Citation: Jieya Wen, Lili Ling, Yao Chen, Zhenfeng Bian. Pyroelectricity effect on photoactivating palladium nanoparticles in PbTiO3 for Suzuki coupling reaction[J]. Chinese Journal of Catalysis, 2020, 41(10): 1674-1681. doi: 10.1016/S1872-2067(20)63581-1
Pd/PbTiO3表面的热电效应增强光催化Suzuki偶联反应
微波与光催化系统相结合是抑制光生电子-空穴复合并增强光催化反应性能的一种有效方法.本文通过简单的水热反应制备了单晶PbTiO3纳米片.由XRD谱可以看出,所有衍射峰均归属于四方钙钛矿相PbTiO3,紫外-可见漫反射光谱表明单晶PbTiO3在紫外光区域有强吸收,在400-450nm处还存在微弱的可见光吸收.另外,负载了Pd纳米颗粒之后,在可见光区域吸收明显增强.这说明我们成功制备了一种既能利用微波又能利用光催化的Pd/PbTiO3催化剂.利用PbTiO3晶体的热释电效应在微波场下与紫外光协同促进以溴苯引导的Suzuki偶联反应发生,反应速度和选择性显著提高.在微波场和紫外光的协同作用下,PbTiO3晶体的热电效应可以将热能转换为电能,产生正电荷和负电荷(q+和q-),而Pd纳米粒子则显著提高了光催化过程的量子效率.光催化技术协同微波场可以直接作用于有机化学反应,以独特的方式促进甚至改变各种化学反应过程.
-
关键词:
- 光催化
- / 热释电
- / 微波
- / Suzuki偶联反应
English
Pyroelectricity effect on photoactivating palladium nanoparticles in PbTiO3 for Suzuki coupling reaction
-
Key words:
- Photocatalysis
- / Pyroelectricity
- / Microwave
- / Suzuki coupling reaction
-
-
[1] E. Menachem, W. A. Phillip, Science, 2011, 333, 712-717.
-
[2] J. Fu, Y. L. Tian, B. B. Chang, F. N. Xi, J. Mater. Chem., 2012, 22, 21159-21166.
-
[3] Y. Chen, X. M. Deng, J. Y. Wen, J. Zhu, Z. F. Bian, Appl. Catal. B, 2019, 258, 118024.
-
[4] L. L. Ling, L. F. Liu, Y. W. Feng, J. Zhu, Z. F. Bian, Chin. J. Catal., 2018, 39, 639-645.
-
[5] G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chem. Commun., 2007, 33, 3425-3437.
-
[6] X. M. Deng, Y. Chen, J. Y. Wen, Y. Xu, J. Zhu, Z. F. Bian, Sci. Bull., 2020, 65, 105-112.
-
[7] A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C, 2000, 1, 1-21.
-
[8] N. Hoffmann, ChemSusChem, 2012, 5, 352-371.
-
[9] Y. X. Zhang, M. J. Xu, H. X. Li, H. Ge, Z. F. Bian, Appl. Catal. B, 2018, 226, 213-219.
-
[10] M. J. Xu, Y. Chen, J. T. Qin, Y. W. Feng, W. Li, W. Chen, J. Zhu, H. X. Li, Z. F. Bian, Environ. Sci. Technol., 2018, 52, 13879-13886.
-
[11] H. Frank, T. Andreas, S. Frank, M. T. Reetz, Angew. Chem. Int. Ed., 2010, 46, 2903-2906.
-
[12] H. Shimizu, S. Onitsuka, H. Egami, T. Katsuki, J. Am. Chem. Soc., 2005, 127, 5396-5413.
-
[13] A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev., 2014, 43, 5750-5765.
-
[14] Z. M. Xu, R. Zheng, Y. Chen, J. Zhu, Z. F. Bian, Chin. J. Catal., 2019, 40, 631-637.
-
[15] N. Hoffmann, Aust. J. Chem., 2015, 68, 1621-1639.
-
[16] Z. Wu, F. Xiong, Z. Wang, W. Huang, Chin. Chem. Lett., 2018, 29, 752-756.
-
[17] Y. Feng, H. Li, Ling, S. Yan, D. L. Pan, H. Ge, H. X. Li, Z. F. Bian, Environ. Sci. Technol., 2018, 52, 7842-7848.
-
[18] Y. W. Feng, L. L. Ling, J. Nie, K. Han, X. Chen, Z. F. Bian, H. X. Li, Z. L. Wang, ACS Nano, 2017, 11, 12411-12418.
-
[19] L. L. Ling, Y. W. Feng, H. Li, Y. Chen, J. Y. Wen, J. Zhu, Z. F. Bian, Appl. Surf. Sci., 2019, 483, 772-778.
-
[20] W. Zhang, X. Wang, X. Fu, Chem. Commun., 2003, 9, 2196-2197.
-
[21] S. Horikoshi, H. Tsutsumi, H. Matsuzaki, A. Furube, A. V. Emeline, N. Serpone, J. Mater. Chem. C, 2015, 3, 5958-5969.
-
[22] D. Z. Li, Acta Phys.-Chim. Sin., 2002, 18, 332-335.
-
[23] W. Liao, T. Zheng, P. Wang, S. Tu, W. Pan, J. Environ. Sci. 2010, 22, 1800-1806.
-
[24] Y. L. Zi, L. Lin, J. Wang, S. H. Wang, J. Chen, X. Fan, P.-K. Yang, F. Yi, Z. L. Wang, Adv. Mater., 2015, 27, 2340-2347.
-
[25] R. A. Arndt, A. C. Damask, J. Chem. Phys., 1966, 45, 4627-4633.
-
[26] S. B. Lang, Br. Ceram. Trans., 2004, 103, 65-70.
-
[27] N. Guarrotxena, N. Vella, A. Toureille, J. L. Millán, Macromol. Chem. Phys., 1997, 198, 457-469.
-
[28] B. S. Kang, S. K. Choi, C. H. Park, J. Appl. Phys., 2003, 94, 1904-1911.
-
[29] J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1957.
-
[30] S. Bauer, S. B. Lang, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, 647-676.
-
[31] Y. Yang, J. H. Jung, B. K. Yun, F. Zhang, K. C. Pradel, W. X. Guo, Z. L. Wang, Advanced Materials, 2012, 24, 5357-5362.
-
[32] M. A. Green, S. P. Bremner, Nat. Mater., 2016, 16, 23-34.
-
[33] C. Pavithra, W. Madhuri, J. Sol-Gel Sci. Technol., 2018, 85, 437-445.
-
[34] E. P. Smirnova, G. Yu. Sotnikova, N. V. Zaitseva, G. A. Gavrilov, A. V. Sotnikov, Phys. Solid State, 2019, 10, 1766-1771.
-
[35] Z. H. Dai, J. L. Xie, W. G. Liu, S. B. Ge, M. X. Fang, D. B. Lin, L. X. Pang, H. F. Ji, S. Zhou, X. B. Ren, Mater. Lett., 2019, 241, 55-59.
-
[36] D. Zekria, A. M. Glazer, V. Shuvaeva, J. Appl. Crystallogr., 2010, 37, 551-554.
-
[37] G. Xu, X. Huang, V. Krstic, S. Chen, X. Yang, C. Chao, G. Shen, G. Han, CrystEngComm, 2014, 16, 4373-4376.
-
[38] Y. F. Li, Z. P. Liu, J. Am. Chem. Soc., 2011, 133, 15743-15752.
-
[39] P. Dong, Y. Wang, H. Li, H. Li, X. Ma, L. Han, J. Mater. Chem. A, 2013, 1, 4651-4656.
-
[40] X. Meng, H. Qin, Z. Zhang, J. Colloid Interface Sci., 2018, 513, 877-890.
-
[41] M. Kurasawa, P. C. McLntyre, J. Appl. Phys., 2005, 97, 104110.
-
-
扫一扫看文章
计量
- PDF下载量: 2
- 文章访问数: 508
- HTML全文浏览量: 21

下载: