Citation: Zan Liu, Xiaolei Nan, Tao Lei, Chao Zhou, Yang Wang, Wenqiang Liu, Bin Chen, Chenho Tung, Lizhu Wu. Photo-induced reductive cross-coupling of aldehydes, ketones and imines with electron-deficient arenes to construct aryl substituted alcohols and amines[J]. Chinese Journal of Catalysis, 2018, 39(3): 487-494. doi: 10.1016/S1872-2067(17)62896-1
				
			
			可见光催化醛、酮或亚胺与缺电子芳烃还原偶联构筑芳基取代醇和胺
本文以苯甲醛和1,4-二氰基苯为底物,fac-Ir(ppy)3为光敏剂,二异丙基乙胺为终端还原剂,DMSO为溶剂,蓝光照射12h能够以82%的收率实现模板反应.其它光敏剂如[Ru(bpy)3]Cl2则不能催化该反应.溶剂效应指出,丙酮、乙腈可以得到低于40%的收率,甲醇、二氯甲烷、DMF等溶剂不适用该反应体系.控制实验证实,光敏剂、二异丙基乙胺和光照三个反应组分缺一不可.底物拓展发现,不同取代基的芳基腈类化合物包括烷基取代、砜基和酯基取代甚至杂芳环取代都能很好地适用于该体系,芳基醛、酮以及亚胺作为反应的另一组分亦能高效参与该还原偶联反应.
自由基捕获实验证实反应过程中涉及自由基历程.光谱淬灭实验表明,芳香腈是唯一有效淬灭激发态fac-Ir(ppy)3发光的物种.进一步结合底物的氧化还原电位,证实芳香腈能被激发态的光敏剂fac-Ir(ppy)3还原,但二异丙基乙胺和芳香醛、酮不能与激发态光敏剂发生作用,催化反应经历光敏剂的氧化淬灭路径.首先,光敏剂受光激发到达激发态,与芳基腈发生单电子转移.随后,二异丙基乙胺促使失去电子的铱配合物还原再生,得到相应氮自由基阳离子.该氮自由基阳离子活化反应体系中的C=X(X=O,N)双键,使其从激发态铱物种得到电子形成苄位自由基,进而与得到电子的芳基氰偶联得到最终产物.
English
Photo-induced reductive cross-coupling of aldehydes, ketones and imines with electron-deficient arenes to construct aryl substituted alcohols and amines
- 
							
- 
			
[1] D. A. Nicewicz, D. W. C. MacMillan, Science, 2008, 322, 77-80.
 - 
			
[2] M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 12886-12887.
 - 
			
[3] J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756-8757.
 - 
			
[4] D. C. Fabry, M. A. Ronge, J. Zoller, M. Rueping, Angew. Chem. Int. Ed., 2015, 54, 2801-2805.
 - 
			
[5] D. C. Fabry, J. Zoller, S. Raja, M. Rueping, Angew. Chem. Int. Ed., 2014, 53, 10228-10231.
 - 
			
[6] J. Du, T. P. Yoon, J. Am. Chem. Soc., 2009, 131, 14604-14605.
 - 
			
[7] M. A. Ischay, Z. Lu, T. P. Yoon, J. Am. Chem. Soc., 2010, 132, 8572-8574.
 - 
			
[8] C. J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, J. Am. Chem. Soc., 2012, 134, 8875-8884.
 - 
			
[9] G. L. Lackner, K. W. Quasdorf, L. E. Overman, J. Am. Chem. Soc., 2013, 135, 15342-15345.
 - 
			
[10] D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc., 2011, 133, 18566-18569.
 - 
			
[11] X. Q. Hu, J. R. Chen, Q. Q. Zhao, Q. Wei, W. J. Xiao, X. T. Qi, Y. Lan, Nat. Commun., 2016, 7, 11188.
 - 
			
[12] J. D. Cuthbertson, D. W. C. MacMillan, Nature, 2015, 519, 74-77.
 - 
			
[13] C. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan, Nature, 2016, 536, 322-325.
 - 
			
