Citation: Shaoce Zhang, Zhifeng Liu, Weiguo Yan, Zhengang Guo, Mengnan Ruan. Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting[J]. Chinese Journal of Catalysis, 2020, 41(12): 1884-1893. doi: 10.1016/S1872-2067(20)63637-3
利用非贵金属等离子体Al修饰TiO2/Cu2O异质结以提高光电催化分解水性能
本文利用具有表面等离子体共振(SPR)效应的Al对TiO2/Cu2O核/壳异质结进行改性,制备了TiO2/Cu2O/Al/Al2O3光电阳极.SEM和TEM等结果显示已成功合成核/壳异质结.UV-vis吸收光谱和UPS测试计算表明,Cu2O不仅可以显著扩展电极的吸光范围,且计算所得TiO2和Cu2O导价带位置验证了p-n异质结的合成.结合光电流、EIS等测试,证明了异质结能够有效地促进光生载流子的分离和转移.同时,在光照激发下,UV-vis吸收光谱在550nm出现明显的特征峰,表明Al的SPR效应被成功激发.Al纳米颗粒的SPR效应不仅可以产生热电子,并能够增强与异质结界面处的电场.之后,通过Mott-Schottk测试和Bode图,较为直观地说明了异质结和SPR效应的协同作用能够增加载流子的浓度,抑制电子空穴的复合,使所制备的TiO2/Cu2O/Al/Al2O3光电阳极表现出良好的光电性能,其光电流达到了4.52mA/cm2(1.23V vs.RHE),是TiO2/Cu2O异质结的1.84倍.相比于同样具有SPR效应的Au,Ag等贵金属而言,Al不仅价格低廉,而且在空气中自发形成的超薄Al2O3薄膜能够有效地抑制Al的进一步氧化,并作为保护层能够显著提高电极的稳定性.在对样品稳定性的测试中,由于Al2O3保护层的存在,电极的稳定性提高了53%.本文对样品的实验测试和原理分析表明了异质结和非贵金属Al的SPR效应的协同作用显著提高了光电极的光电性能,为设计具有良好性能和高实用性的电极提供了新思路.
English
Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting
-
-
[1] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.
-
[2] R. B. Wei, P. Y. Kuang, H. Cheng, Y. Chen, J. Y. Long, M. Zhang, Z. Q. Liu, ACS Sustain. Chem. Eng., 2017, 5, 4249-4257.
-
[3] D. Chen, Z. Liu, S. Zhang, Appl. Catal. B, 2020, 265, 118580.
-
[4] Y. Li, Z. Liu, Z. Guo, M. Ruan, X. Li, Y. Liu, ACS Sustain. Chem. Eng., 2019, 7, 12582-12590.
-
[5] M. N. I. Salehmin, L. J. Minggu, W. F. Mark-Lee, M. A. Mohamed, K. Arifin, M H. H. Jumali, M. B. Kassim, Sol. Energy Mater. Sol. Cells, 2018, 182, 237-245.
-
[6] Z. Liu, X. Lu, D. Chen, ACS Sustain. Chem. Eng., 2018, 6, 10289-10294.
-
[7] S. Zhou, K. Chen, J. Huang, L. Wang, M. Zhang, B. Bai, H. Liu, Q. Wang, Appl. Catal. B, 2020, 118513.
-
[8] K. Guo, Z. Liu, C. Zhou, J. Han, Y. Zhao, Z. Liu, Y. Li, T. Cui, B. Wang, J. Zhang, Appl. Catal. B, 2014, 154, 27-35.
-
[9] M. H. Elbakkay, W. M. A. El Rouby, S. I. El-Dek, A. A. Farghali, Appl. Surf. Sci., 2018, 439, 1088-1102.
-
[10] P. P. Liu, X. Liu, X. H. Huo, Y. Tang, J. Xu, H. Ju, ACS Appl. Mater. Interfaces, 2017, 9, 27185-27192.
-
[11] Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett., 2013, 13, 3817-3823.
-
[12] Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, L. Li, ACS Appl. Mater. Interfaces, 2014, 6, 17200-17207.
-
[13] G. Ai, H. Li, S. Liu, R. Mo, J. Zhong, Adv. Funct. Mater., 2015, 25, 5706-5713.
-
[14] J. A. Seabold, K. Shankar, R. H. T. Wilke, A. Jason, M. Paulose, O. K. Varghese, C. A. Grimes, K. S. Choi, Chem. Mater., 2008, 20, 5266-5273.
-
[15] M. Chandra, K. Bhunia, D. Pradhan, Inorg. Chem., 2018, 57, 4524-4533.
-
[16] L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, Z. Sun, Sol. Energy Mater. Sol. Cells, 2017, 165, 27-35.
-
[17] Y. Tolstova, S. T. Omelchenko, R. E. Blackwell, A. M. Shing, H. A. Atwater, Sol. Energy Mater. Sol. Cells, 2017, 160, 340-345.
-
[18] M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, C. Lin, Energy Environ. Sci., 2013, 6, 1211-1220.
-
[19] T. Zhou, Z. Zang, J. Wei, J. Zheng, J. Hao, F. Ling, X. Tang, L. Fang, M. Zhou, Nano Energy, 2018, 50, 118-125.
-
[20] C. H. Ma, Z. F. Liu, J. Q. Cai, C. C. Han, Z. F. Tong, Inorg. Chem. Front., 2018, 5, 2571-2578.
-
[21] S. K. Saraswat, D. D. Rodene, R. B. Gupta, Renew. Sust. Energy Rev., 2018, 89, 228-248.
-
[22] C. Clavero, Nature Photon., 2014, 8, 95-103.
-
[23] Y. Tian, T. Tatsuma, J. Am. Chem. Soc., 2005, 127, 7632-7637.
-
[24] D. Chaudhary, S. Singh, V. D. Vankar, N. Khare, Int. J. Hydrogen Energy, 2017, 42, 7826-7835.
-
[25] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, N. J. Halas, ACS Nano, 2013, 8, 834-840.
-
[26] D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Chem. Eng. J., 2020, 381, 122655.
-
[27] Z. Li, L. Shi, D. Franklin, S. Koul, A. Kushima, Y. Yang, Nano Energy, 2018, 51, 400-407.
-
[28] Z. F. Liu, K. Y. Guo, J. H. Han, Y. J. Li, T. Cui, B. Wang, J. Ya, C. L. Zhou, Small, 2014, 10, 3153-3161.
-
[29] D. Chen, Z. Liu, Z. Guo, W. Yan, Y. Xin, J. Mater. Chem. A, 2018, 6, 20393-20401.
-
[30] H. She, P. Yue, J. Huang, L. Wang, Q. Wang, Chem. Eng. J., 2019, 123703.
-
[31] Y. Wei, Y. Zhang, W. Geng, H. Su, M. Long, Appl. Catal. B, 2019, 259, 118084.
-
[32] L. Zheng, H. Su, J. Zhang, L. S. Walekar, H. V. Molamahmood, B. Zhou, M. Long, Y. H. Hu, Appl. Catal. B, 2018, 239, 475-484.
-
[33] M. P. Suryawanshi, S. W. Shin, U. V. Ghorpade, J. Kim, H. W. Jeong, S. H. Kang, J. H. Kim, J. Mater. Chem. A, 2018, 6, 20678-20685.
-
[34] G. Zhu, S. Li, J. Gao, F. Zhang, C. Liu, Q. Wang, M. Hojamberdiev, Appl. Surf. Sci., 2019, 493, 913-925.
-
[35] S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen, X. Li, Appl. Catal. B, 2018, 227, 218-228.
-
[36] B. F. Zheng, T. Ouyang, Z. Wang, J. Long, Y. Chen, Z. Q. Liu, Chem. Commun., 2018, 54, 9583-9586.
-
[37] L. Yu, G. Li, X. Zhang, X. Ba, G. Shi, Y. Li, P. K. Wong, J. C. Yu, Y. Yu, ACS Catal, 2016, 6, 6444-6454.
-
[38] S. Zhang, Z. Liu, M. Ruan, Z. Guo, L. E, W. Zhao, D. Zhao, X. Wu, D. Chen, Appl. Catal. B, 2020, 262, 118279.
-
[39] L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J. J. Zou, Nano Energy, 2016, 28, 296-303.
-
[40] W. Yuan, J. Yuan, J. Xie, C. M. Li, ACS Appl. Mater. Interfaces, 2016, 8, 6082-6092.
-
[41] B. Parkinson, Acc. Chem. Res., 1984, 17, 431-437.
-
[42] P. Wang, S. Xu, F. Chen, H. Yu, Chin. J. Catal., 2019, 40, 343-351.
-
[43] Z. Liu, X. Wang, Int. J. Hydrogen Energy, 2018, 43, 13276-13283.
-
[44] Y. Zhu, Z. Zhang, N. Lu, R. Hua, B. Dong, Chin. J. Catal., 2019, 40, 413-423.
-
[45] M. Long, J. Brame, F. Qin, J. Bao, Q. Li, P. J. J. Alvarez, Environ. Sci. Technol., 2017, 51, 514-521.
-
[46] D. Chen, Z. Liu, ChemSusChem, 2018, 11, 3438-3448.
-
[47] K. He, J. Xie, Z. Liu, N. Li, X. Chen, J. Hu, X. Li, J. Mater. Chem. A, 2018, 6, 13110-13122.
-
[48] S. He, K. Xiao, X. Z. Chen, T. Li, T. Ouyang, Z. Wang, M. L. Guo, Z. Q. Liu, J. Colloid Interface Sci., 2019, 557, 644-654.
-
[49] L. Zheng, J. Zhang, Y. H. Hu, M. Long, J. Phys. Chem., C, 2019, 123, 13693-13701.
-
[50] Y. Q. Ye, G. H. Gu, X. T. Wang, T. Ouyang, Y. Chen, Z. Q. Liu, Int. J. Hydrogen Energy, 2019, 44, 21865-21872.
-
[51] X. Li, J. Xiong, Y. Xu, Z. Feng, J. Huang, Chin. J. Catal., 2019, 40, 424-433.
-
[52] Z. Liu, J. Zhang, W. Yan, ACS Sustain. Chem. Eng., 2018, 6, 3565-3574.
-
[53] J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Chin. J. Catal., 2019, 40, 380-389.
-
[54] F. Rao, G. Zhu, M. Hojamberdiev, W. Zhang, S. Li, J. Gao, F. Zhang, Y. Huang, Y Huang, J. Phys. Chem. C, 2019, 123, 16268-16280.
-
[55] X. Lu, J. Xie, S. Liu, A. Adamski, X. Chen, X. Li, ACS Sustain. Chem. Eng., 2018, 6, 13140-13150.
-
[56] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater., 2011, 10, 456-461.
-
计量
- PDF下载量: 53
- 文章访问数: 2835
- HTML全文浏览量: 310