Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method
English
Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method
-
Key words:
- PEDOT:PSS
- / Doping
- / Conductivity
- / Flexible transparent electrodes
- / Organic solar cells
-
-
-
[1]
Kaltenbrunner, M.; Adam, G.; Glowacki, E. D.; Drack, M.; Schwodiauer, R.; Leonat, L.; Apaydin, D. H.; Groiss, H.; Scharber, M. C.; White, M. S.; Sariciftci, N. S.; Bauer, S. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032-1039. doi: 10.1038/nmat4388
-
[2]
Wu, F.; Li, P.; Sun, K.; Zhou, Y.; Chen, W.; Fu, J.; Li, M.; Lu, S.; Wei, D.; Tang, X.; Zang, Z.; Sun, L.; Liu, X.; Ouyang, J. Conductivity enhancement of PEDOT:PSS via addition of chloroplatinic acid and its mechanism. Adv. Electron. Mater. 2017, 3, 1700047. doi: 10.1002/aelm.201700047
-
[3]
Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138. doi: 10.1038/nenergy.2016.138
-
[4]
Yin, Z.; Huang, Y.; Bu, N.; Wang, X.; Xiong, Y. Inkjet printing for flexible electronics: Materials, processes and equipments. Chinese Sci. Bull. 2010, 55, 3383-3407. doi: 10.1007/s11434-010-3251-y
-
[5]
Abbel, R.; Galagan, Y.; Groen, P. Roll-to-roll fabrication of solution processed electronics. Adv. Eng. Mater. 2018, 20, 1701190. doi: 10.1002/adem.v20.8
-
[6]
Palumbiny, C. M.; Liu, F.; Russell, T. P.; Hexemer, A.; Wang, C., Muller-Buschbaum, P., The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing. Adv. Mater. 2015, 27, 3391-3397. doi: 10.1002/adma.v27.22
-
[7]
Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci. China Chem. 2018, 61, 531-537. doi: 10.1007/s11426-017-9199-1
-
[8]
Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2016, 35, 171-183.
-
[9]
Kan, B.; Feng, H.; Yao, H.; Chang, M.; Wan, X.; Li, C.; Hou, J.; Chen, Y. A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Sci. China Chem. 2018, 61, 1307-1313. doi: 10.1007/s11426-018-9334-9
-
[10]
Wu, K.; Zhang, T.; Zhan, L.; Zhong, C.; Gong, S.; Jiang, N.; Lu, Z. H.; Yang, C. Optimizing optoelectronic properties of pyrimidine-based TADF emitters by changing the substituent for organic light-emitting diodes with external quantum efficiency close to 25% and slow efficiency roll-off. Chemistry 2016, 22, 10860-10866. doi: 10.1002/chem.201601686
-
[11]
Zhou, Y.; Cheun, H.; Choi, S.; Potscavage, W. J.; Fuentes-Hernandez, C.; Kippelen, B. Indium tin oxide-free and metal-free semitransparent organic solar cells. Appl. Phys. Lett. 2010, 97, 153304. doi: 10.1063/1.3499299
-
[12]
Fehse, K.; Walzer, K.; Leo, K.; Lövenich, W.; Elschner, A. Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes. Adv. Mater. 2007, 19, 441-444. doi: 10.1002/(ISSN)1521-4095
-
[13]
Fan, X.; Wang, J.; Wang, H.; Liu, X.; Wang, H. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates. ACS Appl. Mater. Interfaces 2015, 7, 16287-16295. doi: 10.1021/acsami.5b02830
-
[14]
Döbbelin, M.; Marcilla, R.; Tollan, C.; Pomposo, J. A.; Sarasua, J.-R.; Mecerreyes, D. A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. J. Mater. Chem. 2008, 18, 5354-5358. doi: 10.1039/b808723g
-
[15]
Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 2015, 1, 1500017. doi: 10.1002/aelm.201500017
-
[16]
Song, W.; Fan, X.; Xu, B.; Yan, F.; Cui, H.; Wei, Q.; Peng, R.; Hong, L.; Huang, J.; Ge, Z. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 2018, 30, e1800075. doi: 10.1002/adma.v30.26
-
[17]
Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873. doi: 10.1002/aenm.201501873
-
[18]
Fu, X.; Xu, L.; Li, J.; Sun, X.; Peng, H. Flexible solar cells based on carbon nanomaterials. Carbon 2018, 139, 1063-1073. doi: 10.1016/j.carbon.2018.08.017
-
[19]
You, P.; Liu, Z.; Tai, Q.; Liu, S.; Yan, F. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 2015, 27, 3632-3638. doi: 10.1002/adma.201501145
-
[20]
Gupta, R.; Walia, S.; Hösel, M.; Jensen, J.; Angmo, D.; Krebs, F. C.; Kulkarni, G. U. Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells. J. Mater. Chem. A 2014, 2, 10930. doi: 10.1039/c4ta00301b
-
[21]
Park, J. H.; Lee, D. Y.; Kim, Y. H.; Kim, J. K.; Lee, J. H.; Park, J. H.; Lee, T. W.; Cho, J. H. Flexible and transparent metallic grid electrodes prepared by evaporative assembly. ACS Appl. Mater. Interfaces 2014, 6, 12380-12387. doi: 10.1021/am502233y
-
[22]
Li, Y.; Meng, L.; Yang, Y.; Xu, G.; Hong, Z.; Chen, Q.; You, J.; Li, G.; Yang, Y.; Li, Y. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214. doi: 10.1038/ncomms10214
-
[23]
Zhao, G.; Kim, S. M.; Lee, S.-G.; Bae, T. S.; Mun, C.; Lee, S.; Yu, H.; Lee, G. H.; Lee, H.-S.; Song, M.; Yun, J. Bendable solar cells from stable, flexible, and transparent conducting electrodes fabricated using a nitrogen-doped ultrathin copper film. Adv. Funct. Mater. 2016, 26, 4180-4191. doi: 10.1002/adfm.v26.23
-
[24]
Yu, Z.; Zhang, Q.; Li, L.; Chen, Q.; Niu, X.; Liu, J.; Pei, Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664-668. doi: 10.1002/adma.201003398
-
[25]
Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: Innovative conductive polymers for bioelectronics. Polymers 2017, 9, (12), 354. doi: 10.3390/polym9080354
-
[26]
Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076-1081. doi: 10.1002/adfm.201002290
-
[27]
Nagata, R.; Yanagi, Y.; Fujii, S.; Kataura, H.; Nishioka, Y. Highly conductive DMSO-treated PEDOT:PSS electrodes applied to flexible organic solar cells. IEICE T. Electron. 2015, 98, 411-421.
-
[28]
Palumbiny, C. M.; Heller, C.; Schaffer, C. J.; Körstgens, V.; Santoro, G.; Roth, S. V.; Müller-Buschbaum, P. Molecular Reorientation and structural changes in cosolvent-treated highly conductive PEDOT:PSS electrodes for flexible indium tin oxide-free organic electronics. J. Phys. Chem. C 2014, 118, 13598-13606. doi: 10.1021/jp501540y
-
[29]
Gan, L. M.; Chow, P. Y.; Liu, Z.; Han, M.; Quek, C. H. The zwitterion effect in proton exchange membranes as synthesised by polymerisation of bicontinuous microemulsions. Chem. Commun. 2005, 35, 4459-4461.
-
[30]
Xia, Y.; Ouyang, J. Salt-induced charge screening and significant conductivity enhancement of conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Macromolecules 2009, 42, 4141-4147. doi: 10.1021/ma900327d
-
[31]
Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J.; Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 2003, 3, 29-32.
-
[32]
Huiqin, C., Wei, S., Billy, F., Ruixiang, P., Jianfeng, Z., Jiaming, H., Ge, Z. Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT: PSS transparent anodes. Sci. China Chem. 2019, 62, 500-505.
-
[33]
Wang, Y.; Song, R.; Li, Y.; Shen, J. Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers. Surf. Sci. 2003, 530, 136-148. doi: 10.1016/S0039-6028(03)00388-1
-
[34]
Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513. doi: 10.1002/adma.201003188
-
[35]
Sekine, N.; Chou, C.-H.; Kwan, W. L.; Yang, Y. ZnO nano-ridge structure and its application in inverted polymer solar cell. Org. Electron. 2009, 10, 1473-1477. doi: 10.1016/j.orgel.2009.08.011
-
[36]
Zhao, B.; He, Z.; Cheng, X.; Qin, D.; Yun, M.; Wang, M.; Huang, X.; Wu, J.; Wu, H.; Cao, Y. Flexible polymer solar cells with power conversion efficiency of 8.7%. J. Mater. Chem. C 2014, 2, 5077-5082.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1591
- HTML全文浏览量: 56

下载: