[Cp*Rh(bpy)H2O]2+自组装CdIn2S4花状微球的高效光催化NADH再生与酶促CO2还原

高春慧 李璐嵘 彭官威 沈锦妮 戴文新 张子重

引用本文: 高春慧, 李璐嵘, 彭官威, 沈锦妮, 戴文新, 张子重. [Cp*Rh(bpy)H2O]2+自组装CdIn2S4花状微球的高效光催化NADH再生与酶促CO2还原[J]. 物理化学学报, 2026, 42(3): 100165. doi: 10.1016/j.actphy.2025.100165 shu
Citation:  Chunhui Gao,  Lurong Li,  Guanwei Peng,  Jinni Shen,  Wenxin Dai,  Zizhong Zhang. Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flowerlike microspheres[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100165. doi: 10.1016/j.actphy.2025.100165 shu

[Cp*Rh(bpy)H2O]2+自组装CdIn2S4花状微球的高效光催化NADH再生与酶促CO2还原

    通讯作者: 张子重,Email:z.zhang@fzu.edu.cn
  • 基金项目:

    本研究获得国家自然科学基金(项目编号22372041)、福建省科技重大专项(编号2021YZ037005)以及核生化防护化学全国重点实验室(编号SKLNBC2023-07)资助

摘要: 将光催化辅因子再生与酶催化偶联有助于实现可持续的CO2增值利用,但该技术仍面临氢源有限、均相介体及光生空穴诱导酶失活等挑战。本研究表明,L-抗坏血酸(L-AA)的低氧化电位可增强质子供给并促进[Cp*Rh(bpy)H]+中间体形成。仅需0.26 mg (≈ 0.12 mmol L-1) [Cp*Rh(bpy)Cl]Cl即可实现高效/选择性还原型烟酰胺腺嘌呤二核苷酸(NADH)再生,其效率是典型牺牲剂三乙醇胺(TEOA)的两倍以上。本研究开发了一种将[Cp*Rh(bpy)H2O]2+静电自组装在CdIn2S4微球光催化剂上的新策略。这种创新集成方式通过空间分区将游离介体和光生空穴与酶隔离,有效抑制了酶失活。最优集成光催化体系在420 nm光照40 min内实现90%的NADH再生效率,优于已报道的同类体系。与甲酸脱氢酶(FDH)偶联时,该集成体系甲酸生成速率达443.5 μmol g-1 h-1 (明暗循环)和202.7 μmol g-1 h-1 (持续光照),分别是含游离介体体系的1.2倍和3.2倍。本研究为光驱动辅酶再生及酶催化CO2合成高附加值化学品提供了高效可持续的新策略。

English

    1. [1]

      M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Nature 458(2009) 1158, https://doi.org/10.1038/nature08017.M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Nature 458(2009) 1158, https://doi.org/10.1038/nature08017.

    2. [2]

      R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. Chim. Sin. 41(2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052.R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. Chim. Sin. 41(2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052.

    3. [3]

      X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9(2016) 2177, https://doi.org/10.1039/C6EE00383D.X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9(2016) 2177, https://doi.org/10.1039/C6EE00383D.

    4. [4]

      C. Zhuang, W. Li, Y. Chang, S. Li, Y. Zhang, Y. Li, J. Gao, G. Chen, Z. Kang, J. Mater. Chem. A 12(2024) 5711, https://doi.org/10.1039/d3ta07951a.C. Zhuang, W. Li, Y. Chang, S. Li, Y. Zhang, Y. Li, J. Gao, G. Chen, Z. Kang, J. Mater. Chem. A 12(2024) 5711, https://doi.org/10.1039/d3ta07951a.

    5. [5]

      J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45(2024) 101040, https://doi.org/10.1016/j.coche.2024.101040.J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45(2024) 101040, https://doi.org/10.1016/j.coche.2024.101040.

    6. [6]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.

    7. [7]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.

    8. [8]

      D. Feng, X. Li, Y. Liu, X. Chen, S. Li, Renewables 1(2023) 485, https://doi.org/10.31635/renewables.023.202300037.D. Feng, X. Li, Y. Liu, X. Chen, S. Li, Renewables 1(2023) 485, https://doi.org/10.31635/renewables.023.202300037.

    9. [9]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3(2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3(2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.

    10. [10]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52(2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1.M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52(2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1.

    11. [11]

      Y. Kong, W. Wei, L. Xu, C. Chen, Acta Phys. Chim. Sin. 40(2024) 2307049, https://doi.org/10.3866/PKU.WHXB202307049.Y. Kong, W. Wei, L. Xu, C. Chen, Acta Phys. Chim. Sin. 40(2024) 2307049, https://doi.org/10.3866/PKU.WHXB202307049.

    12. [12]

      M. Lin, M. Luo, Y. Liu, J. Shen, J. Long, Z. Zhang, Chin. J. Catal. 50(2023) 239, https://doi.org/10.1016/S1872-2067(23)64477-8.M. Lin, M. Luo, Y. Liu, J. Shen, J. Long, Z. Zhang, Chin. J. Catal. 50(2023) 239, https://doi.org/10.1016/S1872-2067(23)64477-8.

    13. [13]

      H.-R. Zhu, H.-M. Xu, C.-J. Huang, Z.-J. Zhang, Q.-N. Zhan, T.-Y. Shuai, G.-R. Li, Chin. J. Catal. 62(2024) 53, https://doi.org/10.1016/S1872-2067(24)60053-7.H.-R. Zhu, H.-M. Xu, C.-J. Huang, Z.-J. Zhang, Q.-N. Zhan, T.-Y. Shuai, G.-R. Li, Chin. J. Catal. 62(2024) 53, https://doi.org/10.1016/S1872-2067(24)60053-7.

    14. [14]

      C. Fu, Z. Wan, X. Yang, J. Zhang, Z. Zhang, J. Mater. Chem. A 12(2024) 28618, https://doi.org/10.1039/D4TA04600E.C. Fu, Z. Wan, X. Yang, J. Zhang, Z. Zhang, J. Mater. Chem. A 12(2024) 28618, https://doi.org/10.1039/D4TA04600E.

    15. [15]

      H. Xu, Z. Wang, H. Liao, D. Li, J. Shen, J. Long, W. Dai, X. Wang, Z. Zhang, Appl. Catal. B Environ. 336(2023) 122935, https://doi.org/10.1016/j.apcatb.2023.122935.H. Xu, Z. Wang, H. Liao, D. Li, J. Shen, J. Long, W. Dai, X. Wang, Z. Zhang, Appl. Catal. B Environ. 336(2023) 122935, https://doi.org/10.1016/j.apcatb.2023.122935.

    16. [16]

      S.H. Lee, D.S. Choi, S.K. Kuk, C.B. Park, Angew. Chem. Int. Ed. 57(2018) 7958, https://doi.org/10.1002/anie.201710070.S.H. Lee, D.S. Choi, S.K. Kuk, C.B. Park, Angew. Chem. Int. Ed. 57(2018) 7958, https://doi.org/10.1002/anie.201710070.

    17. [17]

      X. Tan, J. Nielsen, Chem. Soc. Rev. 51(2022) 4763, https://doi.org/10.1039/D2CS00309K.X. Tan, J. Nielsen, Chem. Soc. Rev. 51(2022) 4763, https://doi.org/10.1039/D2CS00309K.

    18. [18]

      S. Zhang, S. Liu, Y. Sun, S. Li, J. Shi, Z. Jiang, Chem. Soc. Rev. 50(2021) 13449, https://doi.org/10.1039/D1CS00392E.S. Zhang, S. Liu, Y. Sun, S. Li, J. Shi, Z. Jiang, Chem. Soc. Rev. 50(2021) 13449, https://doi.org/10.1039/D1CS00392E.

    19. [19]

      S. Li, J. Shi, S. Liu, W. Li, Y. Chen, H. Shan, Y. Cheng, H. Wu, Z. Jiang, Chin. J. Catal. 44(2023) 96, https://doi.org/10.1016/S1872-2067(22)64154-8.S. Li, J. Shi, S. Liu, W. Li, Y. Chen, H. Shan, Y. Cheng, H. Wu, Z. Jiang, Chin. J. Catal. 44(2023) 96, https://doi.org/10.1016/S1872-2067(22)64154-8.

    20. [20]

      Y. Sun, J. Shi, Z. Wang, H. Wang, S. Zhang, Y. Wu, H. Wang, S. Li, Z. Jiang, J. Am. Chem. Soc. 144(2022) 4168, https://doi.org/10.1021/jacs.1c12790.Y. Sun, J. Shi, Z. Wang, H. Wang, S. Zhang, Y. Wu, H. Wang, S. Li, Z. Jiang, J. Am. Chem. Soc. 144(2022) 4168, https://doi.org/10.1021/jacs.1c12790.

    21. [21]

      F. Hollmann, D.J. Opperman, C.E. Paul, Angew. Chem. Int. Ed. 60(2021) 5644, https://doi.org/10.1002/anie.202001876.F. Hollmann, D.J. Opperman, C.E. Paul, Angew. Chem. Int. Ed. 60(2021) 5644, https://doi.org/10.1002/anie.202001876.

    22. [22]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/pku.Whxb202405016.Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/pku.Whxb202405016.

    23. [23]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41(2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41(2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.

    24. [24]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233(2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233(2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.

    25. [25]

      G. Zhao, C. Yang, W. Meng, X. Huang, J. Mater. Chem. A 12(2024) 3209, https://doi.org/10.1039/D3TA07015H.G. Zhao, C. Yang, W. Meng, X. Huang, J. Mater. Chem. A 12(2024) 3209, https://doi.org/10.1039/D3TA07015H.

    26. [26]

      H. Wu, C. Tian, X. Song, C. Liu, D. Yang, Z. Jiang, Green Chem. 15(2013) 1773, https://doi.org/10.1039/C3GC37129H.H. Wu, C. Tian, X. Song, C. Liu, D. Yang, Z. Jiang, Green Chem. 15(2013) 1773, https://doi.org/10.1039/C3GC37129H.

    27. [27]

      L. Tong, Z. Gong, Y. Wang, J. Luo, S. Huang, R. Gao, G. Chen, G. Ouyang, J. Am. Chem. Soc. 146(2024) 21025, https://doi.org/10.1021/jacs.4c06142.L. Tong, Z. Gong, Y. Wang, J. Luo, S. Huang, R. Gao, G. Chen, G. Ouyang, J. Am. Chem. Soc. 146(2024) 21025, https://doi.org/10.1021/jacs.4c06142.

    28. [28]

      H. Guo, L. Luan, J. Cai, X. Ji, H. Yu, Y. Huang, Chem. Eng. J. 479(2024) 147720, https://doi.org/10.1016/j.cej.2023.147720.H. Guo, L. Luan, J. Cai, X. Ji, H. Yu, Y. Huang, Chem. Eng. J. 479(2024) 147720, https://doi.org/10.1016/j.cej.2023.147720.

    29. [29]

      S. Wang, X. Wu, J. Fang, F. Zhang, Y. Liu, H. Liu, Y. He, M. Luo, R. Li, ACS Catal. 13(2023) 4433, https://doi.org/10.1021/acscatal.2c05722.S. Wang, X. Wu, J. Fang, F. Zhang, Y. Liu, H. Liu, Y. He, M. Luo, R. Li, ACS Catal. 13(2023) 4433, https://doi.org/10.1021/acscatal.2c05722.

    30. [30]

      H. Zhao, L. Wang, G. Liu, Y. Liu, S. Zhang, L. Wang, X. Zheng, L. Zhou, J. Gao, J. Shi, Y. Jiang, ACS Catal. 13(2023) 6619, https://doi.org/10.1021/acscatal.2c06332.H. Zhao, L. Wang, G. Liu, Y. Liu, S. Zhang, L. Wang, X. Zheng, L. Zhou, J. Gao, J. Shi, Y. Jiang, ACS Catal. 13(2023) 6619, https://doi.org/10.1021/acscatal.2c06332.

    31. [31]

      P. Wei, Y. Zhang, J. Dong, Y. Cao, S.M.Y. Lee, W. Lou, C. Peng, Appl. Catal. B Environ. Energy. 357(2024) 124257, https://doi.org/10.1016/j.apcatb.2024.124257.P. Wei, Y. Zhang, J. Dong, Y. Cao, S.M.Y. Lee, W. Lou, C. Peng, Appl. Catal. B Environ. Energy. 357(2024) 124257, https://doi.org/10.1016/j.apcatb.2024.124257.

    32. [32]

      S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13(2023) 14233, https://doi.org/10.1021/acscatal.3c03180.S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13(2023) 14233, https://doi.org/10.1021/acscatal.3c03180.

    33. [33]

      J. Liu, X. Ren, C. Li, M. Wang, H. Li, Q. Yang, Appl. Catal. B Environ. Energy. 310(2022) 121314, https://doi.org/10.1016/j.apcatb.2022.121314.J. Liu, X. Ren, C. Li, M. Wang, H. Li, Q. Yang, Appl. Catal. B Environ. Energy. 310(2022) 121314, https://doi.org/10.1016/j.apcatb.2022.121314.

    34. [34]

      L. Zhou, Z. Su, J. Wang, Y. Cai, N. Ding, L. Wang, J. Zhang, Y. Liu, J. Lei, Appl. Catal. B Environ. Energy. 341(2024) 123290, https://doi.org/10.1016/j.apcatb.2023.123290.L. Zhou, Z. Su, J. Wang, Y. Cai, N. Ding, L. Wang, J. Zhang, Y. Liu, J. Lei, Appl. Catal. B Environ. Energy. 341(2024) 123290, https://doi.org/10.1016/j.apcatb.2023.123290.

    35. [35]

      H.B. Zhang, Z.L. Wang, J.F. Zhang, K. Dai, Chin. J. Catal. 49(2023) 42, https://doi.org/10.1016/s1872-2067(23)64444-4.H.B. Zhang, Z.L. Wang, J.F. Zhang, K. Dai, Chin. J. Catal. 49(2023) 42, https://doi.org/10.1016/s1872-2067(23)64444-4.

    36. [36]

      Y.M. Song, X.L. Zheng, Y.Q. Yang, Y.H. Liu, J. Li, D.X. Wu, W.F. Liu, Y.J. Shen, X.L. Tian, Adv. Mater. 36(2024) 2305835, https://doi.org/10.1002/adma.202305835.Y.M. Song, X.L. Zheng, Y.Q. Yang, Y.H. Liu, J. Li, D.X. Wu, W.F. Liu, Y.J. Shen, X.L. Tian, Adv. Mater. 36(2024) 2305835, https://doi.org/10.1002/adma.202305835.

    37. [37]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63(2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63(2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.

    38. [38]

      J. Yang, Z. Yang, K. Yang, Q. Yu, X. Zhu, H. Xu, H. Li, Chin. J. Catal. 44(2023) 67, https://doi.org/10.1016/S1872-2067(22)64152-4.J. Yang, Z. Yang, K. Yang, Q. Yu, X. Zhu, H. Xu, H. Li, Chin. J. Catal. 44(2023) 67, https://doi.org/10.1016/S1872-2067(22)64152-4.

    39. [39]

      H.J. Zhang, Y.J. Gao, S.G. Meng, Z.R. Wang, P.X. Wang, Z.L. Wang, C.W. Qiu, S.F. Chen, B. Weng, Y.M. Zheng, Adv. Sci. 11(2024) 2400099, https://doi.org/10.1002/advs.202400099.H.J. Zhang, Y.J. Gao, S.G. Meng, Z.R. Wang, P.X. Wang, Z.L. Wang, C.W. Qiu, S.F. Chen, B. Weng, Y.M. Zheng, Adv. Sci. 11(2024) 2400099, https://doi.org/10.1002/advs.202400099.

    40. [40]

      Q.-L. Mo, J.-L. Li, S.-R. Xu, K. Wang, X.-Z. Ge, Y. Xiao, G. Wu, F.-X. Xiao, Adv. Funct. Mater. 33(2023) 2210332, https://doi.org/10.1002/adfm.202210332.Q.-L. Mo, J.-L. Li, S.-R. Xu, K. Wang, X.-Z. Ge, Y. Xiao, G. Wu, F.-X. Xiao, Adv. Funct. Mater. 33(2023) 2210332, https://doi.org/10.1002/adfm.202210332.

    41. [41]

      H. Chen, Y. Huang, C. Sha, J.M. Moradian, Y.-C. Yong, Z. Fang, Renew. Sustain. Energy Rev. 178(2023) 113271, https://doi.org/10.1016/j.rser.2023.113271.H. Chen, Y. Huang, C. Sha, J.M. Moradian, Y.-C. Yong, Z. Fang, Renew. Sustain. Energy Rev. 178(2023) 113271, https://doi.org/10.1016/j.rser.2023.113271.

    42. [42]

      H. Zheng, Z. Huang, P. Wei, Y. Lin, Y. Cao, X. Zhang, B. Zhou, C. Peng, ACS Sustain. Chem. Eng. 13(2025) 4078, https://doi.org/10.1021/acssuschemeng.4c10134.H. Zheng, Z. Huang, P. Wei, Y. Lin, Y. Cao, X. Zhang, B. Zhou, C. Peng, ACS Sustain. Chem. Eng. 13(2025) 4078, https://doi.org/10.1021/acssuschemeng.4c10134.

    43. [43]

      Y. Zhou, Y. He, M. Gao, N. Ding, J. Lei, Y. Zhou, Chin. Chem. Lett. 35(2024) 108690, https://doi.org/10.1016/j.cclet.2023.108690.Y. Zhou, Y. He, M. Gao, N. Ding, J. Lei, Y. Zhou, Chin. Chem. Lett. 35(2024) 108690, https://doi.org/10.1016/j.cclet.2023.108690.

    44. [44]

      F. Xing, J. Bai, M. Zhang, Y. Mao, J. Liu, Chemphotochem 9(2025) e202400351, https://doi.org/10.1002/cptc.202400351.F. Xing, J. Bai, M. Zhang, Y. Mao, J. Liu, Chemphotochem 9(2025) e202400351, https://doi.org/10.1002/cptc.202400351.

    45. [45]

      W. Li, L. Wan, Y. Dong, H. Luo, W. Li, T.P. Lai, J. Zhao, G. Liu, Y. Gao, Y. Deng, W. Hu, L. Zhang, Chem. Eng. J. 517(2025) 164375, https://doi.org/10.1016/j.cej.2025.164375.W. Li, L. Wan, Y. Dong, H. Luo, W. Li, T.P. Lai, J. Zhao, G. Liu, Y. Gao, Y. Deng, W. Hu, L. Zhang, Chem. Eng. J. 517(2025) 164375, https://doi.org/10.1016/j.cej.2025.164375.

    46. [46]

      S. Zhang, Y. Zhang, Y. Chen, D. Yang, S. Li, Y. Wu, Y. Sun, Y. Cheng, J. Shi, Z. Jiang, ACS Catal. 11(2021) 476, https://doi.org/10.1021/acscatal.0c04462.S. Zhang, Y. Zhang, Y. Chen, D. Yang, S. Li, Y. Wu, Y. Sun, Y. Cheng, J. Shi, Z. Jiang, ACS Catal. 11(2021) 476, https://doi.org/10.1021/acscatal.0c04462.

    47. [47]

      J. Shi, C. Tao, Z. Wang, Y. Dai, S. Zhang, J. Li, Y. Chen, X. Mao, Z. Jiang, Angew. Chem. Int. Ed. (2025) e202424995, https://doi.org/10.1002/anie.202424995.J. Shi, C. Tao, Z. Wang, Y. Dai, S. Zhang, J. Li, Y. Chen, X. Mao, Z. Jiang, Angew. Chem. Int. Ed. (2025) e202424995, https://doi.org/10.1002/anie.202424995.

    48. [48]

      Y. Liu, Y. Liu, Z. Yao, Z. Yu, H. Zhu, C. Xing, Y. Wang, X. Tan, Y. Huang, Y. Hou, S. Wang, Appl. Catal. B Environ. Energy. 371(2025) 125275, https://doi.org/10.1016/j.apcatb.2025.125275.Y. Liu, Y. Liu, Z. Yao, Z. Yu, H. Zhu, C. Xing, Y. Wang, X. Tan, Y. Huang, Y. Hou, S. Wang, Appl. Catal. B Environ. Energy. 371(2025) 125275, https://doi.org/10.1016/j.apcatb.2025.125275.

    49. [49]

      A.-M. Manke, K. Geisel, A. Fetzer, P. Kurz, Phys. Chem. Chem. Phys. 16(2014) 12029, https://doi.org/10.1039/C3CP55023K.A.-M. Manke, K. Geisel, A. Fetzer, P. Kurz, Phys. Chem. Chem. Phys. 16(2014) 12029, https://doi.org/10.1039/C3CP55023K.

    50. [50]

      S. Zhang, J. Shi, Y. Sun, Y. Wu, Y. Zhang, Z. Cai, Y. Chen, C. You, P. Han, Z. Jiang, ACS Catal. 9(2019) 3913, https://doi.org/10.1021/acscatal.9b00255.S. Zhang, J. Shi, Y. Sun, Y. Wu, Y. Zhang, Z. Cai, Y. Chen, C. You, P. Han, Z. Jiang, ACS Catal. 9(2019) 3913, https://doi.org/10.1021/acscatal.9b00255.

    51. [51]

      V. Ganesan, D. Sivanesan, S. Yoon, Inorg. Chem. 56(2017) 1366, https://doi.org/10.1021/acs.inorgchem.6b02474.V. Ganesan, D. Sivanesan, S. Yoon, Inorg. Chem. 56(2017) 1366, https://doi.org/10.1021/acs.inorgchem.6b02474.

    52. [52]

      S. Singh, R.K. Yadav, T.W. Kim, C. Singh, P. Singh, S. Chaubey, A.P. Singh, J.-O. Baeg, S.K. Gupta, D. Tiwary, Energy Fuels 36(2022) 8402, https://doi.org/10.1021/acs.energyfuels.1c03697.S. Singh, R.K. Yadav, T.W. Kim, C. Singh, P. Singh, S. Chaubey, A.P. Singh, J.-O. Baeg, S.K. Gupta, D. Tiwary, Energy Fuels 36(2022) 8402, https://doi.org/10.1021/acs.energyfuels.1c03697.

    53. [53]

      H.C. Lo, C. Leiva, O. Buriez, J.B. Kerr, M.M. Olmstead, R.H. Fish, Inorg. Chem. 40(2001) 6705, https://doi.org/10.1021/ic010562z.H.C. Lo, C. Leiva, O. Buriez, J.B. Kerr, M.M. Olmstead, R.H. Fish, Inorg. Chem. 40(2001) 6705, https://doi.org/10.1021/ic010562z.

    54. [54]

      A. Marrone, R.H. Fish, J. Organomet. Chem. 943(2021) 121810, https://doi.org/10.1016/j.jorganchem.2021.121810.A. Marrone, R.H. Fish, J. Organomet. Chem. 943(2021) 121810, https://doi.org/10.1016/j.jorganchem.2021.121810.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  71
  • HTML全文浏览量:  14
文章相关
  • 收稿日期:  2025-07-15
  • 接受日期:  2025-08-17
  • 修回日期:  2025-08-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章