面式、经式异构体的钴-氨基硫脲配合物作为催化剂应用于可见光催化分解水产氢

赵阳 王永恒 吴荞宇 林金清 吴升晖 侯文娟 巫瑞波 骆耿耿

引用本文: 赵阳,  王永恒,  吴荞宇,  林金清,  吴升晖,  侯文娟,  巫瑞波,  骆耿耿. 面式、经式异构体的钴-氨基硫脲配合物作为催化剂应用于可见光催化分解水产氢[J]. 催化学报, 2018, 39(3): 517-526. doi: 10.1016/S1872-2067(17)62940-1 shu
Citation:  Yang Zhao,  Yongheng Wang,  Qiaoyu Wu,  Jinqing Lin,  Shenghui Wu,  Wenjuan Hou,  Ruibo Wu,  Genggeng Luo. New tricks for an old dog:Visible light-driven hydrogen production from water catalyzed by fac-and mer-geometrical isomers of tris(thiosemicarbazide) cobalt(III)[J]. Chinese Journal of Catalysis, 2018, 39(3): 517-526. doi: 10.1016/S1872-2067(17)62940-1 shu

面式、经式异构体的钴-氨基硫脲配合物作为催化剂应用于可见光催化分解水产氢

  • 基金项目:

    国家自然科学基金(21641011,21773313);福建省自然科学基金(2015J01053,2016J01060);福建省高校新世纪优秀人才项目;华侨大学研究生科研创新能力培育计划资助项目.

摘要: 近年来,作为替代贵金属铂催化剂的铁、钴和镍等非贵金属配合物分子催化剂,由于合成容易、结构调控方便以及具有良好的催化活性等特点,成为均相光催化分解水产氢领域的研究热点.其中,钴配合物具有结构简单、成本低廉、容易合成以及具有理想的氧化还原电位等优势,更是光催化分解水产氢领域的优先研究对象.由于稳定性及溶解度的问题,在已报道的研究工作中,大部分钴配合物测试环境均在有机溶剂或有机溶剂/水混合溶剂中.因此,寻找水溶性良好的钴配合物催化剂成为了目前的均相光催化分解水产氢领域的研究焦点之一.在此之前,氨基硫脲配合物已经广泛用于生物和制药等研究,例如:抗氧化、抗菌以及抗病毒等领域.而在人工光合产氢领域采用氨基硫脲配合物作为催化剂的例子则比较罕见.在该项研究中,我们报道了一对水溶性较好(>40mg mL-1,20℃)且具有几何异构特征的八面体钴-氨基硫脲配合物作为光、电催化质子还原产氢的分子催化剂.这对几何异构体分别为:面式异构体[Co(Htsc)3]Cl3·3H2O(C1,Htsc=氨基硫脲配体)和经式异构体[Co(Htsc)3]Cl3·4H2O(C2).我们将几何异构体C1C2作为水还原分子催化剂,与有机光敏剂荧光素一起构筑了不含贵金属成分的光催化分解水产氢体系.在三乙胺作为牺牲剂及纯水环境中,体系展现出了良好的光催化制氢性能.可见光照15 h后,体系产氢相对于催化剂的TON接近900.对比实验结果表明,具有这对几何异构的C1C2具有相似的光催化产氢性能,暗示其催化机理的相似性.汞中毒实验结果表明,光催化分解水产氢过程中并没有钴纳米胶体形成,可以确定这是一个均相光催化分解水产氢体系.在纯水环境下,我们将C1C2与传统的钴配合物(钴肟配合物:[Co(dmgH)2pyCl](dmgH=丁二酮肟,py=吡啶);联吡啶钴配合物:[Co(bpy)3Cl2](bpy=2,2'-联吡啶))的催化活性进行对比.结果表明,催化剂C1C2展现出了较强的光催化产氢活性.此外,电催化实验表明,在乙腈中且乙酸作为质子源的条件下,C1C2具有相同的电催化活性,过电位接近640毫伏,催化转化频率(TOF)为每秒210.同时,在pH=7的磷酸盐缓冲溶液中,C1C2也同样表现出对水分子的电催化产氢性能,过电势为560毫伏.
这是当前第一例具有几何异构体的分子催化剂对光、电催化产氢体系影响的工作.

English

    1. [1] V. Artero, M. Chavarot-Kelidou, M. Fontecave, Angew. Chem. Int. Ed., 2011, 50, 7238-7266.

    2. [2] G. G. Luo, K. Fang, J. H. Wu, J. Mo, Chem. Commun., 2015, 51, 12361-12364.

    3. [3] G. G. Luo, K. Fang, J. H. Wu, J. C. Dai, Q. H. Zhao, Phys. Chem. Chem. Phys., 2014, 16, 23884-23894.

    4. [4] A. Xie, X. L. Liu, Y. C. Xiang, G. G. Luo, J. Alloys Compd., 2017, 717, 226-231.

    5. [5] N. Kaeffer, M. Chararot-Kerlidou, V. Artero, Acc. Chem. Res., 2015, 48, 1286-1295.

    6. [6] Y. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long, C. J. Chang, J. Am. Chem. Soc., 2011, 133, 9212-9215.

    7. [7] W. M. Singh, T. Baine, S. Kudo, S. L. Tian, X. A. N. Ma, H. Y. Zhou, N. J. DeYonker, T. C. Pham, J. C. Bollinger, D. L. Baker, B. Yan, C. E. Webster, X. Zhao, Angew. Chem. Int. Ed., 2012, 51, 5941-5944.

    8. [8] R. S. Khnayzer, V. S. Thoi, M. Nippe, A. E. King, J. W. Jurss, K. A. El Roz, J. R. Long, C. J. Chang, F. N. Castellano, Energy Environ Sci., 2014, 7, 1477-1488.

    9. [9] A. K. Singh, S. Sharma, Coord. Chem. Rev., 2000, 209, 49-98.

    10. [10] M. M. Aly, Y. A. Mohamed, K. A. M. El-Bayouki, W. M. Basyouni, S. Y. Abbas, Eur. J. Med. Chem., 2010, 45, 3365-3373.

    11. [11] D. Banerjee, P. Yogeeswari, P. Bhat, A. Thomas, M. Srividya, D. Sriram, Eur. J. Med. Chem., 2011, 46, 106-121.

    12. [12] J. Haribabu, K. Jeyalakshmi, Y. Arun, N. S. P. Bhuvanesh, P. T. Perumal, R. Karvembu, J. Biol. Inorg Chem., 2017, 22, 461-480.

    13. [13] J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents, 4th ed., New York:Wiley-Interscience, 1986.

    14. [14] K. K. W. Sun, R. A. Haines, Can. J. Chem., 1970, 48, 2327-2333.

    15. [15] G. N. Schrauzer, Inorg. Synth., 1968, 11, 61-70.

    16. [16] J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson, S. Bernhard, J. Am. Chem. Soc., 2005, 127, 7502-7510.

    17. [17] G. G. Luo, Y. H. Wang, J. H. Wang, J. H. Wu, R. B. Wu, Chem. Commun., 2017, 53, 7007-7010.

    18. [18] G. G. Luo, X. C. Li, J. H. Wang, ChemistrySelect, 2016, 1, 425-429.

    19. [19] R. C. Clark, J. S. Reid, Acta Crystallogr. A, 1995, A51, 887-897.

    20. [20] G. M. Sheldrick, SHELXS-97:Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

    21. [21] G. M. Sheldrick, SHELXL-97:Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

    22. [22] A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. Gaussian09 Rev. B.01, Gaussian, Inc., Wallingford CT, 2010.

    23. [23] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

    24. [24] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.

    25. [25] A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.

    26. [26] E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041.

    27. [27] L. Goerigk, S. Grimme, J. Chem. Phys., 2010, 132, 184103/1-184103/9.

    28. [28] A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 2nd edn., 1984.

    29. [29] X. Jing, C. He, Y. Yang, C. Y. Duan, J. Am. Chem. Soc., 2015, 137, 3967-3974.

    30. [30] C. Baffert, V. Artero, M. Fontecave, Inorg. Chem., 2007, 46, 1817-1824.

    31. [31] B. G. Cox, Org. Process Res. Dev., 2015, 19, 1800-1808.

    32. [32] A. M. Appel, M. L. Helm, ACS Catal., 2014, 4, 630-633

    33. [33] Z. J. Han, W. R. McNamara, M. S. Eum, P. L. Holland, R. Eisenberg, Angew. Chem. Int. Ed., 2012, 51, 1667-1670.

    34. [34] P. Du, R. Eisenberg, Energy Environ. Sci., 2012, 5, 6012-6021.

    35. [35] T. M. McCormick, Z. Han, D. J. Weinberg, W. W. Brennessel, P. L. Holland, R. Eisenberg, Inorg. Chem., 2011, 50, 10660-10666.

    36. [36] J. F. Dong, M. Wang, P. Zhang, S. Q. Yang, J. Y. Liu, X. Q. Li, L. C. Sun, J. Phys. Chem. C, 2011, 115, 15089-15096.

    37. [37] G. G. Luo, H. Lu, X. L. Zhang, J. C. Dai, J. H. Wu and J. J. Wu, Phys. Chem. Chem. Phys., 2015, 17, 9716-9729.

    38. [38] M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science, 2011, 333, 863-866.

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  1975
  • HTML全文浏览量:  316
文章相关
  • 收稿日期:  2017-09-28
  • 修回日期:  2017-10-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章