Citation: Xianmei Xiang, Lingjun Chou, Xinheng Li. Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability[J]. Chinese Journal of Catalysis, 2018, 39(3): 407-412. doi: 10.1016/S1872-2067(17)62970-X
				
			
			不对称沉积合成PdS-CdSe@CdS-Au一维纳米异质结构及其光解水制氢性能
本文报道了一种高选择性沉积助催化剂的新方法,制备了PdS-CdSe@CdS-Au一维纳米异质结构.首先用高温分解法和种子法制备了核壳结构的CdSe@CdS纳米棒,预先沉积纳米金在纳米棒的一端,然后PdS通过阳离子交换法高度选择性地沉积到纳米棒的另一端,形成火柴棒纳米结构.HRTEM结果显示Au和Pd分别高选择性地沉积在纳米棒顶的两端,助催化剂和纳米棒之间有一个清晰的界面,非外延生长.紫外-可见吸收光谱显示,Au和PdS与CdSe@CdS纳米棒之间有很强的电子耦合效应,相应的荧光光谱也显示,顶端的助催化剂使CdSe@CdS发生强的荧光淬灭效应.将PdS-CdSe@CdS-Au一维纳米异质结构用于光催化分解水制氢,发现5h内产氢达到1100μmol,是相应Au-CdSe@CdS催化剂产氢速率的2个数量级.同时考察了它的光催化稳定性,发现双助催化剂形成的火柴棒型纳米结构稳定性大大提高,经过4h光照仍能保持很好的形貌.
通过对照实验考察了PdS-CdSe@CdS-Au一维纳米异质结构的形成机理.一端金纳米颗粒的形成主要是由于顶端曲率的Gibbs-Thompson效应和纳米棒顶端组成分布不对称的缘故,而PdS的顶端高选择性沉积是在阳离子交换过程中两端化学性质发生变化等原因造成的.最后提出了光催化性能提高机理,主要是由于电子和空穴在一维纳米棒上快速向相反方向分离和传输,既大大提高了光催化制氢效率,也大大提高了光催化稳定性.
English
Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability
- 
								Key words:
								
 - Photocatalysis
 - / Charge separation
 - / Cocatalyst
 - / Heterostructure
 - / Water splitting
 
- 
							
- 
			
[1] Y. Y. Zhu, Y. J. Wang, Q. Ling, Y. F. Zhu, Appl. Catal. B, 2017, 200, 222-229.
 - 
			
[2] S. S. Chen, Y. Qi, Q. Ding, Z. Li, J. Y. Cui, F. X. Zhang, C. Li, J. Catal., 2016, 339, 77-83.
 - 
			
[3] H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S. J. Li, Z. H. Wang, J. S. Liu, X. C. Wang, Chem. Soc. Rev., 2014, 43, 5234-5244.
 - 
			
[4] H. J. Yan, J. H. Yang, G. J. Ma, G. P. Wu, X. Zong, Z. B. Lei, J. Shi, C. Li, J. Catal., 2009, 266, 165-168.
 - 
			
[5] J. H. Yang, H. J. Yan, X. L. Wang, F. Y. Wen, Z. J. Wang, D. Y. Fan, J. J. Shi, C. Li, J. Catal., 2009, 290, 151-157.
 - 
			
[6] Q. Z. Wang, J. J. Li, N. An, Y. Bai, X. L. Lu, J. Li, H. C. Ma, R. F. Wang, F. P. Wang, Z. Q. Lei, W. F. Shangguan, Int. J. Hydrogen Energy, 2013, 38, 10761-10767.
 - 
			
[7] M. Schreier, J. S. Luo, P. Gao, T. Moehl, M. T. Mayer, M. Grätzel, J. Am. Chem. Soc., 2016, 138, 1938-1946.
 - 
			
[8] Y. Q. Qu, X. F. Duan, Chem. Soc. Rev., 2013, 42, 2568-2580.
 - 
			
[9] C. C. Chen, J. J. Lin, Adv. Mater., 2001, 13, 136-139.
 - 
			
[10] C. Z. Wang, L. Z. Fan, Z. H. Wang, H. B. Liu, Y. L. Li, S. H. Yang, Y. L. Li, Adv. Mater., 2007, 19, 3677-3681.
 - 
			
[11] N. Z. Bao, L. M. Shen, T. Takata, D. L. Lu, K. Domen, Chem. Lett., 2006, 35, 318-319.
 - 
			
[12] A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278.
 - 
			
[13] Y. Hu, X. H. Gao, L. Yu, Y. R. Wang, J. Q. Ning, S. J. Xu, X. W. Lou, Angew. Chem. Int. Ed., 2013, 52, 5636-5639.
 - 
			
[14] S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak, L. Manna, Nano Lett., 2005, 5, 445-449.
 - 
			
[15] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 2002, 295, 2425-2427.
 - 
			
[16] X. H. Li, J, Lian, M. Lin, Y. T. Chan, J. Am. Chem. Soc., 2011, 133, 672-675.
 - 
			
[17] X. M. Xiang, L. J. Chou, X. H. Li, Phys. Chem. Chem. Phys., 2013, 15, 19545-19549.
 - 
			
[18] S. Chakrabortty, J.A. Yang, Y. M. Tan, N. Mishra, Y. T. Chan, Angew. Chem. Int. Ed., 2010, 49, 2888-2892.
 - 
			
[19] Y. Shemesh, J. E. MacDonald, G. Menagen, U. Banin, Angew. Chem. Int. Ed., 2011, 50, 1185-1189.
 
 - 
			
 - 
							
							
							
							
							
						 
						扫一扫看文章
					计量
- PDF下载量: 3
 - 文章访问数: 1559
 - HTML全文浏览量: 119
 

下载: