Citation: Di Meng, Qian Zhu, Yan Wei, Shengli Zhen, Ran Duan, Chuncheng Chen, Wenjing Song, Jincai Zhao. Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation[J]. Chinese Journal of Catalysis, 2020, 41(10): 1474-1479. doi: 10.1016/S1872-2067(20)63582-3
基于芳香胺化合物的光催化脱卤加氢
本工作中我们开发了基于小分子芳香胺,包括N,N,N',N'-四甲基对苯二胺(TMPD)与N,N,N',N'-四甲基联苯胺(TMB)等作为光催化剂实现高惰性芳香卤代化合物脱卤加氢的催化体系.荧光强度/寿命测试表明芳香胺的强还原性单重激发态可通过扩散控制的电子转移实现惰性卤代底物(氯苯,六氟苯等)中碳卤键的解离;并且原位顺磁共振直接观察到了这一步骤产生的芳基自由基以及TMPD正离子自由基;自由基捕获实验也为解离电子转移活化碳卤键提供了进一步的支持.
芳香胺分子在计量反应条件下可同时作为光敏剂和电子/氢给体可在紫外光照下(λ> 360nm)实现芳香卤代化合物的脱卤加氢,并表现出较高的转化率和选择性:溴苯乙酮(86%,90%)、六氟苯(91%,五氟苯26%/1,2,4,5-四氟苯17%)、氯苯(63%,80%).引入N,N-二异丙基乙二胺(DIPEA)作为电子给体,能够还原芳香胺正离子自由基完成催化剂循环,DIPEA同时作为氢给体参与芳基自由基加氢.我们在催化反应条件下(5 mol%芳香胺)调研了脱卤加氢的卤代底物范畴.以TMPD为例,对溴苯乙酮光照4小时后可得到90%脱溴产物;相对难还原的溴苯经过6小时光反应脱卤达到37%.六氟苯经过24小时反应后可以脱去1-2个氟,生成五氟苯(25%)和1,2,4,5-四氟苯(50%).对氯苯甲酸甲酯在7.5小时反应后得到了72%的加氢产物;而对于更难还原的氯苯两小时光照可生成约40%的脱氯产物(增加TMPD用量可进一步提高脱氯效率至63%).TMPD催化杂环卤代化合物脱卤的效果也较好,如3-溴噻吩(18h,41%)和3-溴-4甲基吡啶(25h,60%).另外TMB和4,4',4"-(1,3,5-三嗪-2,4,6-三基)三苯胺作为光催化剂也可实现脱卤加氢.
我们进一步研究了典型持久性有机污染物2,2',4,4'-四溴联苯醚(BDE47)的光催化脱溴反应,30小时光照后脱溴效率可达83%,并且产生了40%的全脱溴产物联苯醚.脱溴中间产物分布表明邻位溴脱除速率高于对位溴.这一结果与解离电子转移活化碳卤键的机理一致.
总而言之,我们的工作表明小分子芳香胺光敏剂的激发态能够通过扩散控制的电子转移活化碳卤键.它们作为光催化剂可实现多种有机卤化物的脱卤加氢.
English
Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation
-
-
[1] D. M. Schultz, T. P. Yoon, Science, 2014, 343, 1239176.
-
[2] I. Ghosh, R. S. Shaikh, B. Konig, Angew. Chem. Int. Edit., 2017, 56, 8544-8549.
-
[3] I. Ghosh, T. Ghosh, J. I. Bardagi, B. Konig, Science, 2014, 346, 725-728.
-
[4] K. Chen, N. Berg, R. Gschwind, B. Konig, J. Am. Chem. Soc., 2017, 139, 18444-18447.
-
[5] K. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc., 2017, 139, 9467-9470.
-
[6] D. Koyama, H. J. A. Dale, A. J. Orr-Ewing, J. Am. Chem. Soc., 2018, 140, 1285-1293.
-
[7] M. Goez, C. Kerzig, R. Naumann, Angew. Chem. Int. Ed., 2014, 53, 9914-9916.
-
[8] I. Ghosh, B. Konig, Angew. Chem. Int. Ed., 2016, 55, 7676-7679.
-
[9] C. Y. Sun, D. Zhao, C. C. Chen, W. H. Ma, J. C. Zhao, Environ. Sci. Technol., 2009, 43, 157-162.
-
[10] L. N. Li, W. Chang, Y. Wang, H. W. Ji, C. C. Chen, W. H. Ma, J. C. Zhao, Chem.-Eur. J., 2014, 20, 11163-11170.
-
[11] W. Chang, C. Y. Sun, X. B. Pang, H. Sheng, Y. Li, H. W. Ji, W. J. Song, C. C. Chen, W. H. Ma, J. C. Zhao, Angew. Chem. Int. Ed., 2015, 54, 2052-2056.
-
[12] Y. H. Lv, X. F. Cao, H. Y. Jiang, W. J. Song, C. C. Chen, J. C. Zhao, Appl. Catal. B, 2016, 194, 150-156.
-
[13] Q. Zhu, Y. Y. Wang, H. N. Zhang, R. Duan, C. C. Chen, W. J. Song, J. C. Zhao, Appl. Catal. B, 2017, 219, 322-328.
-
[14] Y. Y. Wang, Q. Zhu, Y. Wei, Y. J. Gong, C. C. Chen, W. J. Song, J. C. Zhao, Appl. Catal. B, 2018, 231, 262-268.
-
[15] J. Z. Lu, N. S. Khetrapal, J. A. Johnson, X. C. Zeng, J. Zhang, J. Am. Chem. Soc., 2016, 138, 15805-15808.
-
[16] S. M. Senaweera, A. Singh, J. D. Weaver, J. Am. Chem. Soc., 2014, 136, 3002-3005.
-
[17] M. B. Khaled, R. K. El Mokadem, J. D. Weaver, J. Am. Chem. Soc., 2017, 139, 13092-13101.
-
[18] C. Costentin, M. Robert, J. M. Saveant, J. Am. Chem. Soc., 2004, 126, 16051-16057.
-
[19] J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem., 2012, 4, 854-859.
-
[20] H. L. Yin, Y. Jin, J. E. Hertzog, K. C. Mullane, P. J. Carroll, B. C. Manor, J. M. Anna, E. J. Schelter, J. Am. Chem. Soc., 2016, 138, 16266-16273.
-
[21] L. Pause, M. Robert, J. M. Saveant, J. Am. Chem. Soc., 1999, 121, 7158-7159.
-
[22] H. Q. Do, S. Bachman, A. C. Bissember, J. C. Peters, G. C. Fu, J. Am. Chem. Soc., 2014, 136, 2162-2167.
-
[23] S. E. Creutz, K. J. Lotito, G. C. Fu, J. C. Peters, Science, 2012, 338, 647-651.
-
[24] T. P. Nicholls, J. C. Robertson, M. G. Gardiner, A. C. Bissember, Chem. Commun., 2018, 54, 4589-4592.
-
[25] J. C. Theriot, C. H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G. M. Miyake, Science, 2016, 352, 1082-1086.
-
[26] M. Haring, R. Perez-Ruiz, A. Jacobi von Wangelin, D. D. Diaz, Chem. Commun., 2015, 51, 16848-16851.
-
[27] R. Matsubara, T. Yabuta, U. M. Idros, M. Hayashi, F. Ema, Y. Kobori, K. Sakata, J. Org. Chem., 2018, 83, 9381-9390.
-
[28] J. T. Shang, H. Y. Tang, H. W. Ji, W. H. Ma, C. C. Chen, J. C. Zhao, Chin. J. Catal., 2017, 38, 2094-2101.
-
[29] B. Liu, C. H. Lim, G. M. Miyake, J. Am. Chem. Soc., 2017, 139, 13616-13619.
-
[30] S. V. Rosokha, E. A. Loboda, J. Phys. Chem. A, 2015, 119, 3833-3842.
-
[31] C. G. S. Lima, T. D. Lima, M. Duarte, I. D. Jurberg, M. W. Paixao, ACS Catal., 2016, 6, 1389-1407.
-
[32] in Principles of Fluorescence Spectroscopy (Ed.:J. R. Lakowicz), Springer US, Boston, MA, 2006, pp. 277-330.
-
[33] A. Banerjee, D. E. Falvey, J. Org. Chem., 1997, 62, 6245-6251.
-
[34] Z. Chami, M. Gareil, J. Pinson, J. M. Saveant, A. Thiebault, J. Org. Chem., 1991, 56, 586-595.
-
[35] M. Lei, S. Guo, Z. Y. Wang, L. H. Zhu, H. Q. Tang, Environ. Sci. Technol., 2018, 52, 11743-11751.
-
[36] Y. Wei, Y. J. Gong, X. Zhao, Y. Y. Wang, R. Duan, C. C. Chen, W. J. Song, J. C. Zhao, Environ.-Sci. Nano, 2019, 6, 1585-1593.
-
[37] H. Sakamoto, J. Imai, Y. Shiraishi, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal., 2017, 7, 5194-5201.
-
[38] K. Fuku, K. Hashimoto, H. Kominami, Chem. Commun., 2010, 46, 5118-5120.
-
[39] M. Lei, N. Wang, L. H. Zhu, H. Q. Tang, Chemosphere, 2016, 150, 536-544.
-
[40] Z. Hu, X. Wang, H. T. Dong, S. Y. Li, X. K. Li, L. S. Li, J. Hazard. Mater., 2017, 340, 1-15.
-
-
扫一扫看文章
计量
- PDF下载量: 6
- 文章访问数: 680
- HTML全文浏览量: 57

下载: