Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations

Jing Li Shao-Hua Jin Guan-Chao Lan Zi-Shuai Xu Lu-Ting Wang Na Wang Li-Jie Li

Citation:  Jing Li, Shao-Hua Jin, Guan-Chao Lan, Zi-Shuai Xu, Lu-Ting Wang, Na Wang, Li-Jie Li. Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations[J]. Chinese Journal of Polymer Science, 2019, 37(8): 834-840. doi: 10.1007/s10118-019-2249-5 shu

Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations

English


    1. [1]

      Zhou, L. L.; Wang, B. B.; Xiao, L. F.; Liang, J. F. Testing and analysis of properties of PVC plasticized with environment-friendly plasticizers. Chemical Research and Application (in Chinese) 2018, 30(4), 597-601.

    2. [2]

      Li, X. G.; Zhao, J.; Fei, Y. N.; Sun, G. F.; Li, J.; Sui, Z. Y.; Yu, H. B. Synthesis of environmental plasticizer di(2-ethylhexy)-1, 2-cyclohexane dicarboxylate. Journal of Petrochemical Universities (in Chinese) 2013, 26(5), 33-36.

    3. [3]

      Zhang, D. H.; He, M.; Hu, Z.; Guo, J. B. Effect of content of plasticizer DOP on the properties of soft PVC. Plastic Additives (in Chinese) 2015, (2), 43-44.

    4. [4]

      Liu, Y. H.; Xing, G. Q.; Feng, B. L.; Chen, L. Z. Application of environment-friendly plasticizers in PVC gloves. Plastic Additives (in Chinese) 2017, (1), 21-22, 34.

    5. [5]

      Starnes, W. H. Structural defects in poly(vinyl chloride). J. Polym. Sci.; Part A: Polym. Chem. 2005, 43(12), 2451-2467. doi: 10.1002/pola.20811

    6. [6]

      Hu, W. T.; Li, J. G.; Ding, X. J.; Liu, F. J.; Wei, Y. F. Modification of plasticized PVC with three kinds of modifiers. China Plastics (in Chinese) 2014, 28(7), 60-64.

    7. [7]

      Xu, H. Z.; Tang, W.; Tan, L. L. Advances in research and development of environment-friendly Ca/Zn heat stabilizers complex for PVC. Plastic Additives (in Chinese) 2008, 8(4), 11-15.

    8. [8]

      Li, J.; Jin, S. H.; Lan, G. C.; Chen, S. S.; Li, L. J. Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system. J. Mol. Graph. Model. 2018, 84, 182-188. doi: 10.1016/j.jmgm.2018.07.005

    9. [9]

      Luo, Y. L.; Wang, R. G.; Wang, W.; Wang, W.; Zhang, L. Q.; Wu, S. Z. Molecular dynamics simulation insight into two-component solubility parameters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber. J. Phys. Chem. C 2017, 121(18), 10163-10173. doi: 10.1021/acs.jpcc.7b01583

    10. [10]

      Shu, Y.; Yi, Y.; Huo, J. C.; Liu, N.; Wang, K.; Lu, Y. Y.; Wang, X. C.; Wu, Z. K.; Shu, Y. J.; Zhang, S. W. Interactions between poly-(phthalazinone ether sulfone ketone) (PPESK) and TNT or TATB in polymer bonded explosives: a molecular dynamic simulation study. J. Mol. Model. 2017, 23(12), 334. doi: 10.1007/s00894-017-3492-8

    11. [11]

      Lan, G. C.; Jin, S. H.; Li, J.; Wang, J. Y.; Lu, Z. Y.; Wu, N. N.; Li, L. J.; Wang, D. X. Miscibility, glass transition temperature and mechanical properties of NC/DBP binary systems by molecular dynamics. Propell. Explos. Pyrot. 2018, 43(6), 559-567. doi: 10.1002/prep.201700290

    12. [12]

      Song, Y. H.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W. J.; Zheng, Q. Glass transition of poly(methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer 2017, 127, 141-149. doi: 10.1016/j.polymer.2017.08.038

    13. [13]

      Ju, S. P.; Chen, H. Y.; Shih, C. W. J. Investigating mechanical properties of polymethylmethacrylate/silver nanoparticle composites by molecular dynamics simulation. J. Nanopart. Res. 2017, 20(1), 1.

    14. [14]

      Lee, M. W.; Wang, T. Y.; Tsai, J. L. Mechanical properties of nanocomposites with functionalized graphene. J. Compos. Mater. 2016, 50(27), 3779-3789. doi: 10.1177/0021998315625788

    15. [15]

      Okabe, T.; Oya, Y.; Tanabe, K.; Kikugawa, G.; Yoshioka, K. Molecular dynamics simulation of crosslinked epoxy resins: Curing and mechanical properties. Eur. Polym. J. 2016, 80, 78-88. doi: 10.1016/j.eurpolymj.2016.04.019

    16. [16]

      Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with detailed on alkane and benzene compounds. J. Phys. Chem. B 1998, 102(38), 7338-7364. doi: 10.1021/jp980939v

    17. [17]

      Duan, X. H.; Wei, C. X.; Liu, Y. G.; Pei, C. H. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX. J. Hazard. Mater. 2010, 174(1-3), 175-180. doi: 10.1016/j.jhazmat.2009.09.033

    18. [18]

      Li, J.; Jin, S. H.; Lan, G. C.; Xu, Z. S.; Wu, N. N.; Chen, S. S.; Li, L. J. The effect of solution conditions on the crystal morphology of β-HMX by molecular dynamics simulations. J. Cryst. Growth 2019, 507, 38-45. doi: 10.1016/j.jcrysgro.2018.10.056

    19. [19]

      Zhu, W.; Xiao, J. J.; Zhu, W. H.; Xiao, H. M. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J. Hazard. Mater. 2009, 164(2-3), 1082-1088. doi: 10.1016/j.jhazmat.2008.09.021

    20. [20]

      Lu, Y. Y.; Shu, Y. J.; Liu, N.; Shu, Y.; Wang, K.; Wu, Z. K.; Wang, X. C.; Ding, X. Y. Theoretical simulations on the glass transition temperatures and mechanical properties of modified glycidyl azide polymer. Comp. Mater. Sci. 2017, 139, 132-139. doi: 10.1016/j.commatsci.2017.07.022

    21. [21]

      Lan, G. C.; Jin, S. H.; Li, J.; Wang, J. Y.; Li, J. X.; Chen, S. S.; Li, L. J. The study of external growth environments on the crystal morphology of ε-HNIW by molecular dynamics simulation. J. Mater. Sci. 2018, 53(18), 12921-12936. doi: 10.1007/s10853-018-2543-6

    22. [22]

      Basconi, J. E.; Shirts, M. R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory. Comput. 2013, 9(7), 2887-2899. doi: 10.1021/ct400109a

    23. [23]

      Kolafa, J.; Lísal, M. Time-reversible velocity predictors for verlet integration with velocity-dependent right-hand side. J. Chem. Theory. Comput. 2011, 7(11), 3596-3607. doi: 10.1021/ct200108g

    24. [24]

      Rahmati, M.; Modarress, H.; Gooya, R. Molecular simulation study of polyurethane membranes. Polymer 2012, 53(9), 1939-1950. doi: 10.1016/j.polymer.2012.02.051

    25. [25]

      Kitson, D. H.; Hagler, A. T. Theoretical studies of the structure and molecular dynamics of a peptide crystal. Biochemistry 1988, 27(14), 5246-5257. doi: 10.1021/bi00414a045

    26. [26]

      Yu, Y. H.; Chen, S. S.; Li, X.; Zhu, J. P.; Liang, H.; Zhang, X. X.; Shu, Q. H. Molecular dynamics simulations for 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) and its PBXs. RSC Adv. 2016, 6(24), 20034-20041. doi: 10.1039/C5RA27912G

    27. [27]

      Zhang, M. Z.; Choi, P.; Sundararaj, U. Molecular dynamics and thermal analysis study of anomalous thermodynamic behavior of poly(ether imide)/polycarbonate blends. Polymer 2003, 44(6), 1979-1986. doi: 10.1016/S0032-3861(03)00054-5

    28. [28]

      Hildebrand, J. H.; Scott, R. L., in The solubility of non-electrodytes, New York, Reinhold Publishing Corp, 1950, p.424.

    29. [29]

      Goharshadi, E. K.; Akhlamadi, G.; Mahdizadeh, S. J. Investigation of graphene oxide nanosheets dispersion in water based on solubility parameters: A molecular dynamics simulation study. RSC Adv. 2015, 5(129), 106421-106430. doi: 10.1039/C5RA19932H

    30. [30]

      Jin, R. G.; Hua, Y. Q., in Polymer physics (in Chinese), Beijing, Chemical Industry Press, 2007, p.74.

    31. [31]

      Forster, A.; Hempenstall, J.; Tucker, I.; Rades, T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 2001, 226(1-2), 147-161. doi: 10.1016/S0378-5173(01)00801-8

    32. [32]

      Sun, Y. B.; Hui, J. M.; Cao, X. M., in Military use blended explosives (in Chinese), Beijing, Weapon Industry Press, 1995.

    33. [33]

      Yang, Q.; Chen, X.; He, Z. W.; Lan, F. T.; Liu, H. The glass transition temperature measurements of polyethylene: determined by using molecular dynamic method. RSC Adv. 2016, 6(15), 12053-12060. doi: 10.1039/C5RA21115H

    34. [34]

      Fu, Y. Z.; Hu, S. Q.; Lan, Y. H.; Liu, Y. Q. Molecular dynamics simulation on the glass transition temperature and mechanical properties of HTPB/plasticizer blends. Acta Chim. Sinica 2010, 68(8), 809-813.

    35. [35]

      Jaidann, M.; Abou-Rachid, H.; Lafleur-Lambert, X.; Lussier, L. S.; Gagnon, N.; Brisson, J. Modeling and measurement of glass transition temperatures of energetic and inert systems. Polym. Eng. Sci. 2008, 48(6), 1141-1150. doi: 10.1002/(ISSN)1548-2634

    36. [36]

      Xu, X. J.; Xiao, J. J.; Huang, H.; Li, J. S.; Xiao, H. M. Molecular dynamic simulations on the structures and properties of ε-CL-20(001)/F-2314 PBX. J. Hazard. Mater. 2010, 175(1-3), 423-428. doi: 10.1016/j.jhazmat.2009.10.023

    37. [37]

      Watt, J. P.; Davies, G. F.; O’Connell, R. J. The elastic properties of composite materials. Rev. Geophys. Space Phys. 1976, 14, 541-563. doi: 10.1029/RG014i004p00541

    38. [38]

      Pugh, S. F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 1954, 45(367), 823-843. doi: 10.1080/14786440808520496

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1582
  • HTML全文浏览量:  30
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-01-13
  • 修回日期:  2019-02-17
  • 网络出版日期:  2019-04-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章