
Citation: Yunqing Liu, Peiyu Xia, Lingyu Li, Xinyue Wang, Jiaqi Meng, Yuxin Yang, Yihang Guo. In-situ route for the graphitized carbon/TiO2 composite photocatalysts with enhanced removal efficiency to emerging phenolic pollutants[J]. Chinese Journal of Catalysis, 2020, 41(9): 1378-1392. doi: 10.1016/S1872-2067(20)63565-3

原位法制备石墨相碳/TiO2复合光催化剂及其高效降解新兴酚类污染物性能
为了克服以上缺点,进一步提高TiO2的光催化效率,本研究采用简单易行的原位共缩合结合水热处理技术,以葡萄糖为碳源,四异丙氧基钛(TTIP)为钛源,成功制备了一系列由锐钛矿相TiO2与石墨相碳组成的TiO2/C复合光催化剂,它们在水中新兴酚类污染物的降解中表现出了优异的可见光光催化活性.通过X射线衍射、热重分析、X射线光电子能谱、孔隙率分析、扫描电镜、透射电镜、紫外-可见漫反射光谱等表征手段对催化剂的组成和结构、形貌、孔隙率性质及光吸收特性进行了表征.结果显示,TiO2/C复合光催化剂具有独特的微孔/介孔结构,以及比TiO2更大的比表面积(222-263m2 g-1)和更窄的带隙能(2.50-2.77eV).
通过水中新兴酚类污染物如乙酰氨基酚(APAP)和对羟基苯甲酸甲酯(MPB)的可见光光催化降解实验研究了TiO2/C的光催化性能.结果显示,TiO2/C复合光催化剂表现出优于纯TiO2和商用P25-TiO2的可见光光催化活性.其中,性能最佳的TiO2/C-10.3(碳掺杂量为10.3%)在可见光照射下20min即可完全降解APAP,180min可降解90%以上的MPB;TiO2/C-10.3光催化降解APAP和MPB的表观速率常数分别是纯TiO2的7.6和2.8倍,是商用P25-TiO2的6.2和2.6倍.TiO2/C复合光催化剂表现出良好的稳定性,能够在完成五次光催化循环实验后仍然保持其良好的光催化活性.
通过光电化学实验、间接化学探针测试和电子自旋共振光谱分析并结合表征结果,揭示了TiO2/C可见光光催化活性提高的原因.首先,石墨相碳的掺入降低了材料的带隙能,拓宽了材料的可见光吸收范围,同时石墨相碳可作为电子阱促进光生电子从TiO2的价带转移到自身,从而有效抑制光生载流子的复合;其次,在复合催化剂中,锐钛矿相TiO2与石墨相碳密切接触有利于光生载流子的有效分离,也可起到抑制光生载流子复合的作用;最后,复合催化剂较大的比表面积和独特的微孔/介孔双孔结构为APAP和MPB降解反应提供了充足活性位点,同时入射光在孔道内多次反射又进一步提高了催化剂对光能的利用率.在TiO2/C光催化降解体系中检测到的主要活性物种有羟基自由基、光生空穴和超氧自由基,三者共同参与APAP和MPB的降解和矿化过程.通过对光催化降解中间产物的分析,分别提出了TiO2/C复合光催化剂可见光催化降解APAP和MPB的路径.
本研究为设计高效降解水中有机污染物的碳掺杂TiO2光催化材料提供了新思路.
English
In-situ route for the graphitized carbon/TiO2 composite photocatalysts with enhanced removal efficiency to emerging phenolic pollutants
-
Key words:
- Titanium dioxide
- / Carbon
- / Visible-light photocatalysis
- / Composite
- / Phenolic compound
- / Water treatment
-
-
[1] M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, ChemSusChem, 2018, 11, 3023-3047.
-
[2] P. Rokicka-Konieczna, A. Markowska-Szczupak, E. Kusiak-Nejman, A. W. Morawski, Chem. Eng. J, 2019, 372, 203-215.
-
[3] M. Baca, W. Kukułka, K. Cendrowski, E. Mijowska, R. J. Kaleńczuk, B. Zielińska, ChemSusChem, 2019, 12, 612-620.
-
[4] M. D. Hernández-Alonso, F. Fresno, S. Suárez, J. M. Coronado, Energy Environ. Sci., 2009, 2, 1231-1257.
-
[5] W. Guo, Q. Qin, L. Geng, D. Wang, Y. H. Guo, Y. X. Yang, J. Hazard. Mater., 2016, 308, 374-385.
-
[6] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev., 2016, 116, 7159-7329.
-
[7] K. S. Lakhi, D. H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J. H. Choy, A. Vinu, Chem. Soc. Rev., 2017, 46, 72-101.
-
[8] J. Q. Meng, X. Y. Wang, X. Yang, A. Hu, Y. H. Guo, Y. X. Yang, Appl. Catal. B, 2019, 251, 168-180.
-
[9] G. Liu, L. Wang, H. G. Yang, H. M. Cheng, G. Q. M. Lu, J. Mater. Chem., 2010, 20, 831-843.
-
[10] B. Liu, J. Yang, X. Zhao, J. Yu, Phys. Chem. Chem. Phys., 2017, 19, 8866-8873.
-
[11] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955.
-
[12] B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys., 2014, 16, 8751-8760.
-
[13] M. Nasrollahzadeh, S. M. Sajadi, J. Colloid Interface Sci., 2016, 465, 121-127.
-
[14] Z. Jiang, X. Liang, Y. Liu, T. Jing, Z. Wang, X. Zhang, B. Huang, Appl. Catal. B, 2017, 211, 252-257.
-
[15] Z. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian, J. Xie, Appl. Catal. B, 2015, 170, 195-205.
-
[16] Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol., 2014, 49, 649-656.
-
[17] H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. X. Ang, X. Z. Yuan, J. W. Chew, Water Res., 2018, 144, 215-225.
-
[18] R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Appl. Catal. B, 2016, 187, 47-58.
-
[19] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Chem. Chem. Phys., 2012, 14, 16745-16752.
-
[20] E. Kusiak-Nejman, A. W. Morawski, Appl. Catal. B, 2019, 253, 179-186.
-
[21] X. Y. Wang, Y. N. Sun, L. Yang, Q. K. Shang, D. Wang, T. T. Guo, Y. H. Guo, Sci. Total Environ., 2019, 656, 1010-1020.
-
[22] Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C, 2011, 115, 7355-7363.
-
[23] B. Chai, X. Liao, F. Song, H. Zhou, Dalton Trans., 2014, 43, 982-989.
-
[24] S. Liu, J. Ke, H. Sun, J. Liu, M. O. Tade, S. Wang, Appl. Catal. B, 2017, 204, 358-364.
-
[25] Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, C. Xie, ACS Catal., 2013, 3, 1477-1485.
-
[26] A. Yadav, M. Yadav, S. Gupta, Y. Popat, A. Gangan, B. Chakraborty, L. M. Ramaniah, R. Fernandes, A. Miotello, M. R. Press, N. Patel, Carbon, 2019, 143, 51-62.
-
[27] Y. Huang, D. L. Huang, L. Qin, G. M. Zeng, C. Lai, M. Cheng, S. J. Ye, B. Song, X. Y. Ren, X. Y. Guo, Appl. Catal. B, 2019, 239, 408-424.
-
[28] Q. Bu, B. Wang J. Huang, S. Deng, G. Yu, J. Hazard. Mater., 2013, 262, 189-211.
-
[29] W. L. Chen, J. Y. Cheng, X. Q. Lin, Sci. Total Environ., 2018, 637, 253-263.
-
[30] A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature, 2016, 529, 190.
-
[31] F. Zhang, Q. Wen, M. Hong, Z. Zhuang, Y. Yu, Chem. Eng. J., 2017, 307, 593-603.
-
[32] G. Zeng, Y. He, Y. Zhan, L. Zhang, Y. Pan, C. Zhang, Z. Yu, J. Hazard. Mater., 2016, 317, 60-72.
-
[33] G. He, J. Zhang, Y. Hu, Z. Bai, C. Wei, Appl. Catal. B, 2019, 250, 301-312.
-
[34] W. H. Abdelraheem, M. K. Patil, M. N. Nadagouda, D. D. Dionysiou, Appl. Catal. B, 2019, 241, 598-611.
-
[35] H. Tong, Y. Zhou, G. Chang, P. Li, R. Zhu, Y. He, Appl. Surf. Sci., 2018, 444, 267-275.
-
[36] Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Appl. Catal. B, 2019, 243, 711-720.
-
[37] Y. Zhou, C. Chen, N. Wang, Y. Li, H. Ding, J. Phys. Chem. C, 2016, 120, 6116-6124.
-
[38] Á. Tolosana-Moranchel, A. Manassero, M. L. Satuf, O. M. Alfano, J. A. Casas, A. Bahamonde, Appl. Catal. B, 2019, 246, 1-11.
-
[39] W. Wang, D. Xu, B. Cheng, J. Yu, C. Jiang, J. Mater. Chem. A, 2017, 5, 5020-5029.
-
[40] M. Nawaz, W. Miran, J. Jang, D. S. Lee, Appl. Catal. B, 2017, 203, 85-95.
-
[41] H. Sohn, D. Kim, J. Lee, S. Yoon, RSC Adv., 2016, 6, 39484-39491.
-
[42] Z. Yao, Y. Meng, Y. Zhao, G. Liu, Q. Xia, J. Wang, Z. Jiang, Electrochim. Acta, 2017, 254, 320-327.
-
[43] B. Li, Z. Zhao, F. Gao, X. Wang, J. Qiu, Appl. Catal. B, 2014, 147, 958-964.
-
[44] V. Etacheri, G. Michlits, M. K. Seery, S. J. Hinder, S. C. Pillai, ACS Appl. Mater. Interfaces, 2013, 5, 1663-1672.
-
[45] J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, S. Cao, Appl. Catal. B, 2017, 209, 311-319.
-
[46] J. Zhao, L. Zhang, X. Y. Xie, X. Li, Y. Ma, Q. Liu, X. Sun, J. Mater. Chem. A, 2018, 6, 24031-24035.
-
[47] X. Ding, Y. Li, C. Li, W. Wang, L. Wang, L. Feng, D. Han, J. Mater. Sci., 2019, 54, 9385-9396.
-
[48] H. Wei, E. F. Rodriguez, A. S. Best, A. F. Hollenkamp, D. Chen, R. A. Caruso, ACS Appl. Mater. Interfaces, 2019, 11, 13194-13204.
-
[49] M. A. Mahadadalkar, S. W. Gosavi, B. B. Kale, J. Mater. Chem. A, 2018, 6, 16064-16073.
-
[50] Z. Ai, Y. Shao, B. Chang, B. Huang, Y. Wu, X. Hao, Appl. Catal. B, 2019, 242, 202-208.
-
[51] S. S. Yi, J. M. Yan, B. R. Wulan, S. J. Li, K. H. Liu, Q. Jiang, Appl. Catal. B, 2017, 200, 477-483.
-
[52] G. Ai, H. Li, S. Liu, R. Mo, J. Zhong, Adv. Funct. Mater., 2015, 25, 5706-5713.
-
[53] D. Vidyasagar, N. Manwar, A. Gupta, S. G. Ghugal, S. S. Umare, R. Boukherroub, Catal. Sci. Technol., 2019, 9, 822-832.
-
[54] S. Samanta, S. Khilari, D. Pradhan, R. Srivastava, ACS Sustain. Chem. Eng., 2017, 5, 2562-2577.
-
[55] G. Sun, S. Mao, D. Ma, Y. Zou, Y. Lv, Z. Li, J. W. Shi, J. Mater. Chem. A, 2019, 7, 15278-15287.
-
[56] J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Chin. J. Catal., 2019, 40, 380-389.
-
[57] Y. Zhang, H. Hu, M. Chang, H. Wei, D. Chen, M. Zhang, X. Li, J. Mater. Sci., 2018, 53, 2102-2114.
-
[58] J. Cai, J. Huang, Y. Lai, J. Mater. Chem. A, 2017, 5, 16412-16421.
-
[59] X. Y. Wang, J. Q. Meng, X. Yang, A. Hu, Y. X. Yang, Y. H. Guo, ACS Appl. Mater. Interfaces, 2019, 11, 588-602.
-
[60] Y. C. Pu, H. Y. Chou, W. S. Kuo, K. H. Wei, Y. J. Hsu, Appl. Catal. B, 2017, 204, 21-32.
-
[61] J. Jiang, H. Wang, X. Chen, S. Li, T. Xie, D. Wang, Y. Lin, J. Colloid Interface Sci., 2017, 494, 130-138.
-
[62] M. Pan, J. Ding, L. Duan, G. Gao, Chemosphere, 2017, 167, 353-359.
-
[63] W. Zhang, Y. Gao, Y. Qin, M. Wang, J. Wu, G. Li, T. An, Environ. Pollut., 2019, 247, 362-370.
-
-

计量
- PDF下载量: 2
- 文章访问数: 368
- HTML全文浏览量: 49