以Ca-M-Al(M=Mg,La,Ce,Y)层状双氢氧化物为前驱体的固体碱用于酯交换合成碳酸二甲酯

廖云辉 李枫 代鑫 赵宁 肖褔魁

引用本文: 廖云辉,  李枫,  代鑫,  赵宁,  肖褔魁. 以Ca-M-Al(M=Mg,La,Ce,Y)层状双氢氧化物为前驱体的固体碱用于酯交换合成碳酸二甲酯[J]. 催化学报, 2017, 38(11): 1860-1869. doi: 10.1016/S1872-2067(17)62898-5 shu
Citation:  Yunhui Liao,  Feng Li,  Xin Dai,  Ning Zhao,  Fukui Xiao. Solid base catalysts derived from Ca-M-Al (M=Mg, La, Ce, Y) layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate[J]. Chinese Journal of Catalysis, 2017, 38(11): 1860-1869. doi: 10.1016/S1872-2067(17)62898-5 shu

以Ca-M-Al(M=Mg,La,Ce,Y)层状双氢氧化物为前驱体的固体碱用于酯交换合成碳酸二甲酯

  • 基金项目:

    山西省自然科学基金(201601D102006);山西省煤基重点科技攻关项目(MD2014-09,MD2014-10).

摘要: 碳酸二甲酯(DMC)是一种环境友好型绿色化学品,可作为甲基化和羰基化试剂用于取代传统剧毒的硫酸二甲酯和光气.另外,DMC具有良好的溶解性能,可用于高级溶剂;DMC分子中具有高的氧含量,可用作汽油添加剂来提高汽油的辛烷值;DMC还可用作聚碳酸酯的原料.随着人们环保意识的不断增强,DMC的生产和应用呈现出巨大的吸引力和市场潜力.DMC合成方法主要有光气法、甲醇氧化羰化法、尿素醇解法及酯交换法等.酯交换法具有反应条件温和、产率高等优点,是目前工业制备DMC的主要方法.研究发现,相对于酸性催化剂,碱性催化剂更有利于酯交换法合成DMC.金属氧化物催化剂具有活性高、热稳定性高及可连续重复回收利用等优点,因而引起了广泛关注.CaO对于酯交换合成DMC反应具有良好的催化活性,但其稳定性差.因此,通常采用复合金属氧化物来促进CaO的分散,并增加金属间相互作用以防止CaO流失.研究发现,经煅烧后的Mg-Al,Ca-Al和Ca-Mg-Al催化剂对于酯交换反应具有高的活性和稳定性.此外,通过碱性稀土金属(La,Ce和Y)的引入可以修饰催化剂上的碱性位点,从而调变催化剂的碱性.
本文合成了一系列以Ca-M-Al (M=Mg,La,Ce,Y)层状双氢氧化物为前驱体的固体碱催化剂,将其用于甲醇与碳酸丙烯酯酯交换合成DMC.通过X射线衍射、热重分析、红外光谱、X射线光电子能谱、电感耦合等离子体、CO2程序升温脱附和Hammett指示剂对催化剂进行了表征.研究发现,各催化剂的活性高低依次为:Ca-Y-Al < Ca-Al < Ca-Ce-Al < Ca-La-Al < Ca-Mg-Al,这与催化剂表面总碱量相一致.通过Mg和La的引入,催化剂表面出现了超强碱性位.其中,Ca-Mg-Al催化剂表面具有最高的(Ca+Mg):Al原子比,从而导致催化剂表面产生更多的不饱和O2-离子,因而具有最高的碱性位数量.此外,通过Mg,La,Ce和Y的引入,催化剂的重复使用性能得到了提高.特别是Ca-Mg-Al催化剂,在10次循环后仍保持着高的活性,且其结构没有发生显著变化,表明其稳定性较高,因此该催化剂在非均相催化中具有高的应用价值.

English

    1. [1] Y. Ono, Appl. Catal. A, 1997, 155, 133-166.

    2. [2] D. F. Wang, X. L. Zhang, J. Ma, H. W. Yu, J. Z. Shen, W. Wei, Catal. Sci. Technol., 2016, 6, 1530-1545.

    3. [3] D. D. Wu, Z. Chen, Ind. Eng. Chem. Res., 2009, 48, 6287-6290.

    4. [4] S. Y. Huang, B. Yan, S. P. Wang, X. B. Ma, Chem. Soc. Rev., 2015, 44, 3079-3116.

    5. [5] G. Merza, B. László, A. Oszkó, G. Pótári, E. Varga, A. Erdőhelyi, Catal. Lett., 2014, 145, 881-892.

    6. [6] R. G. Zhang, J. R. Li, B. J. Wang, RSC Adv., 2013, 3, 12287-12298.

    7. [7] J. Q. Wang, J. Sun, W. G. Cheng, C. Y. Shi, K. Dong, X. P. Zhang, S. J. Zhang, Catal. Sci. Technol., 2012, 2, 600-605.

    8. [8] A. Pyrlik, W. F. Hoelderich, K. Müller, W. Arlt, J. Strautmann, D. Kruse, Appl. Catal. B, 2012, 125, 486-491.

    9. [9] H. Wang, M. H. Wang, S. G. Liu, N. Zhao, W. Wei, Y. H. Sun, J. Mol. Catal. A, 2006, 258, 308-312.

    10. [10] P. Kumar, V. C. Srivastava, I. M. Mishra, Energy Fuels, 2015, 29, 2664-2675.

    11. [11] C. C. Wu, X. Q. Zhao, Y. J. Wang, Catal. Commun., 2005, 6, 694-698.

    12. [12] X. M. Wu, M. Kang, N. Zhao, W. Wei, Y. H. Sun, Catal. Commun., 2014, 46, 46-50.

    13. [13] C. Zhang, B. Lu, X. G. Wang, J. X. Zhao, Q. H. Cai, Catal. Sci. Technol., 2012, 2, 305-309.

    14. [14] J. Bian, M. Xiao, S. J. Wang, X. J. Wang, Y. X. Lu, Y. Z. Meng, Chem. Eng. J., 2009, 147, 287-296.

    15. [15] A. Bansode, A. Urakawa, ACS Catal., 2014, 4, 3877-3880.

    16. [16] X. L. Wu, Y. Z. Meng, M. Xiao, Y. X. Lu, J. Mol. Catal. A, 2006, 249, 93-97.

    17. [17] R. Srivastava, D. Srinivas, P. Ratnasamy, J. Catal., 2006, 241, 34-44.

    18. [18] J. Xu, H. T. Wu, C. M. Ma, B. Xue, Y. X. Li, Y. Cao, Appl. Catal. A, 2013, 464-465, 357-363.

    19. [19] C. Murugan, H. C. Bajaj, R. V. Jasra, Catal. Lett., 2010, 137, 224-231.

    20. [20] R. Juárez, A. Corma, H. García, Green Chem., 2009, 11, 949-952.

    21. [21] P. Kumar, V. C. Srivastava, I. M. Mishra, Catal. Commun., 2015, 60, 27-31.

    22. [22] H. Wang, M. H. Wang, N. Zhao, W. Wei, Y. H. Sun, Catal. Lett., 2005, 105, 253-257.

    23. [23] K. Yan, A. C. Chen, Fuel, 2014, 115, 101-108.

    24. [24] T. Wei, M. H. Wang, W. Wei, Y. H. Sun, B. Zhong, Green Chem., 2003, 5, 343-346.

    25. [25] K. Yan, G. S. Wu, W. Jin, Energy Technol., 2016, 4, 354-368.

    26. [26] K. Yan, Y. Q. Liu, Y. R. Lu, J. J. Chai, L. P. Sun, Catal. Sci. Technol., 2017, 7, 1622-1645.

    27. [27] K. Takehira, Appl. Clay Sci., 2017, 136, 112-141.

    28. [28] H. S. Ji, W. H. Wu, F. H. Li, X. X. Yu, J. J. Fu, L. Y. Jia, J. Hazard. Mater., 2017, 334, 212-222.

    29. [29] N. B. Allou, P. Saikia, A. Borah, R. L. Goswamee, Colloid Polym. Sci., 2017, 295, 725-747.

    30. [30] Y. Lu, B. Jiang, L. Fang, F. L. Ling, F. Wu, B. S. Hu, F. M. Meng, K. Y. Niu, F. Lin, H. M. Zheng, J. Alloys Compd., 2017, 714, 63-70.

    31. [31] L. P. Zheng, S. X. Xia, X. Y. Lu, Z. Y. Hou, Chin. J. Catal., 2015, 36, 1759-1765.

    32. [32] L. P. Zheng, S. X. Xia, Z. T. Hou, M. Y. Zhang, Z. Y. Hou, Chin. J. Catal., 2014, 35, 310-318.

    33. [33] L. J. Gao, G. Y. Teng, J. H. Lv, G. M. Xiao, Energy Fuels, 2010, 24, 646-651.

    34. [34] C. S. Castro, L. C. F. Garcia, J. M. Assaf, Fuel Process. Technol., 2014, 125, 73-78.

    35. [35] Z. Wang, P. Fongarland, G. Z. Lu, N. Essayem, J. Catal., 2014, 318, 108-118.

    36. [36] J. Kocík, M. Hájek, I. Troppová, Fuel Process. Technol., 2015, 134, 297-302.

    37. [37] F. Cavani, F. Trifirb, A. Vaccari, Catal. Today, 1991, 11, 173-301.

    38. [38] F. Li, Y. F. Wang, Q. Z. Yang, D. G. Evans, C. Forano, X. Duan, J. Hazard. Mater., 2005, 125, 89-95.

    39. [39] A. C. Vieira, R. L. Moreira, A. Dias, J. Phys. Chem. C, 2009, 113, 13358-13368.

    40. [40] B. Yu, H. Bian, J. Plank, J. Phys. Chem. Solids, 2010, 71, 468-472.

    41. [41] S. S. Peng, M. H. Yang, W. K. Zhang, X. N. Li, C. Wang, M. B. Yue, Microporous Mesoporous Mater., 2017, 242, 18-24.

    42. [42] J. Li, D. Wang, G. D. Zhou, Y. X. Xue, C. Li, T. X. Cheng, Ind. Eng. Chem. Res., 2011, 50, 10955-10961.

    43. [43] X. Chen, Y. Liu, G. Niu, Z. Yang, M. Bian, A. He, Appl. Catal. A, 2001, 205, 159-172.

    44. [44] L. P. Haack, J. E. DeVries, K. Otto, M. S. Chattha, Appl. Catal. A, 1992, 82, 199-214.

    45. [45] J. S. Ledford, M. Houalla, A. Proctor, D. M. Hercules, L. Petrakis, J. Chem. Phys., 1989, 93, 6770-6777.

    46. [46] A. F. Lucrédio, G. Tremiliosi Filho, E. M. Assaf, Appl. Surf. Sci., 2009, 255, 5851-5856.

    47. [47] T. Gougousi, Z. Y. Chen, Thin Solid Films, 2008, 516, 6197-6204.

    48. [48] S. A. Barve, Jagannath, M. N. Deo, R. Kishore, A. Biswas, L. M. Gantayet, D. S. Patil, Appl. Surf. Sci., 2010, 257, 215-221.

    49. [49] Y. Uwamino, T. Ishizuka, H. Yamatera, J. Electron. Spectrosc. Relat. Phenom., 1984, 34, 67-78.

    50. [50] J. Y. Wang, L. M. Yang, W. Luo, G. X. Yang, C. L. Miao, J. Y. Fu, S. Y. Xing, P. Fan, P. M. Lv, Z. M. Wang, Fuel, 2017, 196, 306-313.

    51. [51] L. L. Marciniuk, P. Hammer, H. O. Pastore, U. Schuchardt, D. Cardoso, Fuel, 2014, 118, 48-54.

    52. [52] J. Campbell, Int. Mater. Rev., 1994, 39, 125-125.

    53. [53] G. Busca, Chem. Rev., 2010, 110, 2217-2249.

    54. [54] H. Gorzawski, W. F. Hoelderich, J. Mol. Catal. A, 1999, 144, 181-187.

    55. [55] G. D. Wu, X. L. Wang, W. Wei, Y. H. Sun, Appl. Catal. A, 2010, 377, 107-113.

    56. [56] P. Kumar, V. C. Srivastava, I. M. Mishra, Catal. Commun., 2015, 60, 27-31.

    57. [57] M. K. Lam, K. T. Lee, A. R. Mohamed, Appl. Catal. B, 2009, 93, 134-139.

    58. [58] G. D. Wu, X. L. Wang, W. Wei, Y. H. Sun, Appl. Catal. A, 2010, 377, 107-113.

    59. [59] T. Wei, M. H. Wang, W. Wei, Y. H. Sun, B. Zhong, Fuel Process. Technol., 2003, 83, 175-182.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  823
  • HTML全文浏览量:  54
文章相关
  • 收稿日期:  2017-07-11
  • 修回日期:  2017-08-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章