Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering

Tian-Fu Li Yi-Yun Cheng Yu Wang Hui Wang Dong-Feng Chen Yun-Tao Liu Li Zhang Wen-Ze Han Rong-Deng Liu Zi-Jun Wang Chun-Ming Yang Charl J. Jafta Daniel Clemens Uwe Keiderling

Citation:  Tian-Fu Li, Yi-Yun Cheng, Yu Wang, Hui Wang, Dong-Feng Chen, Yun-Tao Liu, Li Zhang, Wen-Ze Han, Rong-Deng Liu, Zi-Jun Wang, Chun-Ming Yang, Charl J. Jafta, Daniel Clemens, Uwe Keiderling. Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering[J]. Chinese Journal of Polymer Science, 2019, 37(8): 827-833. doi: 10.1007/s10118-019-2260-x shu

Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering

English


    1. [1]

      Tomalia, D. A.; Khanna, S. N. A Systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chem. Rev. 2016, 116, 2705-2774. doi: 10.1021/acs.chemrev.5b00367

    2. [2]

      Tomalia, D. A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294-324. doi: 10.1016/j.progpolymsci.2005.01.007

    3. [3]

      Tomalia, D. A. Interview: An architectural journey: from trees, dendrons/dendrimers to nanomedicine. Nanomedicine 2012, 7, 953-956. doi: 10.2217/nnm.12.81

    4. [4]

      Zhao, L.; Wu, Q.; Cheng, Y.; Zhang, J.; Wu, J.; Xu, T. High-throughput screening of dendrimer-binding drugs. J. Am. Chem. Soc. 2010, 132, 13182-13184. doi: 10.1021/ja106128u

    5. [5]

      Wang, H.; Huang, Q.; Chang, H.; Xiao, J.; Cheng, Y. Stimuli-responsive dendrimers in drug delivery. Biomater. Sci. 2016, 4, 375-390. doi: 10.1039/C5BM00532A

    6. [6]

      Hu, J.; Xu, T.; Cheng, Y. NMR insights into dendrimer-based host-guest systems. Chem. Rev. 2012, 112, 3856-3891. doi: 10.1021/cr200333h

    7. [7]

      Svenson, S.; Tomalia, D. A. Dendrimers in biomedical applications−reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106-2129. doi: 10.1016/j.addr.2005.09.018

    8. [8]

      Wang, H.; Wang, Y.; Wang, Y.; Hu, J.; Li, T.; Liu, H.; Zhang, Q.; Cheng, Y. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 2015, 54, 11647-11651. doi: 10.1002/anie.201501461

    9. [9]

      Wang, M.; Liu, H.; Li, L.; Cheng, Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 2014, 5, 3053. doi: 10.1038/ncomms4053

    10. [10]

      Cheng, Y. Fluorinated polymers in gene delivery. Acta Polymerica Sinica 2017, 8, 1234-1245.

    11. [11]

      Kallos, G. J.; Tomalia, D. A.; Hedstrand, D. M.; Lewis, S.; Zhou, J. Molecular weight determination of a polyamidoamine starburst polymer by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 383-386. doi: 10.1002/(ISSN)1097-0231

    12. [12]

      Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 17, 117-132. doi: 10.1295/polymj.17.117

    13. [13]

      Tolic, L. P.; Anderson, G. A.; Smith, R. D.; Brothers, H. M.; Spindler, R.; Tomalia, D. A. Electrospray ionization fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass StarburstTM dendrimers. Int. J. Mass Spectrom. 1997, 165/166, 405-418. doi: 10.1016/S0168-1176(97)00161-4

    14. [14]

      Peterson, J.; Allikmaa, V.; Subbi, J.; Pehk, T.; Lopp, M. Structural deviations in poly(amidoamine) dendrimers: A MALDI-TOF MS analysis. Eur. Polym. J. 2003, 39, 33-42. doi: 10.1016/S0014-3057(02)00188-X

    15. [15]

      Aura, T.; Ungaro, R.; Liu, X.; Chen, C.; Giordano, L.; Peng, L.; Charles, L. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal. Chim. Acta 2015, 853, 451-459. doi: 10.1016/j.aca.2014.10.048

    16. [16]

      Mohammad, T. I.; Shi, X.; Balogh, L.; Baker, J. R. HPLC Separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. Anal. Chem. 2005, 77, 2063-2070. doi: 10.1021/ac048383x

    17. [17]

      Mullen, D. G.; Desai, A.; van Dongen, M. A.; Barash, M.; Baker, J. R.; Banaszak Holl, M. M. Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 2012, 45, 5316. doi: 10.1021/ma300485p

    18. [18]

      van Dongen, M. A.; Desai, A.; Orr, B. G.; Baker, J. R.; Banaszak Hol, M. M. Quantitative analysis of generation and branch defects in g5 poly(amidoamine) dendrimer. Polymer 2013, 54, 4126-4133. doi: 10.1016/j.polymer.2013.05.062

    19. [19]

      Likos, C. N. Soft matter with soft particles. Soft Matter 2006, 2, 478-498. doi: 10.1039/b601916c

    20. [20]

      Caminade, A. M.; Laurent, R.; Majoral, J. P. Characterization of dendrimers. Adv. Drug Deliv. Rev. 2005, 57, 2130-2146. doi: 10.1016/j.addr.2005.09.011

    21. [21]

      Wang, X.; Guerrand, L.; Wu, B.; Li, X.; Boldon, L.; Chen, W. R. Liu, L. Characterizations of polyamidoamine dendrimers with scattering techniques. Polymers 2012, 4, 600-616. doi: 10.3390/polym4010600

    22. [22]

      Topp, A.; Bauer, B. J.; Kilmash, K. W.; Spindler, R.; Tomalia, D. A.; Amis, E. J. Effect of solvent quality on the molecular dimensions of PAMAM dendrimers. Macromolecules 1999, 32, 7226-7231. doi: 10.1021/ma990125s

    23. [23]

      Imae, T.; Funayama, K.; Aoi, K.; Tsutsumiuchi, K.; Okada, M.; Furusaka, M. Small-angle neutron scattering and surface force investigations of poly(amido amine) dendrimer with hydroxyl end groups. Langmuir 1999, 15, 4076-4084. doi: 10.1021/la9811968

    24. [24]

      Pötschke, D.; Ballauff, M.; Lindner, P.; Fischer, M.; Vögtle, F. Analysis of the structure of dendrimers in solution by small-angle neutron scattering including contrast variation. Macromolecules 1999, 32, 4079-4087. doi: 10.1021/ma982027x

    25. [25]

      Rosenfeldt, S.; Dingenouts, N.; Ballauff, M.; Werner, N.; Vögtle, F.; Lindner, P. Distribution of end groups within a dendritic structure: A SANS study including contrast variation. Macromolecules 2002, 35, 8098-8105. doi: 10.1021/ma020585c

    26. [26]

      Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. Dynamics of star-burst dendrimers in solution in relation to their structural properties. J. Chem. Phys. 2002, 117, 4047-4062. doi: 10.1063/1.1493771

    27. [27]

      Huang, Q. R.; Dubin, P. L.; Lal, J.; Moorefield, C. N.; Newkome, G. R. Small-angle neutron scattering studies of charged carboxyl-terminated dendrimers in solutions. Langmuir 2005, 21, 2737-2742. doi: 10.1021/la048207j

    28. [28]

      Porcar, L.; Liu, Y.; Verduzco, R.; Hong, K.; Butler, P. D.; Magid, L. J.; Smith, G. S.; Chen, W. R. Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J. Phys. Chem. B 2008, 112, 14772-14778. doi: 10.1021/jp805297a

    29. [29]

      Li, T.; Shao, N.; Liu, Y.; Hu, J.; Wang, Y.; Zhang, L.; Wang, H.; Chen, D.; Cheng, Y. Poly(amidoamine) and poly(propyleneimine) dendrimers show distinct binding behaviors with sodium dodecyl sulfate: insights from SAXS and NMR analysis. J. Phys. Chem. B 2014, 118, 3074-3084. doi: 10.1021/jp412660p

    30. [30]

      Li, T.; Hong, K.; Porcar, L.; Verduzco, R.; Butler, P. D.; Smith, G. S.; Liu, Y.; Chen, W. R. Assess the intramolecular cavity of a PAMAM dendrimer in aqueous solution by small-angle neutron scattering. Macromolecules 2008, 41, 8916-8920. doi: 10.1021/ma801555j

    31. [31]

      Chen, W. R.; Porcar, L.; Liu, Y.; Butler, P. D.; Magid, L. J. Small-angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged G4 PAMAM dendrimers in aqueous solutions. Macromolecules 2007, 40, 5887-5898. doi: 10.1021/ma0626564

    32. [32]

      Keiderling, U.; Wiedenmann, A. New SANS instrument at the BerII Reactor in Berlin, Germany. Physica B 1995, 213/214, 895-897. doi: 10.1016/0921-4526(95)00316-2

    33. [33]

      Helmholtz-Zentrum Berlin für Materialien und Energie. V4: The Small-Angle Scattering Instrument (SANS) at BER II. Journal of large-scale research facilities 2016, 2, A97. http://dx.doi.org/10.17815/jlsrf-2-101. doi: 10.17815/jlsrf-2-101

    34. [34]

      Keiderling, U. The new ‘BerSANS-PC’ software for reduction and treatment of small-angle neutron scattering data. Appl. Phys. A 2002, 74, 1455-1457. doi: 10.1007/s003390201561

    35. [35]

      Glatter, O. A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 1977, 10, 415-421. doi: 10.1107/S0021889877013879

    36. [36]

      Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 1992, 25, 495-503. doi: 10.1107/S0021889892001663

    37. [37]

      Chen, S. H. Small-angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Annu. Rev. Phys. Chem. 1986, 37, 351-399. doi: 10.1146/annurev.pc.37.100186.002031

    38. [38]

      Guinier, A.; Fournet, G. Small-angle scattering of X-rays. John Wiley & Sons, New York, 1955, p. 1−78.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1452
  • HTML全文浏览量:  35
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-01-30
  • 修回日期:  2019-03-09
  • 网络出版日期:  2019-04-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章