[14] X. Q. Huang, R. D. Webster, K. Harms, E. Meggers, J. Am. Chem. Soc., 2016, 138, 12636-12642.
 - 
			
[15] J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem., 2012, 4, 854-859.
 - 
			
[16] G. J. Choi, Q. L. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature, 2016, 539, 268-271.
 - 
			
[17] A. J. Musacchio, B. C. Lainhart, X. Zhang, S. G. Naguib, R. R. Knowles, T. C. Sherwood, Science, 2017, 355, 727-730.
 - 
			
[18] Q. Y. Meng, J. J. Zhong, Q. Liu, X. W. Gao, H. H. Zhang, T. Lei, Z. J. Li, K. Feng, B. Chen, C. H. Tung, L. Z. Wu, J. Am. Chem. Soc., 2013, 135, 19052-19055.
 - 
			
[19] G. T. Zhang, X. Hu, C. W. Chiang, H. Yi, P. K. Pei, A. K. Singh, A. W. Lei, J. Am. Chem. Soc., 2016, 138, 12037-12040.
 - 
			
[20] J. Schwarz, B. Konig, Green Chem., 2016, 18, 4743-4749.
 - 
			
[21] X. Y Yu, F Zhou, J. R. Chen, W. J. Xiao, Acta Chim. Sin., 2017, 75, 86-91.
 - 
			
[22] A. R. Wade, H. R. Pawar, M. V. Biware, R. C. Chikate, Green Chem., 2015, 17, 3879-3888.
 - 
			
[23] X. J. Lang, J. C. Zhao, X. D. Chen, Angew. Chem. Int. Ed., 2016, 55, 4697-4700.
 - 
			
[24] T. Ikeda, S. Yue, C. R. Hutchinson, J. Org. Chem., 1985, 50, 5193-5199.
 - 
			
[25] M. Szostak, D. J. Procter, Angew. Chem. Int. Ed., 2012, 51, 9238-9256.
 - 
			
[26] L. J. Rono, H. G. Yayla, D. Y. Wang, M. F. Armstrong, R. R. Knowles, J. Am. Chem. Soc., 2013, 135, 17735-17738.
 - 
			
[27] K. T. Tarantino, P. Liu, R. R. Knowles, J. Am. Chem. Soc., 2013, 135, 10022-10025.
 - 
			
[28] J. L. Jeffrey, F. R. Petronijević, D. W. C. MacMillan, J. Am. Chem. Soc., 2015, 137, 8404-8407.
 - 
			
[29] F. R. Petronijević, M. Nappi, D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 18323-18326.
 - 
			
[30] M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping, Angew. Chem. Int. Ed., 2015, 54, 8828-8832.
 - 
			
[31] E. Fava, A. Millet, M. Nakajima, S. Loescher, M. Rueping, Angew. Chem. Int. Ed., 2016, 55, 6776-6779.
 - 
			
[32] W. Ding, L. Q. Lu, J. Liu, D. Liu, H. T. Song, W. J. Xiao, J. Org. Chem., 2016, 81, 7237-7243.
 - 
			
[33] L. Qi, Y. Y. Chen, Angew. Chem. Int. Ed., 2016, 55, 13312-13315.
 - 
			
[34] K. N. Lee, Z. Lei, M. Y. Ngai, J. Am. Chem. Soc., 2017, 139, 5003-5006.
 - 
			
[35] A. McNally, C. K. Prier, D. W. C. MacMillan, Science, 2011, 334, 1114-1117.
 - 
			
[36] M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Science, 2013, 339, 1593-1596.
 - 
			
[37] K. Qvortrup, D. A. Rankic, D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136, 626-629.
 - 
			
[38] H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett, 2016, 27, 714-723.
 - 
			
[39] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.
 
 - 
			
 - 
							
							
							
							
							
						 
						扫一扫看文章
					计量
- PDF下载量: 2
 - 文章访问数: 1305
 - HTML全文浏览量: 56
 

下载: