生物分子辅助低成本制备Zn0.9Cd0.1S固溶体及其高效可见光光催化制氢

赵红梅 何云飞 刘美英 王冉 李云贺 由万胜

引用本文: 赵红梅,  何云飞,  刘美英,  王冉,  李云贺,  由万胜. 生物分子辅助低成本制备Zn0.9Cd0.1S固溶体及其高效可见光光催化制氢[J]. 催化学报, 2018, 39(3): 495-501. doi: 10.1016/S1872-2067(17)62946-2 shu
Citation:  Hongmei Zhao,  Yunfei He,  Meiying Liu,  Ran Wang,  Yunhe Li,  Wansheng You. Biomolecule-assisted, cost-effective synthesis of a Zn0.9Cd0.1S solid solution for efficient photocatalytic hydrogen production under visible light[J]. Chinese Journal of Catalysis, 2018, 39(3): 495-501. doi: 10.1016/S1872-2067(17)62946-2 shu

生物分子辅助低成本制备Zn0.9Cd0.1S固溶体及其高效可见光光催化制氢

  • 基金项目:

    国家自然科学基金(21573100,21573099);中国科学院大连化学物理研究所催化基础国家重点实验室开放基金(N-14-04).

摘要: 如何提高光催化制氢量子产率是太阳能分解水制氢研究的重点和焦点.Zn-Cd-S固溶体因具有窄的带隙宽度及合适的导带和价带位置而显示了广阔的应用前景.然而,两方面的问题限制了其规模化应用:(1)往往需负载Pt,Pd,Ru和Rh等贵金属助催化剂才能获得可观的光催化性能;(2)传统合成技术通常采用硫代乙酰胺、硫脲及硫化钠等昂贵且有毒的化学试剂作硫源.与上述硫源相比,生物小分子L-胱氨酸分子中含有-COOH、-NH2及-SH基团,这些基团易于与金属阳离子配位,因此能够有效调控硫源释放S2-的速度,硫化物的形貌、尺寸以及取向能够灵活地得到调控.另外,在强碱或强酸性介质中,L-胱氨酸具有良好的水溶性,因此材料的合成可选择在水介质中,这对光催化过程是非常关键的,有利于改善材料在光催化反应过程中的稳定性.基于此,本文以经济环保的生物小分子作硫源,制备了高效、稳定且有可见光响应的纳米硫化物光催化体系,旨在发展环境友好、条件温和、成本低廉、操作简单和易于工业化生产的绿色制备技术,.
以L-胱氨酸为硫源和结构导向剂,采用水热合成技术在温和条件下制备了立方相结构的Zn-Cd-S固溶体光催化剂,采用XRD,TEM,HRTEM,XPS,UV-vis及N2吸附等手段表征了其结构和形貌.结果表明,随Zn含量增加,其带隙在2.11-3.19eV间连续可调.在可见光(λ>420nm)照射、无助催化剂和Na2S/Na2SO3水溶液为牺牲剂的条件下研究了其光催化制氢的性能.其中Zn0.9Cd0.1S具有最佳的光催化活性,其产氢速率约为4.4mmol h -1g -1(无助催化剂,远高于CdS),且显示优良的稳定性及抗光腐蚀能力.通过经验公式计算得出了其能带结构示意图,结果表明,ZnxCd1-xS固溶体的导带和价带的位置随着Zn含量的增加而向更负的导带和更正的价带移动.固溶体导带电位更负促进更有效的氢产生,电位价带更正导致电荷更容易发生转移.Zn0.9Cd0.1S高的光催化活性可能归因于中等的导带边缘和最合适的带隙.最后利用光电流及交流阻抗阐明了其光生电子-空穴对的分离及迁移机理.与CdS相比,Zn-Cd-S固溶体的形成促进了光生载流子在界面间的传输,抑制了其快速复合,从而大幅度改善了光催化活性及稳定性.该硫化物纳米晶的绿色制备技术期望可推广到其它硫化物可见光光催化体系.

English

    1. [1] A. Fujishima, Honda, Nature, 1972, 238, 37-38.

    2. [2] T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev., 2014, 43, 7520-7535.

    3. [3] S. U. M. Khan, M. Alshahry, W. B. Ingler, Science, 2002, 297, 2243-2245.

    4. [4] P. Ritterskamp, A. Kuklya, M. A. Wüstkamp, K. Kerpen, C. Weidenthaler, M. Demuth, Angew. Chem. Int. Ed., 2007, 46, 7770-7774.

    5. [5] T. Ohmori, H. Mametsuka, E. Suzuki, Int. J. Hydrogen Energy, 2000, 25, 953-955.

    6. [6] J. R. Ran, G. P. Gao, F. T. Li, T. Y. Ma, A. J. Du, S. Z. Qiao, Nat. Commun., 2017, 8, 13907-13917.

    7. [7] H. J. Yan, J. H. Yang, G. J. Ma, G. P. Wu, X. Zong, Z. B. Lei, J. Y. Shi, C. Li, J. Catal., 2009, 266, 165-168.

    8. [8] M. Y. Liu, W. S. You, Z. B. Lei, G. H. Zhou, J. J.Yang, G. P. Wu, G. J. Ma, G. Y. Luan, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun., 2004, 2192-2193.

    9. [9] H. Du, Y. N. Liu, C. C. Shen, A. W. Xu, Chin. J. Catal., 2017, 38, 1295-1306.

    10. [10] D. C. Jiang, Z. J. Sun, H. X. Jia, D. P. Lu, P. W. Du, J. Mater. Chem. A, 2016, 4, 675-683.

    11. [11] K. Manjodh, C. M. Nagaraja, ACS Sustainable Chem. Eng., 2017, 5, 4293-4303.

    12. [12] K. IKeua, S. Shiiba, M. Machida, Chem. Mater., 2010, 22, 743-745.

    13. [13] W. Chen, G. R. Duan, T. Y. Liu, Z. M. Jia, X. H. Liu, S. M. Chen, X. J. Yang, J. Mater. Sci., 2015, 50, 3920-3928.

    14. [14] L. H. Zhu, Y. Wang, D. Z. Zhang, C. Li, D. M. Sun, S. P. Wen, Y. Chen, S. P. Ruan, ACS Appl. Mater. Interfaces, 2015, 7, 20793-20800.

    15. [15] Y. F. Chai, G. F. Huang, L. L. Wang, W. Q. Huang, J. Zhou, Mater. Lett., 2015, 142, 133-136.

    16. [16] Z. W. Mei, B. K. Zhang, J. X. Zheng, S. Yuan, Z. Q. Zhuo, X. G. Meng, Z. H. Chen, K. Amine, W. L. Yang, L. W. Wang, W. Wang, S. F. Wang, Q. H. Gong, J. Li, F. S. Liu, F. Pan, Nano Energy, 2016, 26, 405-416.

    17. [17] Y. Y. Hsu, N. T. Suen, C. C. Chang, S. F. Hung, C. L. Chen, T. S. Chan, C. L. Dong, C. C. Chan, S. Y. Chen, H. M. Chen, ACS Appl. Mater Interfaces, 2015, 7, 22558-22569.

    18. [18] I. Levchuk, C. Würth, F. Krause, A. Osvet, M. Batentschuk, U. Resch-Genger, C. Kolbeck, H. P. Steinrueck, W. H. Peukert, C. J. Brabec, Energy Environ. Sci., 2016, 9, 1083-1094.

    19. [19] M. C. Liu, D. W. Jing, Z. H. Zhou, L. J. Guo, Nat. Commun., 2013, 4, 2278-2285.

    20. [20] S. N. Garaje, S. K. Apte, S. D. Naik, J. D. Ambekar, R. S. Sonawane, M. V. Kulkarni, A. Vinu, B. B. Kale, Environ. Sci. Technol., 2013, 47, 6664-6672.

    21. [21] A. P. Ma, Z. H. Tang, S. L. Shen, L. J. Zhi, J. H. Yang, RSC Adv., 2015, 5, 27829-27836.

    22. [22] Z. H. Han, G. Chen, C. M. Li, Y. G. Yu, Y. S. Zhou, J. Mater. Chem. A, 2015, 3, 1696-1702.

    23. [23] J. U. Kim, Y. K. Kim, H. Yang, J. Colloid Interf. Sci., 2010, 341, 59-63.

    24. [24] A. K. Nayak, S. Lee, Y. Sohnb, D. Pradhan, CrystEngComm, 2014, 16, 8064-8072.

    25. [25] E. Furia, G. Sindona, J. Chem. Eng. Data, 2010, 55, 2985-2989.

    26. [26] M. D. Đurović, Ž. D. Bugarčić, F. W. Heinemann, R. Van. Eldik, Dalton Trans., 2014, 43, 3911-3921.

    27. [27] A. Frank, A. S. Wochnik, T. Bein, C. Scheu, RSC Adv., 2017, 7, 20219-20230.

    28. [28] M. Y. Liu, H. Chen, H. M. Zhao, Y. F. He, Y. H. Li, R. Wang, L. C. Zhang, W. S. You, Dalton Trans., 2017, 46, 9407-9414.

    29. [29] L. Vegard, H. Schjelderup, Phys. Z., 1917, 18, 93-96.

    30. [30] H. S. Zhou, H. Sasahara, I. Honma, H. Komiyama, J. W. Haus, Chem. Mater., 1994, 6, 1534-1541.

    31. [31] J. S. Steckel, J. P. Zimmer, S. CoeSullivan, N. E. Stott, V. Bulovi, M. G. Bawendi, Angew. Chem. Int. Ed., 2004, 43, 2154-2158.

    32. [32] D. H. Wang, L. Wang, A. W. Xu, Nanoscale, 2012, 4, 2046-2053.

    33. [33] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B, 2005, 109, 7323-7329.

    34. [34] W. Lu, W. Z. Wang, M. Shang, W. Z. Yin, S. M. Sun, L. Zhang, Int. J. Hydrogen Energy, 2010, 35, 19-25.

    35. [35] M. Marychurch, G. C. Morris, Surf. Sci., 1985, 154, 251-254.

    36. [36] H. Du, K. Liang, C. Z. Yuan, H. L. Guo, X. Zhou, Y. F. Jiang, A. W. Xu, ACS Appl. Mater. Interfaces, 2017, 4, 24550-24558.

    37. [37] J. F. Reber, K. Meier, J. Phys. Chem., 1984, 88, 5903-5913.

    38. [38] M. Y. Liu, Y. F. He, H. Chen, H. M. Zhao, W. S. You, J. Y. Shi, L. C. Zhang, J. S. Li, Int. J. Hydrogen Energy, 2017, 42, 20970-20978.

    39. [39] L. W. Yin, Y. Bando, J. H. Zhan, M. S. Li, D. Golberg, Adv Mater., 2005, 17, 1972-1977.

    40. [40] Y. C. Zhu, Y. Bando, D. F Xue, D. Golberg. J. Am. Chem. Soc., 2003, 125, 16196-16177.

    41. [41] Q. Li, H. Meng, P. Zhou, Y. Q. Zheng, J. Wang, J. G. Yu, J. R. Gong, ACS Catal., 2013, 3, 882-889

    42. [42] X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176-7177.

    43. [43] J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró, J. Am. Chem. Soc., 2004, 126, 13550-13559.

    44. [44] Z. H. Han, G. Chen, C. M. Li, Y. G. Yu, Y. S. Zhou, J. Mater. Chem. A, 2015, 3, 1696-1702.

    45. [45] S. Chakrabarty, K. Chakraborty, A. Laha, T. Pal, S. Ghosh, J. Phys. Chem. C, 2014, 118, 28283-28290.

    46. [46] A. Hagfeldt, H. Lindstrçm, S. Sçdergren, S. E. Lindquist, J. Electroanal. Chem., 1995, 381, 39-46.

    47. [47] A. Jana, C. Bhattacharya, J. Datta, Electrochim. Acta, 2010, 55, 6553-6562.

    48. [48] J. Zhang, J. G. Yu, M. Jaroniec, J. R. Gong, Nano Lett., 2012, 12, 4584-4589.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  1744
  • HTML全文浏览量:  47
文章相关
  • 收稿日期:  2017-10-22
  • 修回日期:  2017-11-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章