一种简单前驱体预处理策略制备多孔氮化碳和负载型多孔氮化碳及其高效可见光光催化活性

曾振兴 李可心 魏凯 戴玉华 颜流水 郭会琴 罗旭彪

引用本文: 曾振兴,  李可心,  魏凯,  戴玉华,  颜流水,  郭会琴,  罗旭彪. 一种简单前驱体预处理策略制备多孔氮化碳和负载型多孔氮化碳及其高效可见光光催化活性[J]. 催化学报, 2017, 38(3): 498-508. doi: 10.1016/S1872-2067(17)62763-3 shu
Citation:  Zhenxing Zeng,  Kexin Li,  Kai Wei,  Yuhua Dai,  Liushui Yan,  Huiqin Guo,  Xubiao Luo. Fabrication of porous g-C3N4 and supported porous g-C3N4 by a simple precursor pretreatment strategy and their efficient visible-light photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38(3): 498-508. doi: 10.1016/S1872-2067(17)62763-3 shu

一种简单前驱体预处理策略制备多孔氮化碳和负载型多孔氮化碳及其高效可见光光催化活性

  • 基金项目:

    国家自然科学基金(51568049,51208248,51468043,21366024);国家优秀青年科学基金(51422807);江西省自然科学基金(20161BAB206118,20114BAB213015);江西省教育厅科技项目(GJJ14515,GJJ12456).

摘要: 作为一种非金属半导体光催化剂,石墨相氮化碳(g-C3N4)已广泛应用于水中有机污染物去除、劈裂水产氢、二氧化碳还原制碳氢化合物燃料以及选择性氧化有机合成等许多光催化领域.然而,聚集态层状结构和粉末物理状态严重限制了g-C3N4在非均相光催化反应中的实际应用.一方面,g-C3N4的聚集态层状结构限制了光生载流子的表面迁移并增加了光催化反应的传质阻力.另一方面,由于附加的固-液分离步骤,粉体g-C3N4不便于实际应用.因此,为解决g-C3N4的上述缺点,一些研究已经进行并集中于g-C3N4的形貌控制合成及负载.
构建多孔微观结构是合成具有优异光催化活性g-C3N4的有效途径之一.本文研究表明,盐酸或乙二醇预处理的三聚氰胺均可用作制备多孔g-C3N4的前驱体.有趣的是,由于在多孔g-C3N4制备体系中不同制孔单元的共存,与通过盐酸或乙二醇单独预处理的三聚氰胺制备的多孔g-C3N4相比,通过二者共同预处理的三聚氰胺制备的多孔g-C3N4具有更丰富的多孔微观结构.
与制备负载型二氧化钛不同,由于在制备g-C3N4过程中缺少溶胶-凝胶步骤,因此负载型g-C3N4较难制备.而且,对于氟-锡氧化物(FTO)基底负载的g-C3N4,在实际应用中存在一些不足.首先,FTO基底的片状物理结构不利于反应底物的扩散.其次,FTO基底的吸光效应会导致光能损失,因此g-C3N4只能在FTO基底的单面负载.最后,在g-C3N4和FTO基底之间无化学作用,因此在光催化反应过程中不可避免造成g-C3N4的损失.
因此,以盐酸/乙二醇共同预处理的三聚氰胺作原料,氢氟酸/3-氨基丙基三甲氧基硅烷共同预处理的石英棒作基底,首次制备了多孔g-C3N4和负载型多孔g-C3N4.丰富的多孔微观结构使得所制多孔g-C3N4具有优异的光催化活性;且由于多孔g-C3N4与石英棒基底间存在化学作用,因而具有相当高的稳定性.另外,由于在构建石英棒反应器之后不影响光生载流子的表面迁移和目标有机污染物的扩散,因此负载型多孔g-C3N4的光催化活性与粉体多孔g-C3N4相似.
所制备多孔g-C3N4和负载型多孔g-C3N4的光催化活性通过在可见光条件下单组份有机废水的处理进行初步评价.在有机污染物降解同时产氢系统中,由于水和有机污染物之间的氧化还原反应难于进行,因此与传统的光催化降解和产氢系统相比,所制多孔g-C3N4的氢气产率和降解效率均显著降低;然而,在有机污染物降解同时产氢系统中,随着该材料光催化活性的提高,氢气产率和降解效率同时提高.这是因为光催化剂电子传递能力的提高促进了有机污染物和水之间的氧化还原反应.

English

    1. [1] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76-80.

    2. [2] Y. Zheng, L. H. Lin, B. Wang, X. C. Wang, Angew. Chem. Int. Ed., 2015, 54, 12868-12884.

    3. [3] Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.

    4. [4] S. W. Cao, J. X. Low, J. G. Yu, M. Jaroniec, Adv. Mater., 2015, 27, 2150-2176.

    5. [5] J. D. Xiao, Y. B. Xie, F. Nawaz, Y. X. Wang, P. H. Du, H. B. Cao, Appl. Catal. B, 2016, 183, 417-425.

    6. [6] F. He, G. Chen, Y. S. Zhou, Y. G. Yu, L. Q. Li, S. Hao, B. Liu, J. Mater. Chem. A, 2016, 4, 3822-3827.

