单原子催化剂Ti/Ti3C2O2催化氧化甲醛的密度泛函理论研究

周君慧 刘冠兰 姜全国 赵伟娜 敖志敏 安太成

引用本文: 周君慧,  刘冠兰,  姜全国,  赵伟娜,  敖志敏,  安太成. 单原子催化剂Ti/Ti3C2O2催化氧化甲醛的密度泛函理论研究[J]. 催化学报, 2020, 41(10): 1633-1644. doi: 10.1016/S1872-2067(20)63571-9 shu
Citation:  Junhui Zhou,  Guanlan Liu,  Quanguo Jiang,  Weina Zhao,  Zhimin Ao,  Taicheng An. Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer (MXene) for HCHO oxidation[J]. Chinese Journal of Catalysis, 2020, 41(10): 1633-1644. doi: 10.1016/S1872-2067(20)63571-9 shu

单原子催化剂Ti/Ti3C2O2催化氧化甲醛的密度泛函理论研究

  • 基金项目:

    国家自然科学基金(21777033,21607029,41425015);广东省科技计划(2017B020216003);广东省教育厅创新团队项目(2017KCXTD012).

摘要: 甲醛是一种比较常见的室内污染物,长期接触甲醛会危害人体健康.如何在低温条件下有效去除低浓度甲醛仍然是当前具有挑战性的研究课题.本文采用第一性原理计算方法研究了甲醛分子在单原子催化剂(Ti原子修饰的单层MXene-Ti3C2O2)表面上的吸附和催化氧化性能.结果表明,Ti原子在Ti3C2O2表面的结合能和扩散能分别为-8.36和1.66eV,说明Ti能够以单原子形式稳定分散在Ti3C2O2表面,而不会产生团簇现象.为了研究甲醛和氧气分子在Ti/Ti3C2O2上的吸附机理,我们计算了分波态密度(PDOS),Mulliken电荷分析以及分子轨道.结果表明,Ti原子修饰改变了Ti3C2O2表面上的电荷分布,甲醛分子和氧气分子都能接受自Ti原子处转移而来的电子成为电子受体,增强了吸附质和Ti/Ti3C2O2之间的相互作用,从而加强了吸附能力.
此外,为了研究甲醛分子在Ti/Ti3C2O2上的催化氧化机理,我们考虑了Langmuir-Hinshelwood(LH)和Eley-Rideal(ER)两种机理.结果表明,无论是从动力学还是热力学角度,ER机理是一种更为理想的催化氧化甲醛的方式,甲醛分子在已经被氧气活化的Ti/Ti3C2O2上能够自动解离成CO分子,而两个H原子则和活化的O原子形成两个*OH基团,并且释放4.05eV的热量,从而有助于克服后续反应所要跨越的能垒(1.04eV).而从*OH基团到CO分子的电荷转移不仅能够促进*OH基团的活化,而且也为下一步的水分子的形成也提供了重要作用.综上所述,甲醛可以很容易地在单原子催化剂Ti/Ti3C2O2上被氧化.综上,本文为开发高效去除甲醛的非贵金属催化剂以及扩大MXene材料应用范围提供重要指导.

English

    1. [1] S. Li, X. Lu, W. Guo, H. Zhu, M. Li, L. Zhao, Y. Li, H. Shan, J. Organomet. Chem., 2012, 704, 38-48.

    2. [2] C. Zhang, H. He, Catal. Today, 2007, 126, 345-350.

    3. [3] M. Wen, G. Li, H. Liu, J. Chen, T. An, H. Yamashita, Environ. Sci. Nano, 2019, 6, 1006-1025.

    4. [4] H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, M. Tsuhako, Solid State Sci., 2002, 4, 1067-1070.

    5. [5] Y. Su, Z. Ao, Y. Ji, G. Li, T. An, Appl. Surf. Sci., 2018, 450, 484-491.

    6. [6] Y. Su, W. Li, G. Li, Z. Ao, T. An, Chin. J. Catal., 2019, 40, 664-672.

    7. [7] B. Liu, W. Zhao, Q. Jiang, Z. Ao, T. An, Sustain. Mater. Technol., 2019, 21, e00103.

    8. [8] H. P. Zhang, X. G. Luo, X. G. Lin, X. Lu, Y. Leng, H. T. Song, Appl. Surf. Sci., 2013, 283, 559-565.

    9. [9] M. Jing, W. Song, L. Chen, S. Ma, J. Deng, H. Zheng, Y. Li, J. Liu, Z. Zhao, J. Phys. Chem. C, 2017, 122, 438-448.

    10. [10] C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. FlytzaniStephanopoulos, H. He, Angew. Chem. Int. Ed., 2012, 51, 9628-9632.

    11. [11] C. Li, Y. Shen, M. Jia, S. Sheng, M. O. Adebajo, H. Zhu, Catal. Commun., 2008, 9, 355-361.

    12. [12] Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today, 2016, 264, 270-278.

    13. [13] T. N. Obee, R. T. Brown, Environ. Sci. Technol., 1995, 29, 1223-1231.

    14. [14] J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys., 2013, 15, 16883-16890.

    15. [15] J. Li, W. Zhao, J. Wang, S. Song, X. Wu, G. Zhang, Appl. Surf. Sci., 2018, 458, 59-69.

    16. [16] C. Sheng, C. Wang, H. Wang, C. Jin, Q. Sun, S. Li, J. Hazard. Mater., 2017, 328, 127-139.

    17. [17] M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ., 2016, 140, 117-134.

    18. [18] Y. Shen, X. Yang, Y. Wang, Y. Zhang, H. Zhu, L. Gao, M. Jia, Appl. Catal. B, 2008, 79, 142-148.

    19. [19] S. Liu, P. Jin, D. Zhang, C. Hao, X. Yang, Appl. Surf. Sci., 2013, 265, 443-451.

    20. [20] Z. Xu, J. Yu, M. Jaroniec, Appl. Catal. B, 2015, 163, 306-312.

    21. [21] C. Zhang, H. He, K. I. Tanaka, Appl. Catal. B, 2006, 65, 37-43.

    22. [22] H. Huang, D. Y. C. Leung, J. Catal., 2011, 280, 60-67.

    23. [23] F. Liu, J. Shen, D. Xu, W. Zhou, S. Zhang, L. Wan, Chem. Eng. J., 2018, 334, 2283-2292.

    24. [24] Z. Huang, X. Gu, Q. Cao, P. Hu, J. Hao, J. Li, X. Tang, Angew. Chem. Int. Ed., 2012, 51, 4198-4203.

    25. [25] H. Huang, X. Ye, H. Huang, L. Zhang, D. Y. C. Leung, Chem. Eng. J., 2013, 230, 73-79.

    26. [26] J. Y. Bo, S. Zhang, K. H. Lim, Catal. Lett., 2009, 129, 444-448.

    27. [27] C. Robert Dennis, I. M. Potgieter, S. S. Basson, React. Kinet. Mech. Catal., 2011, 104, 1-7.

    28. [28] C. Cheng, X. Zhang, M. Wang, S. Wang, Z. Yang, Phys. Chem. Chem. Phys., 2018, 20, 3504-3513.

    29. [29] F. Li, Y. Li, C. Z. Xiao, Z. Chen, ACS Catal., 2015, 5, 544-552.

    30. [30] Z. Z. Lin, Carbon, 2016, 108, 343-350.

    31. [31] Q. G. Jiang, Z. M. Ao, S. Li, Z. Wen, RSC Adv., 2014, 4, 20290-20296.

    32. [32] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634-641.

    33. [33] J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang, X. Wang, J. Liang, J. Li, J. Liu, T. Zhang, J. Am. Chem. Soc., 2013, 135, 15314-15317.

    34. [34] J. X. Liang, J. Lin, X. F. Yang, A. Q. Wang, B. T. Qiao, J. Liu, T. Zhang, J. Li, J. Phys. Chem. C, 2014, 118, 21945-21951.

    35. [35] H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun, H. Cheng, W. Liu, C. Wang, J. Li, X. Huang, T. Yao, J. Yang, S. Wei, J. Lu, Nat. Commun., 2017, 8, 1070.

    36. [36] J. Liu, ACS Catal., 2016, 7, 34-59.

    37. [37] Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon, 2010, 48, 1124-1130.

    38. [38] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469-472.

    39. [39] L. Wang, L. Shen, X. Xu, L. Xu, Y. Qian, RSC Adv., 2012, 2, 10689-10693.

    40. [40] X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc., 2009, 131, 11658-11659.

    41. [41] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano, 2012, 6, 1322-1331.

    42. [42] M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi, Electrochem. Commun., 2012, 16, 61-64.

    43. [43] M. Naguib, M. Kurtoglu, V. Preeser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater., 2011, 23, 4248-4253.

    44. [44] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater., 2014, 26, 992-1005.

    45. [45] P. Eklund, J. Rosen, P. O. Å. Persson, J. Phys. D:Appl. Phys., 2017, 50, 113001.

    46. [46] X. F. Yu, Y. C. Li, J. B. Cheng, Z. B. Liu, Q. Z. Li, W. Z. Li, X. Yang, B. Xiao, ACS Appl. Mater. Interfaces, 2015, 7, 13707-13713.

    47. [47] S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, B. Anasori, C. K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi, H. T. Jung, ACS Nano, 2018, 12, 986-993.

    48. [48] X. Zhang, J. Lei, D. Wu, X. Zhao, Y. Jing, Z. Zhou, J. Mater. Chem. A, 2016, 4, 4871-4876.

    49. [49] X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, J. Mater. Chem. A, 2017, 5, 12899-12903.

    50. [50] Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc., 2012, 134, 16909-16916.

    51. [51] M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Acc. Chem. Res., 2018, 51, 591-599.

    52. [52] M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science, 2013, 341, 1502-1505.

    53. [53] H. Zhang, G. Yang, X. Zuo, H. Tang, Q. Yang, G. Li, J. Mater. Chem. A, 2016, 4, 12913-12920.

    54. [54] N. K. Chaudhari, H. Jin, B. Kim, D. San Baek, S. H. Joo, K. Lee, J. Mater. Chem. A, 2017, 5, 24564-24579.

    55. [55] Y. Gao, H. Zhuo, Y. Cao, X. Sun, G. Zhuang, S. Deng, X. Zhong, Z. Wei, J. Wang, Chin. J. Catal., 2019, 40, 152-159.

    56. [56] L. Yi, C. Wen, G. Yun, G. Lu, Y. Wang, J. Phys. Chem. C, 2010, 114, 9889-9897.

    57. [57] H. Wu, S. Ma, W. Song, E. J. M. Hensen, J. Phys. Chem. C, 2016, 120, 13071-13077.

    58. [58] B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.

    59. [59] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

    60. [60] A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 2009, 102, 073005/1-073005/4.

    61. [61] B. Delley, Phys. Rev. B, 2002, 66, 155125/1-155125/9.

    62. [62] B. Delley, J. Chem. Phys., 1990, 92, 508-517.

    63. [63] S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys., 2001, 73, 515-562.

    64. [64] A. Deb, J. M. Ralph, E. J. Cairns, U. Bergmann, Phys. Rev. B, 2006, 73, 115114/1-115114/9.

    65. [65] W. Frey, J. Y. Lee, V. Jaeger, Z. Kristallogr. New Cryst. Struct., 2005, 220, 567-568.

    66. [66] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.:Condens. Matter, 2002, 14, 2717-2744.

    67. [67] D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett., 1979, 43, 1494-1497.

    68. [68] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225-232.

    69. [69] G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys., 2000, 113, 9901-9904.

    70. [70] Y. Zhao, J. Zhao, Appl. Surf. Sci., 2017, 412, 591-598.

    71. [71] S. Kozuch, S. Shaik, Acc. Chem. Res., 2011, 44, 101-110.

    72. [72] R. G. Parr, L. J. Bartolotti, J. Am. Chem. Soc., 1982, 104, 3801-3803.

    73. [73] C. Kittel, Introduction to solid state physics, Wiley New York, 1976.

    74. [74] H. P. Bonzel, R. Ku, J. Vac. Sci. Technol., 1972, 9, 663-667.

    75. [75] B. C. Sales, J. E. Turner, M. B. Maple, Surf. Sci., 1982, 114, 381-394.

    76. [76] J. W. Li, K. L. Pan, S. J. Yu, S. Y. Yan, M. B. Chang, J. Environ. Sci., 2014, 26, 2546-2553.

    77. [77] J. Pei, X. Han, Y. Lu, Build. Environ., 2015, 84, 134-141.

    78. [78] B. Bai, H. Arandiyan, J. Li, Appl. Catal. B, 2013, 142, 677-683.

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  886
  • HTML全文浏览量:  82
文章相关
  • 收稿日期:  2020-02-21
  • 修回日期:  2020-03-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章