Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites
English
Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites
-
Key words:
- Polymer nanocomposites
- / Ultrasmall nanoparticles
- / Chain entanglement
- / Polyoxometalates
-
-
-
[1]
Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107-1110. doi: 10.1126/science.1130557
-
[2]
Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th Anniversary perspective: Are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714-731. doi: 10.1021/acs.macromol.6b02330
-
[3]
Raftopoulos, K. N.; Pielichowski, K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog. Polym. Sci. 2016, 52, 136-187. doi: 10.1016/j.progpolymsci.2015.01.003
-
[4]
Einstein, A. On the theory of Brownian movement. Ann. Phys. 1906, 19, 371-381.
-
[5]
Batchelor, G. K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 1977. 83, 97-117. doi: 10.1017/S0022112077001062
-
[6]
Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Horn, B. V.; Kim, H. C.; Hawker, C. J. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2003, 2, 762-766. doi: 10.1038/nmat999
-
[7]
Tuteja, A.; Mackay, M. E.; Hawker, C. J.; Horn, B. V. Effect of Ideal, Organic Nanoparticles on the Flow Properties of Linear Polymers: Non-Einstein-like Behavior. Macromolecules 2005, 38, 8000-8011. doi: 10.1021/ma050974h
-
[8]
Nusser, K.; Schneider, G. J.; Pyckhout-Hintzen, W.; Richter, D. Viscosity decrease and reinforcement in polymer-silsesquioxane composites. Macromolecules 2011, 44, 7820-7830. doi: 10.1021/ma201585v
-
[9]
Goldansaz, H.; Goharpey, F.; Afshar-Taromi, F.; Kim, I.; Stadler, F. J.; Ruymbeke, E. V.; Karimkhani, V. Anomalous rheological behavior of dendritic nanoparticle/linear polymer nanocomposites. Macromolecules 2015, 48, 3368-3375. doi: 10.1021/acs.macromol.5b00390
-
[10]
Mangal, R.; Srivastava, S.; Archer, L. A. Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat. Commun. 2015, 6, 7198. doi: 10.1038/ncomms8198
-
[11]
Wyart, F. B.; de Gennes, P. G. Viscosity at small scales in polymer melts. Eur. Phys. J. E 2000, 1, 93-97. doi: 10.1007/s101890050011
-
[12]
Cai, L. H.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853-7863. doi: 10.1021/ma201583q
-
[13]
Yamamoto, U.; Schweizer, K. S. Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J. Chem. Phys. 2011, 135, 224902. doi: 10.1063/1.3664863
-
[14]
Kalathi, J. T.; Yamamoto, U.; Schweizer, K. S.; Grest, G. S.; Kumar, S. K. Nanoparticle diffusion in polymer nanocomposites. Phys. Rev. Lett. 2014, 112, 108301. doi: 10.1103/PhysRevLett.112.108301
-
[15]
Yamamoto, U.; Schweizer, K. S. Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 2014, 48, 152-163.
-
[16]
Chen, T.; Qian, H. J.; Lu, Z. Y. Note: Chain length dependent nanoparticle diffusion in polymer melt: Effect of nanoparticle softness. J. Chem. Phys. 2016, 145, 106101. doi: 10.1063/1.4962370
-
[17]
Frischknecht, A. L.; McGarrity, E. S.; Mackay, M. E. Expanded chain dimensions in polymer melts with nanoparticle fillers. J. Chem. Phys. 2010, 132, 204901. doi: 10.1063/1.3428760
-
[18]
Li, Y.; Kroger, M.; Liu, W. K. Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Phys. Rev. Lett. 2012, 109, 118001. doi: 10.1103/PhysRevLett.109.118001
-
[19]
Kalathi, J. T.; Grest, G. S.; Kumar, S. K. Universal viscosity behavior of polymer nanocomposites. Phys. Rev. Lett. 2012, 109, 198301. doi: 10.1103/PhysRevLett.109.198301
-
[20]
Senses, E.; Ansar, S. M.; Kitchens, C. L.; Mao, Y.; Narayanan, S.; Natarajan, B.; Faraone, A. Small particle driven chain disentanglements in polymer nanocomposites. Phys. Rev. Lett. 2017, 118, 147801. doi: 10.1103/PhysRevLett.118.147801
-
[21]
Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736-1758. doi: 10.1002/anie.v49:10
-
[22]
Zhang, J.; Liu, Y.; Li, Y.; Zhao, H.; Wan, X. Hybrid assemblies of Eu-containing polyoxometalates and hydrophilic block copolymers with enhanced emission in aqueous solution. Angew. Chem. Int. Ed. 2012, 124, 4676-4680. doi: 10.1002/ange.201107481
-
[23]
Liao, Y.; Liu, N.; Zhang, Q.; Bu, W. Self-assembly of polyoxometalate-based starlike polymers in solvents of variable quality: From free-standing sheet to vesicle. Macromolecules 2014, 47, 7158-7168. doi: 10.1021/ma501343s
-
[24]
Tan, C.; Liu, N.; Yu, B.; Zhang, C.; Bu, W.; Liu, X.; Song, Y. F. Organic-inorganic hybrids formed by polyoxometalate-based surfactants with cationic polyelectrolytes and block copolymers. J. Mater. Chem. C 2015, 3, 2450-2454. doi: 10.1039/C4TC02971B
-
[25]
Ma, C.; Wu, H.; Huang, Z. H.; Guo, R. H.; Hu, M. B.; Kubel, C.; Yan, L. T.; Wang, W. A Filled-honeycomb-structured crystal formed by self-assembly of a Janus polyoxometalate-silsesquioxane (POM-POSS) co-cluster. Angew. Chem. Int. Ed. 2015, 54, 15699-15704. doi: 10.1002/anie.201507237
-
[26]
Hou, X. S.; Zhu, G. L.; Ren, L. J.; Huang, Z.; Zhang, R. B.; Ungar, G.; Yan, L. T.; Wang, W. Mesoscale graphene-like honeycomb mono- and multi-layers constructed via self-assembly of co-clusters. J. Am. Chem. Soc. 2017, 140, 1805-1811.
-
[27]
Li, D.; Jia, X.; Cao, X.; Xu, T.; Li, H.; Qian, H.; Wu, L. Controllable nanostructure formation through enthalpy-driven assembly of polyoxometalate clusters and block copolymers. Macromolecules 2015, 48, 4104-4114. doi: 10.1021/acs.macromol.5b00712
-
[28]
Wang, S.; Li, H.; Li, D.; Xu, T.; Zhang, S.; Dou, X.; Wu, L. Noncovalent functionalization of graphene nanosheets with cluster-cored star polymers and their reinforced polymer coating. ACS Macro Lett. 2015, 4, 974-978. doi: 10.1021/acsmacrolett.5b00287
-
[29]
Zhang, L.; Cui, T.; Cao, X.; Zhao, C.; Chen, Q.; Wu, L.; Li, H. Inorganic-macroion-induced formation of bicontinuous block copolymer nanocomposites with enhanced conductivity and modulus. Angew. Chem. Int. Ed. 2017, 56, 9013-9017. doi: 10.1002/anie.201702785
-
[30]
Zhang, W. B.; Yu, X.; Wang, C. L.; Sun, H. J.; Hsieh, I. F.; Li, Y.; Dong, X. H.; Yue, K.; Horn, R. V.; Cheng, S. Z. D. Molecular nanoparticles are unique elements for macromolecular science: From " nanoatoms” to giant molecules. Macromolecules 2014, 47, 1221-1239. doi: 10.1021/ma401724p
-
[31]
Zhang, W. B.; Cheng, S. Z. D. Toward rational and modular molecular design in soft matter engineering. Chinese J. Polym. Sci. 2015, 33, 797-814. doi: 10.1007/s10118-015-1653-8
-
[32]
Li, H.; Qi, W.; Li, W.; Sun, H.; Bu, W.; Wu, L. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate. Adv. Mater. 2005, 17, 2688-2692. doi: 10.1002/(ISSN)1521-4095
-
[33]
Baker, L. C. W.; McCutcheon, T. P. Heteropoly salts containing cobalt and hexavalent tungsten in the anion. J. Am. Chem. Soc. 1956, 78, 4503-4510. doi: 10.1021/ja01599a001
-
[34]
Li, D.; Li, H.; Wu, L. Structurally dependent self-assembly and luminescence of polyoxometalate-cored supramolecular star polymers. Polym. Chem. 2014, 5, 1930-1937. doi: 10.1039/C3PY01349A
-
[35]
Judeinstein, P. Synthesis and Properties of polyoxometalates based inorganic-organic polymers. Chem. Mater. 1992, 4, 4-7. doi: 10.1021/cm00019a002
-
[36]
Moore, A. R.; Kwen, H.; Beatty, A. M.; Maatta, E. A. Organoimido-polyoxometalates as polymer pendants. Chem. Commun. 2000, 18, 1793-1794.
-
[37]
Han, Y.; Xiao, Y.; Zhang, Z.; Liu, Bo.; Zheng, P.; He, S.; Wang, W. Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules 2009, 42, 6543-6548. doi: 10.1021/ma9011686
-
[38]
Miao, W.-K.; Yan, Y.-K.; Wang, X.-L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of polyoxometalates into polymers to create linear poly(polyoxometalate)s with catalytic function. ACS Macro Lett. 2014, 3, 211-215. doi: 10.1021/mz5000202
-
[39]
Tang, J.; Yu, W.; Hu, M.-B.; Xiao, Yu.; Wang, X.-G.; Ren, L.-J.; Zheng, P.; Zhu, W.; Chen, Y.; Wang, W. Bottom-up hybridization: A strategy for the preparation of a thermostable polyoxometalate-polymer hybrid with hierarchical hybrid structures. ChemPlusChem 2014, 79, 1455-1462. doi: 10.1002/cplu.201402092
-
[40]
Tang, J.; Ma, C.; Li, X.-Y.; Ren, L.-J.; Wu, H.; Zheng, P.; Wang W. Self-assembling a polyoxometalate-peg hybrid into a nanoenhancer to tailor PEG properties. Macromolecules 2015, 48, 2723-2730. doi: 10.1021/acs.macromol.5b00214
-
[41]
Tang, J.; Li, X. Y.; Wu, H.; Ren, L. J.; Zhang, Y.-Q.; Yao, H.-X.; Hu, M. B.; Wang, W. Tube-graft-sheet nano-objects created by a stepwise self-assembly of polymer-polyoxometalate hybrids. Langmuir 2016, 32, 460-467. doi: 10.1021/acs.langmuir.5b04504
-
[42]
Qi, W.; Wu, L. Polyoxometalate/polymer hybrid materials: Fabrication and properties. Polym. Int. 2009, 58, 1217-1225. doi: 10.1002/pi.v58:11
-
[43]
Wu, H.; Yang, H.-K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: Optimizing synthesis, appealing structures and prospective applications. New J. Chem. 2016, 40, 886-897. doi: 10.1039/C5NJ01257K
-
[44]
Yan, J.; Zheng, X.; Yao, J.; Xu, P.; Miao, Z.; Li, J.; Lv, Z.; Zhang, Q.; Yan, Y. Metallopolymers from organically modified polyoxometalates(MOMPs): A review. J. Organomet. Chem. 2019, 884, 1-16. doi: 10.1016/j.jorganchem.2019.01.012
-
[45]
Zhang, S.; Xu, T.; Chai, S.; Zhang, L.; Wu, L.; Li, H. Supramolecular star polymer films with tunable honeycomb. Polymer 2017, 117, 306-314. doi: 10.1016/j.polymer.2017.04.048
-
[46]
Rubinstein, M.; Colby, R. H. Polymer physics, Oxford University Press, Oxford, 2003, p. 362
-
[47]
Chen, Q.; Uno, A.; Matsumiya, Y.; Watanabe, H. Viscoelastic mode distribution of moderately entangled linear polymers. Nihon Reoroji Gakk. 2010, 38, 187-193.
-
[48]
Ferry, J. D. Viscoelastic properties of polymers, Wiley, New York, 1980, p. 264−320
-
[49]
Chen, Q.; Matsumiya, Y.; Masubuchi, Y.; Watanabe, H.; Inoue, T. Component dynamics in polyisoprene/poly(4-tert-butylstyrene) miscible blends. Macromolecules 2008, 41, 8694-8711. doi: 10.1021/ma8013417
-
[50]
Chen, Q.; Matsumiya, Y.; Watanabe, H. Dynamics in miscible blends of polyisoprene and poly(p-tert-butyl styrene): Thermo-rheological behavior of components. Polym. J. 2012, 44, 102-114. doi: 10.1038/pj.2011.33
-
[51]
Leblanc, J. L. Rubber-filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 2002, 27, 627-687. doi: 10.1016/S0079-6700(01)00040-5
-
[52]
Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, M. J. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010, 51, 3321-3343. doi: 10.1016/j.polymer.2010.04.074
-
[53]
Jouault, N.; Moll, J. F.; Meng, D.; Windsor, K.; Ramcharan, S.; Kearney, C.; Kumar, S. K. Bound polymer layer in nanocomposites. ACS Macro Lett. 2013, 2, 371-374. doi: 10.1021/mz300646a
-
[54]
Gong, S. S.; Chen, Q.; Moll, J.; Kumar S. K.; Colby, R. H. Segmental dynamics of polymer melts with spherical nanoparticles. ACS Macro Lett. 2014, 3, 773-777. doi: 10.1021/mz500252f
-
[55]
Chen, Q.; Gong, S. S.; Moll, J.; Zhao, D.; Kumar S. K.; Colby, R. H. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 2015, 4, 398-402. doi: 10.1021/acsmacrolett.5b00002
-
[56]
Inoue, T.; Nirihisa, Y.; Katashima, T.; Kawasaki, S.; Tada, T. A. Rheo-optical study on reinforcement effect of silica particle filled rubber. Macromolecules 2017, 50, 8072-8082. doi: 10.1021/acs.macromol.7b01361
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1521
- HTML全文浏览量: 33

下载: