. Feng, Y.Y. Lu, ACS Cent. Sci. 7(2021) 2029, https://doi.org/10.1021/acscentsci.1c01014.

    7. [7]

      S.Z. Zhao, H.Y. Che, S.L. Chen, H.X. Tao, J.P. Liao, X.Z. Liao, Z.F. Ma, Electrochem. Energy Rev. 7(2024) 3, https://doi.org/10.1007/s41918-023-00196-4.S.Z. Zhao, H.Y. Che, S.L. Chen, H.X. Tao, J.P. Liao, X.Z. Liao, Z.F. Ma, Electrochem. Energy Rev. 7(2024) 3, https://doi.org/10.1007/s41918-023-00196-4.

    8. [8]

      V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115(2015) 4744, https://doi.org/10.1021/cr500304f.V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115(2015) 4744, https://doi.org/10.1021/cr500304f.

    9. [9]

      R.T. Guo, L. Li, B.W. Wang, Y.G. Xiang, G.Q. Zou, Y.R. Zhu, H.S. Hou, X.B. Ji, Energy Storage Mater. 37(2021) 8, https://doi.org/10.1016/j.ensm.2021.01.020.R.T. Guo, L. Li, B.W. Wang, Y.G. Xiang, G.Q. Zou, Y.R. Zhu, H.S. Hou, X.B. Ji, Energy Storage Mater. 37(2021) 8, https://doi.org/10.1016/j.ensm.2021.01.020.

    10. [10]

      Z.F. Ge, L.Q. Xu, Y.L. Xu, J.E. Wu, Z.L. Geng, X.T. Xiao, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 119(2024) 109053, https://doi.org/10.1016/j.nanoen.2023.109053.Z.F. Ge, L.Q. Xu, Y.L. Xu, J.E. Wu, Z.L. Geng, X.T. Xiao, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 119(2024) 109053, https://doi.org/10.1016/j.nanoen.2023.109053.

    11. [11]

      S. Li, Z. Luo, H.Y. Tu, H. Zhang, W.N. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Energy Storage Mater. 42(2021) 679, https://doi.org/10.1016/j.ensm.2021.08.008.S. Li, Z. Luo, H.Y. Tu, H. Zhang, W.N. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Energy Storage Mater. 42(2021) 679, https://doi.org/10.1016/j.ensm.2021.08.008.

    12. [12]

      H.Y. Tu, H.X. Liu, L.Q. Xu, Z. Luo, L. Li, Y. Tian, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Sci. 14(2023) 12194, https://doi.org/10.1039/d3sc04606k.H.Y. Tu, H.X. Liu, L.Q. Xu, Z. Luo, L. Li, Y. Tian, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Sci. 14(2023) 12194, https://doi.org/10.1039/d3sc04606k.

    13. [13]

      L.Q. Xu, S. Li, H.Y. Tu, F.J. Zhu, H.X. Liu, W.T. Deng, J.B. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, ACS Nano 17(2023) 22082, https://doi.org/10.1021/acsnano.3c08935.L.Q. Xu, S. Li, H.Y. Tu, F.J. Zhu, H.X. Liu, W.T. Deng, J.B. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, ACS Nano 17(2023) 22082, https://doi.org/10.1021/acsnano.3c08935.

    14. [14]

      L.Q. Xu, J.Y. Li, L. Li, Z. Luo, Y.E. Xiang, W.N. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Small 17(2021) 2102978, https://doi.org/10.1002/smll.202102978.L.Q. Xu, J.Y. Li, L. Li, Z. Luo, Y.E. Xiang, W.N. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Small 17(2021) 2102978, https://doi.org/10.1002/smll.202102978.

    15. [15]

      F.J. Zhu, L.Q. Xu, X.Y. Hu, M.S. Yang, H.X. Liu, C.L. Gan, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 63(2024) e202410016, https://doi.org/10.1002/anie.202410016.F.J. Zhu, L.Q. Xu, X.Y. Hu, M.S. Yang, H.X. Liu, C.L. Gan, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 63(2024) e202410016, https://doi.org/10.1002/anie.202410016.

    16. [16]

      S. Mandani, D. Dey, B. Sharma, T.K. Sarma, Carbon 119(2017) 569, https://doi.org/10.1016/j.carbon.2017.04.075.S. Mandani, D. Dey, B. Sharma, T.K. Sarma, Carbon 119(2017) 569, https://doi.org/10.1016/j.carbon.2017.04.075.

    17. [17]

      Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128(2006) 7756, https://doi.org/10.1021/ja062677d.Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128(2006) 7756, https://doi.org/10.1021/ja062677d.

    18. [18]

      X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126(2004) 12736, https://doi.org/10.1021/ja040082h.X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126(2004) 12736, https://doi.org/10.1021/ja040082h.

    19. [19]

      Y. Shi, H. Xu, T. Yuan, T. Meng, H. Wu, J. Chang, H. Wang, X. Song, Y. Li, X. Li, et al., Aggregate 3(2022) e108, https://doi.org/10.1002/agt2.108.Y. Shi, H. Xu, T. Yuan, T. Meng, H. Wu, J. Chang, H. Wang, X. Song, Y. Li, X. Li, et al., Aggregate 3(2022) e108, https://doi.org/10.1002/agt2.108.

    20. [20]

      P. Fan, X.J. Zhang, H.H. Deng, X.H. Guan, Appl. Catal., B 285(2021) 119829, https://doi.org/10.1016/j.apcatb.2020.119829.P. Fan, X.J. Zhang, H.H. Deng, X.H. Guan, Appl. Catal., B 285(2021) 119829, https://doi.org/10.1016/j.apcatb.2020.119829.

    21. [21]

      J.X. Qin, X.G. Yang, C.L. Shen, Y. Chang, Y. Deng, Z.F. Zhang, H. Liu, C.F. Lv, Y.Z. Li, C. Zhang, et al., Nano Energy 101(2022) 107549, https://doi.org/10.1016/j.nanoen.2022.107549.J.X. Qin, X.G. Yang, C.L. Shen, Y. Chang, Y. Deng, Z.F. Zhang, H. Liu, C.F. Lv, Y.Z. Li, C. Zhang, et al., Nano Energy 101(2022) 107549, https://doi.org/10.1016/j.nanoen.2022.107549.

    22. [22]

      W.Z. Song, X.X. Wang, S.L. Nong, M.R. Wang, S.M. Kang, F. Wang, L. Xu, Adv. Funct. Mater. 34(2024) 2402761, https://doi.org/10.1002/adfm.202402761.W.Z. Song, X.X. Wang, S.L. Nong, M.R. Wang, S.M. Kang, F. Wang, L. Xu, Adv. Funct. Mater. 34(2024) 2402761, https://doi.org/10.1002/adfm.202402761.

    23. [23]

      M. Shaker, S. Ng, A.A.S. Ghazvini, S. Javanmardi, M.A. Gaho, Z. Jin, Q. Ge, J. Energy Storage 85(2024) 111040, https://doi.org/10.1016/j.est.2024.111040.M. Shaker, S. Ng, A.A.S. Ghazvini, S. Javanmardi, M.A. Gaho, Z. Jin, Q. Ge, J. Energy Storage 85(2024) 111040, https://doi.org/10.1016/j.est.2024.111040.

    24. [24]

      L. Ai, Y.S. Yang, B.Y. Wang, J.B. Chang, Z.Y. Tang, B. Yang, S.Y. Lu, Sci. Bull. 66(2021) 839, https://doi.org/10.1016/j.scib.2020.12.015.L. Ai, Y.S. Yang, B.Y. Wang, J.B. Chang, Z.Y. Tang, B. Yang, S.Y. Lu, Sci. Bull. 66(2021) 839, https://doi.org/10.1016/j.scib.2020.12.015.

    25. [25]

      J.R. Li, X.J. Zhao, X. Gong, Small 20(2024) 2400107, https://doi.org/10.1002/smll.202400107.J.R. Li, X.J. Zhao, X. Gong, Small 20(2024) 2400107, https://doi.org/10.1002/smll.202400107.

    26. [26]

      S. Li, L. Li, H.Y. Tu, H. Zhang, D.S. Silvester, C.E. Banks, G.Q. Zou, H.S. Hou, X.B. Ji, Mater. Today 51(2021) 188, https://doi.org/10.1016/j.mattod.2021.07.028.S. Li, L. Li, H.Y. Tu, H. Zhang, D.S. Silvester, C.E. Banks, G.Q. Zou, H.S. Hou, X.B. Ji, Mater. Today 51(2021) 188, https://doi.org/10.1016/j.mattod.2021.07.028.

    27. [27]

      A. Pal, G. Natu, K. Ahmad, A. Chattopadhyay, J. Mater. Chem. A 6(2018) 4111, https://doi.org/10.1039/c7ta10224k.A. Pal, G. Natu, K. Ahmad, A. Chattopadhyay, J. Mater. Chem. A 6(2018) 4111, https://doi.org/10.1039/c7ta10224k.

    28. [28]

      C. Ma, K. Dai, H.S. Hou, X.B. Ji, L.B. Chen, D.C. Ivey, W.F. Wei, Adv. Sci. 5(2018) 1700996, https://doi.org/10.1002/advs.201700996.C. Ma, K. Dai, H.S. Hou, X.B. Ji, L.B. Chen, D.C. Ivey, W.F. Wei, Adv. Sci. 5(2018) 1700996, https://doi.org/10.1002/advs.201700996.

    29. [29]

      V. Nguyen, J.H. Si, L.H. Yan, X. Hou, Carbon 108(2016) 268, https://doi.org/10.1016/j.carbon.2016.07.019.V. Nguyen, J.H. Si, L.H. Yan, X. Hou, Carbon 108(2016) 268, https://doi.org/10.1016/j.carbon.2016.07.019.

    30. [30]

      M.G. Yi, M.J. Jing, Y.C. Yang, Y.J. Huang, G.Q. Zou, T.J. Wu, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 34(2024) 2400001, https://doi.org/10.1002/adfm.202400001.M.G. Yi, M.J. Jing, Y.C. Yang, Y.J. Huang, G.Q. Zou, T.J. Wu, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 34(2024) 2400001, https://doi.org/10.1002/adfm.202400001.

    31. [31]

      K. Vishweswariah, N.G. Ningappa, M.D. Bouguern, M.R.A. Kumar, M.B. Armand, K. Zaghib, Adv. Energy Mater.(2025) 2501883, https://doi.org/10.1002/aenm.202501883.K. Vishweswariah, N.G. Ningappa, M.D. Bouguern, M.R.A. Kumar, M.B. Armand, K. Zaghib, Adv. Energy Mater.(2025) 2501883, https://doi.org/10.1002/aenm.202501883.

    32. [32]

      L.L. Chen, L. Zhu, H.L. Cheng, W.Y. Xu, G.J. Li, Y.Q. Zhang, J.J. Gu, L. Chen, Z.L. Xie, Z.H. Li, et al., ACS Nano 18(2024) 23154, https://doi.org/10.1021/acsnano.4c05362.L.L. Chen, L. Zhu, H.L. Cheng, W.Y. Xu, G.J. Li, Y.Q. Zhang, J.J. Gu, L. Chen, Z.L. Xie, Z.H. Li, et al., ACS Nano 18(2024) 23154, https://doi.org/10.1021/acsnano.4c05362.

    33. [33]

      K. Wang, J.Q. Gao, H.X. Liu, W.S. Jian, J.N. Huang, X.Y. Hu, S.Y. Lai, Y.F. Li, G.Q. Zou, H.S. Hou, et al., Small Struct. 6(2025) 2400343, https://doi.org/10.1002/sstr.202400343.K. Wang, J.Q. Gao, H.X. Liu, W.S. Jian, J.N. Huang, X.Y. Hu, S.Y. Lai, Y.F. Li, G.Q. Zou, H.S. Hou, et al., Small Struct. 6(2025) 2400343, https://doi.org/10.1002/sstr.202400343.

    34. [34]

      H. Zhang, Z. Luo, W.T. Deng, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Eng. J. 461(2023) 142105, https://doi.org/10.1016/j.cej.2023.142105.H. Zhang, Z. Luo, W.T. Deng, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Eng. J. 461(2023) 142105, https://doi.org/10.1016/j.cej.2023.142105.

    35. [35]

      F.L. Yuan, Y.K. Wang, G. Sharma, Y.T. Dong, X.P. Zheng, P.C. Li, A. Johnston, G. Bappi, J.Z. Fan, H. Kung, et al., Nat. Photonics 14(2020) 171, https://doi.org/10.1038/s41566-019-0557-5.F.L. Yuan, Y.K. Wang, G. Sharma, Y.T. Dong, X.P. Zheng, P.C. Li, A. Johnston, G. Bappi, J.Z. Fan, H. Kung, et al., Nat. Photonics 14(2020) 171, https://doi.org/10.1038/s41566-019-0557-5.

    36. [36]

      B.Y. Wang, S.Y. Lu, Matter 5(2022) 110, https://doi.org/10.1016/j.matt.2021.10.016.B.Y. Wang, S.Y. Lu, Matter 5(2022) 110, https://doi.org/10.1016/j.matt.2021.10.016.

    37. [37]

      H.X. Liu, Y. Ye, F.J. Zhu, X. Zhong, D.Z. Luo, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 63(2024) e202409044, https://doi.org/10.1002/anie.202409044.H.X. Liu, Y. Ye, F.J. Zhu, X. Zhong, D.Z. Luo, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 63(2024) e202409044, https://doi.org/10.1002/anie.202409044.

    38. [38]

      X.J. Li, X. Li, L. Jiang, P. Zuo, Y. Zhao, S.M. Wang, X.Z. Chen, M.S. Liang, L. Ma, Carbon 185(2021) 384, https://doi.org/10.1016/j.carbon.2021.09.043.X.J. Li, X. Li, L. Jiang, P. Zuo, Y. Zhao, S.M. Wang, X.Z. Chen, M.S. Liang, L. Ma, Carbon 185(2021) 384, https://doi.org/10.1016/j.carbon.2021.09.043.

    39. [39]

      T.T. Long, Z.Y. Hu, Z.Y. Gao, H.M. Luo, H.C. Li, Y. Chen, L. Liu, D. Xu, Spectrochim. Acta, Part A 301(2023) 122947, https://doi.org/10.1016/j.saa.2023.122947.T.T. Long, Z.Y. Hu, Z.Y. Gao, H.M. Luo, H.C. Li, Y. Chen, L. Liu, D. Xu, Spectrochim. Acta, Part A 301(2023) 122947, https://doi.org/10.1016/j.saa.2023.122947.

    40. [40]

      R.Q. Ye, C.S. Xiang, J. Lin, Z.W. Peng, K.W. Huang, Z. Yan, N.P. Cook, E.L.G. Samuel, C.C. Hwang, G.D. Ruan, et al., Nat. Commun. 4(2013) 2943, https://doi.org/10.1038/ncomms3943.R.Q. Ye, C.S. Xiang, J. Lin, Z.W. Peng, K.W. Huang, Z. Yan, N.P. Cook, E.L.G. Samuel, C.C. Hwang, G.D. Ruan, et al., Nat. Commun. 4(2013) 2943, https://doi.org/10.1038/ncomms3943.

    41. [41]

      J.C. Kong, Y.H. Wei, F. Zhou, L.T. Shi, S.J. Zhao, M.Y. Wan, X.F. Zhang, Molecules 29(2024) 2002, https://doi.org/10.3390/molecules29092002.J.C. Kong, Y.H. Wei, F. Zhou, L.T. Shi, S.J. Zhao, M.Y. Wan, X.F. Zhang, Molecules 29(2024) 2002, https://doi.org/10.3390/molecules29092002.

    42. [42]

      D.L. Sun, R.Y. Hong, J.Y. Liu, F. Wang, Y.F. Wang, Chem. Eng. J. 303(2016) 217, https://doi.org/10.1016/j.cej.2016.05.098.D.L. Sun, R.Y. Hong, J.Y. Liu, F. Wang, Y.F. Wang, Chem. Eng. J. 303(2016) 217, https://doi.org/10.1016/j.cej.2016.05.098.

    43. [43]

      Q.L. Zhao, C.Y. Fan, H. Bu, J. Gao, L.L. Li, X.F. Yu, X.J. Yang, Z.M. Lu, X.H. Zhang, Chem. Eng. J. 500(2024) 156704, https://doi.org/10.1016/j.cej.2024.156704.Q.L. Zhao, C.Y. Fan, H. Bu, J. Gao, L.L. Li, X.F. Yu, X.J. Yang, Z.M. Lu, X.H. Zhang, Chem. Eng. J. 500(2024) 156704, https://doi.org/10.1016/j.cej.2024.156704.

    44. [44]

      Z. Han, L.K. Chen, G.R. Zheng, D.F. Zhang, K. Yang, G.Y. Xiao, H. Xu, Y.H. Li, X.F. An, Y.T. Ma, et al., Adv. Mater. 37(2025) 2416668, https://doi.org/10.1002/adma.202416668.Z. Han, L.K. Chen, G.R. Zheng, D.F. Zhang, K. Yang, G.Y. Xiao, H. Xu, Y.H. Li, X.F. An, Y.T. Ma, et al., Adv. Mater. 37(2025) 2416668, https://doi.org/10.1002/adma.202416668.

    45. [45]

      W. Zhao, Z.M. Lu, F.F. Song, J.B. Han, Q. Zhang, Y. Cong, A.Y. Lu, T. Gao, Colloids Surf., A 712(2025) 136459, https://doi.org/10.1016/j.colsurfa.2025.136459.W. Zhao, Z.M. Lu, F.F. Song, J.B. Han, Q. Zhang, Y. Cong, A.Y. Lu, T. Gao, Colloids Surf., A 712(2025) 136459, https://doi.org/10.1016/j.colsurfa.2025.136459.

    46. [46]

      C.X. Wang, C.K. Qiao, F.J. Tian, R.X. Chen, L.L. Guo, T. Pang, J. Li, R.L. Pang, H.Z. Xie, Nanotechnology 36(2025) 245701, https://doi.org/10.1088/1361-6528/addaca.C.X. Wang, C.K. Qiao, F.J. Tian, R.X. Chen, L.L. Guo, T. Pang, J. Li, R.L. Pang, H.Z. Xie, Nanotechnology 36(2025) 245701, https://doi.org/10.1088/1361-6528/addaca.

    47. [47]

      D. Langford, Y. Reva, Y.F. Bo, K. Gubanov, M.J. Wu, A. Günay-Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64(2025) e202418626, https://doi.org/10.1002/anie.202418626.D. Langford, Y. Reva, Y.F. Bo, K. Gubanov, M.J. Wu, A. Günay-Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64(2025) e202418626, https://doi.org/10.1002/anie.202418626.

    48. [48]

      B. Vercelli, E. De Micheli, R. Donnini, M. Losurdo, H. Lange, B. La Ferla, A. Pavan, M. Saibene, G. Capitani, F. Ghezzi, et al., Small Struct. 6(2025) 2400481, https://doi.org/10.1002/sstr.202400481.B. Vercelli, E. De Micheli, R. Donnini, M. Losurdo, H. Lange, B. La Ferla, A. Pavan, M. Saibene, G. Capitani, F. Ghezzi, et al., Small Struct. 6(2025) 2400481, https://doi.org/10.1002/sstr.202400481.

    49. [49]

      H. Safardoust-Hojaghan, O. Amiri, M. Salavati-Niasari, M. Hassanpour, H. Khojasteh, L.K. Foong, J. Mol. Liq. 301(2020) 112413, https://doi.org/10.1016/j.molliq.2019.112413.H. Safardoust-Hojaghan, O. Amiri, M. Salavati-Niasari, M. Hassanpour, H. Khojasteh, L.K. Foong, J. Mol. Liq. 301(2020) 112413, https://doi.org/10.1016/j.molliq.2019.112413.

    50. [50]

      C.Z. Xu, J.Z. Kang, Y.Q. Zhao, L. Zhu, J.T. Zhang, B.M. Wei, H.B. Wang, New J. Chem. 47(2023) 3159, https://doi.org/10.1039/d2nj04211h.C.Z. Xu, J.Z. Kang, Y.Q. Zhao, L. Zhu, J.T. Zhang, B.M. Wei, H.B. Wang, New J. Chem. 47(2023) 3159, https://doi.org/10.1039/d2nj04211h.

    51. [51]

      J.T. Li, W.J. Fu, X.Y. Zhang, Q.J. Zhang, D.D. Ma, Y.T. Wang, W.H. Qian, D. Zhu, Carbon 208(2023) 208, https://doi.org/10.1016/j.carbon.2023.03.039.J.T. Li, W.J. Fu, X.Y. Zhang, Q.J. Zhang, D.D. Ma, Y.T. Wang, W.H. Qian, D. Zhu, Carbon 208(2023) 208, https://doi.org/10.1016/j.carbon.2023.03.039.

    52. [52]

      Z.H. Ma, Y. Han, X. Wang, G.W. Sun, Y. Li, Colloids Surf., A 652(2022) 129818, https://doi.org/10.1016/j.colsurfa.2022.129818.Z.H. Ma, Y. Han, X. Wang, G.W. Sun, Y. Li, Colloids Surf., A 652(2022) 129818, https://doi.org/10.1016/j.colsurfa.2022.129818.

    53. [53]

      H.X. Yu, X.Y. Zuo, X. Zhang, X.B. Wang, F. Zhou, Chem. Eng. J. 510(2025) 161810, https://doi.org/10.1016/j.cej.2025.161810.H.X. Yu, X.Y. Zuo, X. Zhang, X.B. Wang, F. Zhou, Chem. Eng. J. 510(2025) 161810, https://doi.org/10.1016/j.cej.2025.161810.

    54. [54]

      A.A. Tyutrin, R. Wang, E.F. Martynovich, J. Lumin. 246(2022) 118806, https://doi.org/10.1016/j.jlumin.2022.118806.A.A. Tyutrin, R. Wang, E.F. Martynovich, J. Lumin. 246(2022) 118806, https://doi.org/10.1016/j.jlumin.2022.118806.

    55. [55]

      H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Adv. Mater. 27(2015) 7861, https://doi.org/10.1002/adma.201503816.H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Adv. Mater. 27(2015) 7861, https://doi.org/10.1002/adma.201503816.

    56. [56]

      L. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 15(2021) 6872, https://doi.org/10.1021/acsnano.0c10624.L. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 15(2021) 6872, https://doi.org/10.1021/acsnano.0c10624.

    57. [57]

      Y. Han, B.J. Tang, L. Wang, H. Bao, Y.H. Lu, C.T. Guan, L. Zhang, M.Y. Le, Z. Liu, M.H. Wu, ACS Nano 14(2020) 14761, https://doi.org/10.1021/acsnano.0c01899.Y. Han, B.J. Tang, L. Wang, H. Bao, Y.H. Lu, C.T. Guan, L. Zhang, M.Y. Le, Z. Liu, M.H. Wu, ACS Nano 14(2020) 14761, https://doi.org/10.1021/acsnano.0c01899.

    58. [58]

      Z.H. Yan, J.K. Li, S. Zhou, X.M. Yang, Carbon 241(2025) 120394, https://doi.org/10.1016/j.carbon.2025.120394.Z.H. Yan, J.K. Li, S. Zhou, X.M. Yang, Carbon 241(2025) 120394, https://doi.org/10.1016/j.carbon.2025.120394.

    59. [59]

      H.Z. Guo, Y.H. Lu, Z.D. Lei, H. Bao, M.W. Zhang, Z.M. Wang, C.T. Guan, B.J. Tang, Z. Liu, L. Wang, Nat. Commun. 15(2024) 4843, https://doi.org/10.1038/s41467-024-49172-6.H.Z. Guo, Y.H. Lu, Z.D. Lei, H. Bao, M.W. Zhang, Z.M. Wang, C.T. Guan, B.J. Tang, Z. Liu, L. Wang, Nat. Commun. 15(2024) 4843, https://doi.org/10.1038/s41467-024-49172-6.

    60. [60]

      S.Z. Wang, J.Y. Shi, Z.H. Liu, Y.Y. Xia, Adv. Energy Mater. 14(2024) 2401526, https://doi.org/10.1002/aenm.202401526.S.Z. Wang, J.Y. Shi, Z.H. Liu, Y.Y. Xia, Adv. Energy Mater. 14(2024) 2401526, https://doi.org/10.1002/aenm.202401526.

    61. [61]

      D. Lu, R.H. Li, M.M. Rahman, P.Y. Yu, L. Lv, S. Yang, Y.Q. Huang, C.C. Sun, S.Q. Zhang, H.K. Zhang, et al., Nature 627(2024) 101, https://doi.org/10.1038/s41586-024-07045-4.D. Lu, R.H. Li, M.M. Rahman, P.Y. Yu, L. Lv, S. Yang, Y.Q. Huang, C.C. Sun, S.Q. Zhang, H.K. Zhang, et al., Nature 627(2024) 101, https://doi.org/10.1038/s41586-024-07045-4.

    62. [62]

      K.L. Jungjohann, R.N. Gannon, S. Goriparti, S.J. Randolph, L.C. Merrill, D.C. Johnson, K.R. Zavadil, S.J. Harris, K.L. Harrison, ACS Energy Lett. 6(2021) 2138, https://doi.org/10.1021/acsenergylett.1c00509.K.L. Jungjohann, R.N. Gannon, S. Goriparti, S.J. Randolph, L.C. Merrill, D.C. Johnson, K.R. Zavadil, S.J. Harris, K.L. Harrison, ACS Energy Lett. 6(2021) 2138, https://doi.org/10.1021/acsenergylett.1c00509.

    63. [63]

      S. Li, Z. Luo, L. Li, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, Energy Storage Mater. 32(2020) 306, https://doi.org/10.1016/j.ensm.2020.07.008.S. Li, Z. Luo, L. Li, J.G. Hu, G.Q. Zou, H.S. Hou, X.B. Ji, Energy Storage Mater. 32(2020) 306, https://doi.org/10.1016/j.ensm.2020.07.008.

    64. [64]

      C. Chen, J.M. Zhang, B.R. Hu, Q.W. Liang, X.H. Xiong, Nat. Commun. 14(2023) 4018, https://doi.org/10.1038/s41467-023-39636-6.C. Chen, J.M. Zhang, B.R. Hu, Q.W. Liang, X.H. Xiong, Nat. Commun. 14(2023) 4018, https://doi.org/10.1038/s41467-023-39636-6.

    65. [65]

      Z.M. Hao, Y. Lu, G.J. Yang, Q. Zhao, Z.H. Yan, J. Chen, Adv. Mater. 37(2025) 2415258, https://doi.org/10.1002/adma.202415258.Z.M. Hao, Y. Lu, G.J. Yang, Q. Zhao, Z.H. Yan, J. Chen, Adv. Mater. 37(2025) 2415258, https://doi.org/10.1002/adma.202415258.

    66. [66]

      S. Sen, F.H. Richter, Adv. Sci. 10(2023) 2303985, https://doi.org/10.1002/advs.202303985.S. Sen, F.H. Richter, Adv. Sci. 10(2023) 2303985, https://doi.org/10.1002/advs.202303985.

    67. [67]

      A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Energy Environ. Sci. 9(2016) 1955, https://doi.org/10.1039/c6ee00123h.A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Energy Environ. Sci. 9(2016) 1955, https://doi.org/10.1039/c6ee00123h.

    68. [68]

      D.K. Hong, Y. Choi, J. Ryu, J. Mun, W. Choi, M. Park, Y. Lee, N.S. Choi, G. Lee, B.S. Kim, et al., J. Mater. Chem. A 7(2019) 20325, https://doi.org/10.1039/c9ta06260b.D.K. Hong, Y. Choi, J. Ryu, J. Mun, W. Choi, M. Park, Y. Lee, N.S. Choi, G. Lee, B.S. Kim, et al., J. Mater. Chem. A 7(2019) 20325, https://doi.org/10.1039/c9ta06260b.

    69. [69]

      H.Y. Tu, S. Li, Z. Luo, L.Q. Xu, H. Zhang, Y.E. Xiang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Commun. 58(2022) 6449, https://doi.org/10.1039/d2cc01334g.H.Y. Tu, S. Li, Z. Luo, L.Q. Xu, H. Zhang, Y.E. Xiang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Chem. Commun. 58(2022) 6449, https://doi.org/10.1039/d2cc01334g.

    70. [70]

      W.X. Liu, T. Xie, X.W. Wang, W.T. Deng, L. Huang, R. Khan, Y. Wang, H.S. Hou, D. Wang, Y.P. Wu, Adv. Funct. Mater. 34(2024) 2410843, https://doi.org/10.1002/adfm.202410843.W.X. Liu, T. Xie, X.W. Wang, W.T. Deng, L. Huang, R. Khan, Y. Wang, H.S. Hou, D. Wang, Y.P. Wu, Adv. Funct. Mater. 34(2024) 2410843, https://doi.org/10.1002/adfm.202410843.

    71. [71]

      W.Y. Lu, Y.S. Liu, S.C. Cao, P.S. Yi, S. He, F.K. Zuo, L.L. Ma, M.X. Ye, J.F. Shen, Adv. Mater. 37(2025) 2500873, https://doi.org/10.1002/adma.202500873.W.Y. Lu, Y.S. Liu, S.C. Cao, P.S. Yi, S. He, F.K. Zuo, L.L. Ma, M.X. Ye, J.F. Shen, Adv. Mater. 37(2025) 2500873, https://doi.org/10.1002/adma.202500873.

    72. [72]

      J. Chen, J.W. Wu, X.D. Wang, A.A. Zhou, Z.L. Yang, Energy Storage Mater. 35(2021) 70, https://doi.org/10.1016/j.ensm.2020.11.017.J. Chen, J.W. Wu, X.D. Wang, A.A. Zhou, Z.L. Yang, Energy Storage Mater. 35(2021) 70, https://doi.org/10.1016/j.ensm.2020.11.017.

    73. [73]

      F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi, L. Wang, X.D. Zhang, Y. Zheng, J.J. Zhou, L. Li, et al., Sci. Adv. 4(2018) eaat5383, https://doi.org/10.1126/sciadv.aat5383.F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi, L. Wang, X.D. Zhang, Y. Zheng, J.J. Zhou, L. Li, et al., Sci. Adv. 4(2018) eaat5383, https://doi.org/10.1126/sciadv.aat5383.

    74. [74]

      X.A. Liu, L.D. Sun, F. Zhai, T. Wu, P. Wang, H.Y. Du, Y.B. Xu, X.L. Wang, Adv. Energy Mater. 15(26) (2025) 2405433, https://doi.org/10.1002/aenm.202405433.X.A. Liu, L.D. Sun, F. Zhai, T. Wu, P. Wang, H.Y. Du, Y.B. Xu, X.L. Wang, Adv. Energy Mater. 15(26) (2025) 2405433, https://doi.org/10.1002/aenm.202405433.

    75. [75]

      Z.H. Huang, J.S. Wei, T.B. Song, J.W. Ni, F. Wang, H.M. Xiong, Smartmat 3(2022) 323, https://doi.org/10.1002/smm2.1121.Z.H. Huang, J.S. Wei, T.B. Song, J.W. Ni, F. Wang, H.M. Xiong, Smartmat 3(2022) 323, https://doi.org/10.1002/smm2.1121.

    76. [76]

      J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G.H. Yu, Angew. Chem. Int. Ed. 57(2018) 2096, https://doi.org/10.1002/anie.201710841.J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G.H. Yu, Angew. Chem. Int. Ed. 57(2018) 2096, https://doi.org/10.1002/anie.201710841.

    77. [77]

      C. Guo, K. Du, R.M. Tao, Y.Q. Guo, S.H. Yao, J.X. Wang, D.Y. Wang, J.Y. Liang, S.Y. Lu, Adv. Funct. Mater. 33(2023) 2301111, https://doi.org/10.1002/adfm.202301111.C. Guo, K. Du, R.M. Tao, Y.Q. Guo, S.H. Yao, J.X. Wang, D.Y. Wang, J.Y. Liang, S.Y. Lu, Adv. Funct. Mater. 33(2023) 2301111, https://doi.org/10.1002/adfm.202301111.

    78. [78]

      S.Y. Zhang, K.H. Gu, B.A. Lu, J.W. Han, J. Zhou, Acta Phys. Chim. Sin. 40(2024) 2309028, https://doi.org/10.3866/PKU.WHXB202309028.S.Y. Zhang, K.H. Gu, B.A. Lu, J.W. Han, J. Zhou, Acta Phys. Chim. Sin. 40(2024) 2309028, https://doi.org/10.3866/PKU.WHXB202309028.

    79. [79]

      N. Hong, S. Zhang, J. Li, H. Wang, J. Huang, X. Hu, B. Zhang, F. Hua, J. Zeng, W. Jian, et al., Angew. Chem. Int. Ed. 64(2025) e202423479, https://doi.org/10.1002/anie.202423479.N. Hong, S. Zhang, J. Li, H. Wang, J. Huang, X. Hu, B. Zhang, F. Hua, J. Zeng, W. Jian, et al., Angew. Chem. Int. Ed. 64(2025) e202423479, https://doi.org/10.1002/anie.202423479.

    80. [80]

      Z.H. Cui, C. Liu, A. Manthiram, Adv. Mater.(2025) 2420463, https://doi.org/10.1002/adma.202420463.Z.H. Cui, C. Liu, A. Manthiram, Adv. Mater.(2025) 2420463, https://doi.org/10.1002/adma.202420463.

    81. [81]

      Y. Zhao, L.V. Goncharova, A. Lushington, Q. Sun, H. Yadegari, B.Q. Wang, W. Xiao, R.Y. Li, X.L. Sun, Adv. Mater. 29(2017) 1606663, https://doi.org/10.1002/adma.201606663.Y. Zhao, L.V. Goncharova, A. Lushington, Q. Sun, H. Yadegari, B.Q. Wang, W. Xiao, R.Y. Li, X.L. Sun, Adv. Mater. 29(2017) 1606663, https://doi.org/10.1002/adma.201606663.

    82. [82]

      X.Y. Liu, X.Y. Zheng, Y.M. Dai, B. Li, J.Y. Wen, T. Zhao, W. Luo, Adv. Mater. 35(2023) 2304256, https://doi.org/10.1002/adma.202304256.X.Y. Liu, X.Y. Zheng, Y.M. Dai, B. Li, J.Y. Wen, T. Zhao, W. Luo, Adv. Mater. 35(2023) 2304256, https://doi.org/10.1002/adma.202304256.

    83. [83]

      Y.R. Zhong, Q.W. Shi, C.Q. Zhu, Y.F. Zhang, M. Li, J.S. Francisco, H.L. Wang, J. Am. Chem. Soc. 143(2021) 13929, https://doi.org/10.1021/jacs.1c06794.Y.R. Zhong, Q.W. Shi, C.Q. Zhu, Y.F. Zhang, M. Li, J.S. Francisco, H.L. Wang, J. Am. Chem. Soc. 143(2021) 13929, https://doi.org/10.1021/jacs.1c06794.

    84. [84]

      H.Y. Tu, Y.H. Zhang, J.E. Wu, Y.J. Li, H.X. Liu, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 35(2025) 2413488, https://doi.org/10.1002/adfm.202413488.H.Y. Tu, Y.H. Zhang, J.E. Wu, Y.J. Li, H.X. Liu, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 35(2025) 2413488, https://doi.org/10.1002/adfm.202413488.

    85. [85]

      J.C. Zhu, Z.W. Tie, S.S. Bi, Z.Q. Niu, Angew. Chem. Int. Ed. 63(2024) e202403712, https://doi.org/10.1002/anie.202403712.J.C. Zhu, Z.W. Tie, S.S. Bi, Z.Q. Niu, Angew. Chem. Int. Ed. 63(2024) e202403712, https://doi.org/10.1002/anie.202403712.

    86. [86]

      X. Zhang, J.P. Hu, N. Fu, W.B. Zhou, B. Liu, Q. Deng, X.W. Wu, Infomat 4(2022) e12306, https://doi.org/10.1002/inf2.12306.X. Zhang, J.P. Hu, N. Fu, W.B. Zhou, B. Liu, Q. Deng, X.W. Wu, Infomat 4(2022) e12306, https://doi.org/10.1002/inf2.12306.

    87. [87]

      L. Jiang, Y.Q. Ding, L. Li, Y. Tang, P. Zhou, B.G. Lu, S.Y. Tian, J. Zhou, Nano-Micro Lett. 17(2025) 202, https://doi.org/10.1007/s40820-025-01709-0.L. Jiang, Y.Q. Ding, L. Li, Y. Tang, P. Zhou, B.G. Lu, S.Y. Tian, J. Zhou, Nano-Micro Lett. 17(2025) 202, https://doi.org/10.1007/s40820-025-01709-0.

    88. [88]

      H. Zhang, R.T. Guo, S. Li, C. Liu, H.Y. Li, G.Q. Zou, J.G. Hu, H.S. Hou, X.B. Ji, Nano Energy 92(2022) 106752, https://doi.org/10.1016/j.nanoen.2021.106752.H. Zhang, R.T. Guo, S. Li, C. Liu, H.Y. Li, G.Q. Zou, J.G. Hu, H.S. Hou, X.B. Ji, Nano Energy 92(2022) 106752, https://doi.org/10.1016/j.nanoen.2021.106752.

    89. [89]

      J.E. Wu, C. Liu, H. Zhang, Z.F. Ge, H.Y. Tu, W.T. Deng, H.S. Hou, X.B. Ji, J. Phys. Chem. Lett. 13(2022) 11883, https://doi.org/10.1021/acs.jpclett.2c03502.J.E. Wu, C. Liu, H. Zhang, Z.F. Ge, H.Y. Tu, W.T. Deng, H.S. Hou, X.B. Ji, J. Phys. Chem. Lett. 13(2022) 11883, https://doi.org/10.1021/acs.jpclett.2c03502.

    90. [90]

      S. Cai, G. Chang, J.G. Hu, J.E. Wu, Y.Q. Luo, G.Q. Zou, H.S. Hou, X.B. Ji, Chin. J. Chem. 41(2023) 1697, https://doi.org/10.1002/cjoc.202200799.S. Cai, G. Chang, J.G. Hu, J.E. Wu, Y.Q. Luo, G.Q. Zou, H.S. Hou, X.B. Ji, Chin. J. Chem. 41(2023) 1697, https://doi.org/10.1002/cjoc.202200799.

    91. [91]

      Z.P. Shao, L. Lin, W.B. Zhuang, S.Z. Liu, P. Yang, K.P. Zhu, C.W. Li, G.D. Guo, W.H. Wang, Q.C. Zhang, et al., Adv. Mater. 36(2024) 2406093, https://doi.org/10.1002/adma.202406093.Z.P. Shao, L. Lin, W.B. Zhuang, S.Z. Liu, P. Yang, K.P. Zhu, C.W. Li, G.D. Guo, W.H. Wang, Q.C. Zhang, et al., Adv. Mater. 36(2024) 2406093, https://doi.org/10.1002/adma.202406093.

    92. [92]

      M. Gopalakrishnan, M.T. Hlaing, T. Kulandaivel, W. Kao-ian, M. Etesami, W.R. Liu, M.T. Nguyen, T. Yonezawa, W. Limphirat, S. Kheawhom, J. Alloys Compd. 1013(2025) 178521, https://doi.org/10.1016/j.jallcom.2025.178521.M. Gopalakrishnan, M.T. Hlaing, T. Kulandaivel, W. Kao-ian, M. Etesami, W.R. Liu, M.T. Nguyen, T. Yonezawa, W. Limphirat, S. Kheawhom, J. Alloys Compd. 1013(2025) 178521, https://doi.org/10.1016/j.jallcom.2025.178521.

    93. [93]

      F. Liu, S.H. Xu, W.B. Gong, K.T. Zhao, Z.M. Wang, J. Luo, C.S. Li, Y. Sun, P. Xue, C.L. Wang, et al., ACS Nano 17(2023) 18494, https://doi.org/10.1021/acsnano.3c06245.F. Liu, S.H. Xu, W.B. Gong, K.T. Zhao, Z.M. Wang, J. Luo, C.S. Li, Y. Sun, P. Xue, C.L. Wang, et al., ACS Nano 17(2023) 18494, https://doi.org/10.1021/acsnano.3c06245.

    94. [94]

      N. Sarfraz, N. Kanwal, M. Ali, K. Ali, A. Hasnain, M. Ashraf, M. Ayaz, J. Ifthikar, S. Ali, A. Hendi, et al., Energy Storage Mater. 71(2024) 103619, https://doi.org/10.1016/j.ensm.2024.103619.N. Sarfraz, N. Kanwal, M. Ali, K. Ali, A. Hasnain, M. Ashraf, M. Ayaz, J. Ifthikar, S. Ali, A. Hendi, et al., Energy Storage Mater. 71(2024) 103619, https://doi.org/10.1016/j.ensm.2024.103619.

    95. [95]

      T. Li, Q. Zheng, J.T. Li, Z.Y. Zhao, W.B. Huang, B. Zhang, G.H. Zhao, T.L. Wu, D.L. Peng, Q.S. Xie, et al., ACS Energy Lett. 10(2025) 2228, https://doi.org/10.1021/acsenergylett.5c00455.T. Li, Q. Zheng, J.T. Li, Z.Y. Zhao, W.B. Huang, B. Zhang, G.H. Zhao, T.L. Wu, D.L. Peng, Q.S. Xie, et al., ACS Energy Lett. 10(2025) 2228, https://doi.org/10.1021/acsenergylett.5c00455.

    96. [96]

      H.C. Sun, S.F. Kang, L.F. Cui, Chem. Eng. J. 454(2023) 140375, https://doi.org/10.1016/j.cej.2022.140375.H.C. Sun, S.F. Kang, L.F. Cui, Chem. Eng. J. 454(2023) 140375, https://doi.org/10.1016/j.cej.2022.140375.

    97. [97]

      R. Dubey, J. Sastre, C. Cancellieri, F. Okur, A. Forster, L. Pompizii, A. Priebe, Y.E. Romanyuk, L.P.H. Jeurgens, M. Kovalenko, et al., Adv. Energy Mater. 11(2021) 2102086, https://doi.org/10.1002/aenm.202102086.R. Dubey, J. Sastre, C. Cancellieri, F. Okur, A. Forster, L. Pompizii, A. Priebe, Y.E. Romanyuk, L.P.H. Jeurgens, M. Kovalenko, et al., Adv. Energy Mater. 11(2021) 2102086, https://doi.org/10.1002/aenm.202102086.

    98. [98]

      F.J. Zhu, H.X. Liu, B.C. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Funct. Mater. (2025) 2507998, https://doi.org/10.1002/adfm.202507998.F.J. Zhu, H.X. Liu, B.C. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Funct. Mater. (2025) 2507998, https://doi.org/10.1002/adfm.202507998.

    99. [99]

      G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Nature 398(1999) 792, https://doi.org/10.1038/19730.G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Nature 398(1999) 792, https://doi.org/10.1038/19730.

    100. [100]

      L.Q. Xu, J.Y. Li, Y.E. Xiang, Y. Tian, R. Momen, H.X. Liu, F.J. Zhu, H.Y. Tu, Z. Luo, S.S. Fang, et al., Energy Storage Mater. 52(2022) 655, https://doi.org/10.1016/j.ensm.2022.08.034.L.Q. Xu, J.Y. Li, Y.E. Xiang, Y. Tian, R. Momen, H.X. Liu, F.J. Zhu, H.Y. Tu, Z. Luo, S.S. Fang, et al., Energy Storage Mater. 52(2022) 655, https://doi.org/10.1016/j.ensm.2022.08.034.

    101. [101]

      Z.H. Chen, H. Jia, S.S. Yan, J.F. Gohy, Nano Energy 114(2023) 108637, https://doi.org/10.1016/j.nanoen.2023.108637.Z.H. Chen, H. Jia, S.S. Yan, J.F. Gohy, Nano Energy 114(2023) 108637, https://doi.org/10.1016/j.nanoen.2023.108637.

    102. [102]

      N. Wang, Y.T. Wei, S. Yu, W.C. Zhang, X.Y. Huang, B.B. Fan, H. Yuan, Y.Q. Tan, J. Mater. Sci. Technol. 183(2024) 206, https://doi.org/10.1016/j.jmst.2023.10.005.N. Wang, Y.T. Wei, S. Yu, W.C. Zhang, X.Y. Huang, B.B. Fan, H. Yuan, Y.Q. Tan, J. Mater. Sci. Technol. 183(2024) 206, https://doi.org/10.1016/j.jmst.2023.10.005.

    103. [103]

      G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Adv. Funct. Mater. 30(2020) 2006289, https://doi.org/10.1002/adfm.202006289.G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Adv. Funct. Mater. 30(2020) 2006289, https://doi.org/10.1002/adfm.202006289.

    104. [104]

      H.X. Liu, L.Q. Xu, H.Y. Tu, Z. Luo, F.J. Zhu, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Small 19(2023) 2301275, https://doi.org/10.1002/smll.202301275.H.X. Liu, L.Q. Xu, H.Y. Tu, Z. Luo, F.J. Zhu, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Small 19(2023) 2301275, https://doi.org/10.1002/smll.202301275.

    105. [105]

      H.X. Liu, L.Q. Xu, F.J. Zhu, D.Z. Luo, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 126(2024) 109623, https://doi.org/10.1016/j.nanoen.2024.109623.H.X. Liu, L.Q. Xu, F.J. Zhu, D.Z. Luo, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 126(2024) 109623, https://doi.org/10.1016/j.nanoen.2024.109623.

    106. [106]

      L.Q. Xu, H.Y. Tu, F.J. Zhu, Y.E. Xiang, Z. Luo, S.S. Fang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Smartmat 3(2022) 286, https://doi.org/10.1002/smm2.1097.L.Q. Xu, H.Y. Tu, F.J. Zhu, Y.E. Xiang, Z. Luo, S.S. Fang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Smartmat 3(2022) 286, https://doi.org/10.1002/smm2.1097.

    107. [107]

      Y.F. He, L. Wang, A.P. Wang, B. Zhang, H. Pham, J. Park, X.M. He, Exploration 4(2024) 20230114, https://doi.org/10.1002/exp.20230114.Y.F. He, L. Wang, A.P. Wang, B. Zhang, H. Pham, J. Park, X.M. He, Exploration 4(2024) 20230114, https://doi.org/10.1002/exp.20230114.

    108. [108]

      H.X. Liu, F.J. Zhu, Y.H. Zhang, Y.M. Liu, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 64(26) (2025) e202505230, https://doi.org/10.1002/anie.202505230.H.X. Liu, F.J. Zhu, Y.H. Zhang, Y.M. Liu, Y. Zhang, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Angew. Chem. Int. Ed. 64(26) (2025) e202505230, https://doi.org/10.1002/anie.202505230.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  61
  • HTML全文浏览量:  6
文章相关
  • 收稿日期:  2025-06-29
  • 接受日期:  2025-08-19
  • 修回日期:  2025-08-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章