    7. [7] W. L. Yu, D. F. Xu, T. Y. Peng, J. Mater. Chem. A, 2015, 3, 19936-19947.

    8. [8] S. Verma, R. B. Nasir Baig, M. N. Nadagouda, R. S. Varma, ACS Sustainable Chem. Eng., 2016, 4, 1094-1098.

    9. [9] Y. N. Liu, R. X. Wang, Z. K. Yang, H. Du, Y. F. Jiang, C. S. Shen, K. Liang, A. W. Xu, Chin. J. Catal., 2015, 36, 2135-2144.

    10. [10] Z. Z. Lin, L. H. Lin, X. C. Wang, Chin. J. Catal., 2015, 36, 2089-2094.

    11. [11] Q. L. Cui, J. S. Xu, X. Y. Wang, L. D. Li, M. Antonietti, M. Shalom, Angew. Chem. Int. Ed., 2016, 55, 3672-3676.

    12. [12] Q. H. Liang, Z. Li, Z. H. Huang, F. Y. Kang, Q. H. Yang, Adv. Funct. Mater., 2015, 25, 6885-6892.

    13. [13] L. Shi, T. Wang, H. B. Zhang, K. Chang, J. H. Ye, Adv. Funct. Mater., 2015, 25, 5360-5367.

    14. [14] S. Y. Deng, P. X. Yuan, X. B. Ji, D. Shan, X. J. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 543-552.

    15. [15] B. Liu, H. Q. Yao, R. A. Daniels, W. Q. Song, H. Q. Zheng, L. Jin, S. L. Suib, J. He, Nanoscale, 2016, 8, 5441-5445.

    16. [16] J. Liu, H. Q. Wang, Z. P. Chen, H. Moehwald, S. Fiechter, R. van de Krol, L. P. Wen, L. Jiang, M. Antonietti, Adv. Mater., 2015, 27, 712-718.

    17. [17] P. F. Zhang, J. Deng, J. Y. Mao, H. R. Li, Y. Wang, Chin. J. Catal., 2015, 36, 1580-1586.

    18. [18] X. D. Zhang, H. X. Wang, H. Wang, Q. Zhang, J. F. Xie, Y. P. Tian, J. Wang, Y. Xie, Adv. Mater., 2014, 26, 4438-4443.

    19. [19] J. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, X. C. Wang, Nat. Commun., 2012, 3, 2152/1-2152/7.

    20. [20] H. J. Li, D. J. Qian, M. Chen, ACS Appl. Mater. Interfaces, 2015, 7, 25162-25170.

    21. [21] W. J. Jiang, W. J. Luo, R. L. Zong, W. Q. Yao, Z. P. Li, Y. F. Zhu, Small, 2016, 12, 4370-4378.

    22. [22] Q. W. Shang, Z. X. Zhou, Y. F. Shen, Y. Y. Zhang, Y. Li, S. Q. Liu, Y. J. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 23672-23678.

    23. [23] K. X. Li, Z. X. Zeng, L. S. Yan, M. X. Huo, Y. H. Guo, S. L. Luo, X. B. Luo, Appl. Catal. B, 2016, 187, 269-280.

    24. [24] J. S. Zhang, M. W. Zhang, L. H. Lin, X. C. Wang, Angew. Chem. Int. Ed., 2015, 54, 6297-6301.

    25. [25] Q. H. Liang, Z. Li, X. L. Yu, Z. H. Huang, F. Y. Kang, Q. H. Yang, Adv. Mater., 2015, 27, 4634-4639.

    26. [26] G. H. Dong, L. Z. Zhang, J. Mater. Chem., 2012, 22, 1160-1166.

    27. [27] G. H. Dong, W. Ho, Y. H. Li, L. Z. Zhang, Appl. Catal. B, 2015, 174, 477-485.

    28. [28] M. Gebhard, F. Mitschker, M. Wiesing, I. Giner, B. Torun, T. de los Arcos, P. Awakowicz, G. Grundmeier, A. Devi, J. Mater. Chem. C, 2016, 4, 1057-1065.

    29. [29] N. Deepak, M. A. Caro, L. Keeney, M. E. Pemble, R. W. Whatmore, Adv. Funct. Mater., 2014, 24, 2844-2851.

    30. [30] F. Araiedh, F. Ducos, A. Houas, N. Chaoui, Appl. Catal. B, 2016, 187, 350-356.

    31. [31] Q. J. Zhang, Y. Fu, Y. F. Wu, Y. N. Zhang, T. Y. Zuo, ACS Sustainable Chem. Eng., 2016, 4, 1794-1803.

    32. [32] C. Terashima, R. Hishinuma, N. Roy, Y. Sugiyama, S. S. Latthe, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, ACS Appl. Mater. Interfaces, 2016, 8, 1583-1588.

    33. [33] Y. S. Jun, E. Z. Lee, X. C. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater., 2013, 23, 3661-3667.

    34. [34] J. S. Zhang, M. W. Zhang, G. G. Zhang, X. C. Wang, ACS Catal., 2012, 2, 940-948.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  711
  • HTML全文浏览量:  111
文章相关
  • 收稿日期:  2016-10-28
  • 修回日期:  2016-12-31
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章